Microbial- rather than plant-derived carbon contributes more to organic carbon accumulation in grassland soils of northern China

Jiayi Tang , Hongbin Ma , Cuilan Li , Jinjing Zhang , Nianpeng He

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 250366

PDF (6114KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 250366 DOI: 10.1007/s42832-025-0366-3
RESEARCH ARTICLE

Microbial- rather than plant-derived carbon contributes more to organic carbon accumulation in grassland soils of northern China

Author information +
History +
PDF (6114KB)

Abstract

Microbial and plant residues are primary sources of soil organic carbon (SOC). However, limited research is available on their differential contributions and influencing factors to SOC accumulation in grassland soils. Here, we collected soil samples from meadow steppe (MS), typical steppe (TS), and desert steppe (DS) across the Qinghai-Xizang Plateau, Loess Plateau, and Inner Mongolia Plateau. The distributions of microbial- and plant-derived carbon and their contributions to SOC were analyzed using amino sugars and lignin phenols (LPs) biomarkers. The relationships between microbial- and plant-derived carbon with climate, vegetations, and soil properties were explored. The results showed that microbial necromass carbon (MNC) and LPs contents were higher in MS and TS than in DS. The ratio of MNC to SOC (39.0%–54.2%) was higher whereas the ratio of LPs to SOC (1.49%–4.44%) was lower in MS and TS than in DS. Furthermore, fungal necromass carbon (FNC) accounted for larger proportion (35.1%–50.3%) than bacterial necromass carbon (BNC) (3.61%–5.87%) in SOC. Redundancy analysis identified complexed iron and aluminum oxides as the most significant factor impacting MNC and LP contents. Structural equation modeling demonstrated that mean annual precipitation and temperature influenced MNC and LPs contents by affecting vegetation biomass and soil properties (pH, silt and clay, and iron and aluminum oxides), which subsequently affected SOC accumulation. The findings suggested that MNC was the dominant source of SOC in grassland soils, with FNC contributing more to SOC accumulation. Complexed iron and aluminum oxides promoted accumulation of MNC and LPs through chemical protection.

Graphical abstract

Keywords

soil organic carbon / microbial necromass / lignin phenols / grassland types / plateau transects

Highlight

● MNC and LPs contents were higher in meadow and typical steppes than in desert steppe.

● MNC exhibited larger contribution to SOC accumulation than LPs in grassland soils.

● Fungal necromass contributed more to SOC accumulation than bacterial necromass.

● Fe and Al oxides were the most key factors regulating MNC and LPs distributions.

Cite this article

Download citation ▾
Jiayi Tang, Hongbin Ma, Cuilan Li, Jinjing Zhang, Nianpeng He. Microbial- rather than plant-derived carbon contributes more to organic carbon accumulation in grassland soils of northern China. Soil Ecology Letters, 2026, 8(1): 250366 DOI:10.1007/s42832-025-0366-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adamczyk, B., Sietiö, O.M., Biasi, C., Heinonsalo, J., 2019. Interaction between tannins and fungal necromass stabilizes fungal residues in boreal forest soils. New Phytologist223, 16–21.

[2]

Angst, G., Mueller, K.E., Nierop, K.G.J., Simpson, M.J., 2021. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry156, 108189.

[3]

Bai, Y.F., Cotrufo, M.F., 2022. Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science377, 603–608.

[4]

Buckeridge, K.M., Mason, K.E., McNamara, N.P., Ostle, N., Puissant, J., Goodall, T., Griffiths, R.I., Stott, A.W., Whitaker, J., 2020. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Communications Earth & Environment1, 36.

[5]

Chen, L.T., Jing, X., Flynn, D.F.B., Shi, Y., Kühn, P., Scholten, T., He, J. S., 2017. Changes of carbon stocks in alpine grassland soils from 2002 to 2011 on the Tibetan Plateau and their climatic causes. Geoderma288, 166–174.

[6]

Chen, S.G., Zhang, Y.Q., Ma, J., Bai, M.Y., Long, J.X., Liu, M., Chen, Y.L., Guo, J.B., Chen, L., 2025. Contribution of soil microbial necromass carbon to soil organic carbon fractions and its influencing factors in different grassland types. EGUsphere 20251–32.

[7]

Chen, X.B., Hu, Y.J., Xia, Y.H., Zheng, S.M., Ma, C., Rui, Y.C., He, H.B., Huang, D.Y., Zhang, Z.H., Ge, T.D., Wu, J.S., Guggenberger, G., Kuzyakov, Y., Su, Y.R., 2021. Contrasting pathways of carbon sequestration in paddy and upland soils. Global Change Biology27, 2478–2490.

[8]

Clemente, J.S., Simpson, A.J., Simpson, M.J., 2011. Association of specific organic matter compounds in size fractions of soils under different environmental controls. Organic Geochemistry42, 1169–1180.

[9]

Cotrufo, M.F., Soong, J.L., Horton, A.J., Campbell, E.E., Haddix, M.L., Wall, D.H., Parton, W.J., 2015. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience8, 776–779.

[10]

Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K., Paul, E., 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter. Global Change Biology19, 988–995.

[11]

Creamer, C.A., Foster, A.L., Lawrence, C., McFarland, J., Schulz, M., Waldrop, M.P., 2019. Mineralogy dictates the initial mechanism of microbial necromass association. Geochimica et Cosmochimica Acta260, 161–176.

[12]

Dai, X.Y., Ping, C.L., Hines, M.E., Zhang, X.D., Zech, W., 2002. Amino sugars in Arctic soils. Communications in Soil Science and Plant Analysis33, 789–805.

[13]

Duan, X., Chen, X.B., Zhang, W.J., Wang, J., Xie, L., Xu, Y.J., Hu, S.Y., Zhu, G.X., Gao, W., Wu, J.S., 2025. Carbon accumulation efficiency of granulated straw incorporation and its response to nutrient supplement in infertile agricultural soils: evidence from biomarkers. Soil Ecology Letters7, 240284.

[14]

Duran, K., Kohlstedt, M., van Erven, G., Klostermann, C.E., America, A.H.P., Bakx, E., Baars, J.J.P., Gorissen, A., de Visser, R., de Vries, R.P., Wittmann, C., Comans, R.N.J., Kuyper, T.W., Kabel, M.A., 2024. From 13C-lignin to 13C-mycelium: Agaricus bisporus uses polymeric lignin as a carbon source. Science Advances10, eadl3419.

[15]

Fan, J. L., Jin, H., Zhang, C.H., Zheng, J.J., Zhang, J., Han, G.D., 2021. Grazing intensity induced alternations of soil microbial community composition in aggregates drive soil organic carbon turnover in a desert steppe. Agriculture, Ecosystems & Environment313, 107387.

[16]

Fang, K., Qin, S.Q., Chen, L.Y., Zhang, Q.W., Yang, Y.H., 2019. Al/Fe mineral controls on soil organic carbon stock across Tibetan alpine grasslands. Journal of Geophysical Research: Biogeosciences124, 247–259.

[17]

Feng, Y., Han, S.J., Chen, W., Gu, Y., Stewart, C.E., Zhang, J.H., Geng, S.C., Chen, Z.J., Setälä, H., 2020. Variation in soil lignin protection mechanisms in five successional gradients of mixed broadleaf-pine forests. Soil Science Society of America Journal84, 232–250.

[18]

Gao, Y., Xu, X.T., Ding, J.J., Bao, F., De Costa, Y.G., Zhuang, W.Q., Wu, B., 2021. The responses to long-term water addition of soil bacterial, archaeal, and fungal communities in a desert ecosystem. Microorganisms9, 981.

[19]

Ge, J., Hou, M.J., Liang, T.G., Feng, Q.S., Meng, X.Y., Liu, J., Bao, X.Y., Gao, H.Y., 2022. Spatiotemporal dynamics of grassland aboveground biomass and its driving factors in North China over the past 20 years. Science of the Total Environment826, 154226.

[20]

Hall, S.J., Silver, W.L., Timokhin, V.I., Hammel, K.E., 2015. Lignin decomposition is sustained under fluctuating redox conditions in humid tropical forest soils. Global Change Biology21, 2818–2828.

[21]

Hao, L., Sun, G., Liu, Y.Q., Gao, Z.Q., He, J.J., Shi, T.T., Wu, B.J., 2014. Effects of precipitation on grassland ecosystem restoration under grazing exclusion in Inner Mongolia, China. Landscape Ecology29, 1657–1673.

[22]

Hao, Z.G., Zhao, Y.F., Wang, X., Wu, J.H., Jiang, S.L., Xiao, J.J., Wang, K.C., Zhou, X.H., Liu, H.Y., Li, J., Sun, Y.X., 2021. Thresholds in aridity and soil carbon-to-nitrogen ratio govern the accumulation of soil microbial residues. Communications Earth & Environment2, 236.

[23]

He, L.Y., Mazza Rodrigues, J.L., Soudzilovskaia, N.A., Barceló, M., Olsson, P.A., Song, C.C., Tedersoo, L., Yuan, F.H., Yuan, F.M., Lipson, D.A., Xu, X.F., 2020. Global biogeography of fungal and bacterial biomass carbon in topsoil. Soil Biology and Biochemistry151, 108024.

[24]

He, P., Zhang, Y.T., Shen, Q.R., Ling, N., Nan, Z.B., 2023. Microbial carbon use efficiency in different ecosystems: a meta-analysis based on a biogeochemical equilibrium model. Global Change Biology29, 4758–4774.

[25]

Hedges, J.I., Ertel, J.R., 1982. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Analytical Chemistry54, 174–178.

[26]

Hemingway, J.D., Rothman, D.H., Grant, K.E., Rosengard, S.Z., Eglinton, T.I., Derry, L.A., Galy, V.V., 2019. Mineral protection regulates long-term global preservation of natural organic carbon. Nature570, 228–231.

[27]

Hu, H., Qian, C., Xue, K., Jörgensen, R.G., Keiluweit, M., Liang, C., Zhu, X.F., Chen, J., Sun, Y.S., Ni, H.W., Ding, J.X., Huang, W.G., Mao, J.D., Tan, R.X., Zhou, J.Z., Crowther, T.W., Zhou, Z.H., Zhang, J.B., Liang, Y.T., 2024. Reducing the uncertainty in estimating soil microbial-derived carbon storage. Proceedings of the National Academy of Sciences of the United States of America121, e2401916121.

[28]

Hu, J.X., Du, M.L., Chen, J., Tie, L.H., Zhou, S.X., Buckeridge, K.M., Cornelissen, J.H.C., Huang, C.D., Kuzyakov, Y., 2023. Microbial necromass under global change and implications for soil organic matter. Global Change Biology29, 3503–3515.

[29]

Huang, Y.Z., Xin, Z.B., Liu, J.B., Liu, Q.J., 2022. Divergences of soil carbon turnover and regulation in alpine steppes and meadows on the Tibetan Plateau. Science of the Total Environment814, 152687.

[30]

Jex, C.N., Pate, G.H., Blyth, A.J., Spencer, R.G.M., Hernes, P.J., Khan, S.J., Baker, A., 2014. Lignin biogeochemistry: from modern processes to Quaternary archives. Quaternary Science Reviews87, 46–59.

[31]

Jia, Y.Q., Wen, Y.Q., Han, X., Qi, J., Liu, Z.Y., Zhang, S.M., Li, G., 2018. Electrocatalytic degradation of rice straw lignin in alkaline solution through oxidation on a Ti/SnO2-Sb2O3/α-PbO2/β-PbO2 anode and reduction on an iron or tin doped titanium cathode. Catalysis Science & Technology8, 4665–4677.

[32]

Joergensen, R.G., 2018. Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils54, 559–568.

[33]

Kang, X., Kirui, A., Dickwella Widanage, M.C., Mentink-Vigier, F., Cosgrove, D.J., Wang, T., 2019. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nature Communications10, 347.

[34]

Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., Nico, P.S., 2015. Mineral-organic associations: formation, properties, and relevance in soil environments. Advances in Agronomy130, 1–140.

[35]

Li, B., Ren, G.H., Hou, X.Y., An, X.T., Lv, G.H., 2023. Response of grassland soil quality to shallow plowing and nutrient addition. International Journal of Environmental Research and Public Health20, 2308.

[36]

Li, J., Zhang, X.C., Luo, J.F., Lindsey, S., Zhou, F., Xie, H.T., Li, Y., Zhu, P., Wang, L.C., Shi, Y.L., He, H.B., Zhang, X.D., 2020. Differential accumulation of microbial necromass and plant lignin in synthetic versus organic fertilizer-amended soil. Soil Biology and Biochemistry149, 107967.

[37]

Li, Q.L., Liu, Y., Kou, D., Peng, Y.F., Yang, Y.H., 2022. Substantial non-growing season carbon dioxide loss across Tibetan alpine permafrost region. Global Change Biology28, 5200–5210.

[38]

Liang, C., Amelung, W., Lehmann, J., Kästner, M., 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology25, 3578–3590.

[39]

Liang, C., Schimel, J.P., Jastrow, J.D., 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology2, 17105.

[40]

Liao, C.J., Huang, W.J., Wells, J., Zhao, R.Y., Allen, K., Hou, E.Q., Huang, X., Qiu, H., Tao, F., Jiang, L.F., Aguilos, M., Lin, L., Huang, X.M., Luo, Y.Q., 2022. Microbe-iron interactions control lignin decomposition in soil. Soil Biology and Biochemistry173, 108803.

[41]

Liu, H.X., Sun, Z.J., Cui, Y.X., Dong, Y.Q., He, P.X., An, S.Z., Zhang, X.H., 2024. Storage, pattern and driving factors of soil organic carbon in the desert rangelands of northern Xinjiang, North-West China. Frontiers of Earth Science18, 598–610.

[42]

Lu, R.K., 2000. Analytical Methods for Soil Agricultural Chemistry. Beijing: China Agricultural Science and Technology Press.

[43]

Luo, R.Y., Kuzyakov, Y., Liu, D.Y., Fan, J.L., Luo, J.F., Lindsey, S., He, J.S., Ding, W.X., 2020. Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: disentangling microbial and physical controls. Soil Biology and Biochemistry144, 107764.

[44]

Luo, R.Y., Kuzyakov, Y., Zhu, B., Qiang, W., Zhang, Y., Pang, X.Y., 2022. Phosphorus addition decreases plant lignin but increases microbial necromass contribution to soil organic carbon in a subalpine forest. Global Change Biology28, 4194–4210.

[45]

Ma, A.N., Yu, G.R., He, N.P., Wang, Q.F., Peng, S.L., 2014. Above-and below-ground biomass relationships in China’s grassland vegetation. Quaternary Sciences34, 769–776.

[46]

Ma, T., Yang, Z.Y., Shi, B.W., Gao, W.J., Li, Y.F., Zhu, J.X., He, J.S., 2023. Phosphorus supply suppressed microbial necromass but stimulated plant lignin phenols accumulation in soils of alpine grassland on the Tibetan Plateau. Geoderma431, 116376.

[47]

Ma, W.H., Fang, J.Y., 2006. R: S ratios of temperate steppe and the environmental controls in Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis42, 774–778.

[48]

Malik, A.A., Puissant, J., Buckeridge, K.M., Goodall, T., Jehmlich, N., Chowdhury, S., Gweon, H.S., Peyton, J.M., Mason, K.E., van Agtmaal, M., Blaud, A., Clark, I.M., Whitaker, J., Pywell, R.F., Ostle, N., Gleixner, G., Griffiths, R.I., 2018. Land use driven change in soil pH affects microbial carbon cycling processes. Nature Communications9, 3591.

[49]

Piao, S.L., Fang, J.Y., He, J.S., Xiao, Y., 2004. Spatial distribution of grassland biomass in China. Acta Phytoecologica Sinica28, 491–498.

[50]

Shen, C.F., Zhang, J., Yang, X., Liu, J.H., Han, G.D., 2025. Effects of grazing on temperate grassland ecosystems: a meta-analysis. Agriculture, Ecosystems & Environment381, 109452.

[51]

Shi, T.S., Collins, S.L., Yu, K.L., Peñuelas, J., Sardans, J., Li, H.L., Ye, J.S., 2024. A global meta-analysis on the effects of organic and inorganic fertilization on grasslands and croplands. Nature Communications15, 3411.

[52]

Tao, F., Huang, Y.Y., Hungate, B.A., Manzoni, S., Frey, S.D., Schmidt, M.W.I., Reichstein, M., Carvalhais, N., Ciais, P., Jiang, L.F., Lehmann, J., Wang, Y.P., Houlton, B.Z., Ahrens, B., Mishra, U., Hugelius, G., Hocking, T.D., Lu, X.J., Shi, Z., Viatkin, K., Vargas, R., Yigini, Y., Omuto, C., Malik, A.A., Peralta, G., Cuevas-Corona, R., Di Paolo, L.E., Luotto, I., Liao, C.J., Liang, Y.S., Saynes, V.S., Huang, X.M., Luo, Y.Q., 2023. Microbial carbon use efficiency promotes global soil carbon storage. Nature618, 981–985.

[53]

Thevenot, M., Dignac, M.F., Rumpel, C., 2010. Fate of lignins in soils: a review. Soil Biology and Biochemistry42, 1200–1211.

[54]

Wang, B.R., An, S.S., Liang, C., Liu, Y., Kuzyakov, Y., 2021. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology and Biochemistry162, 108422.

[55]

Wang, X., Cammeraat, E.L.H., Romeijn, P., Kalbitz, K., 2014. Soil organic carbon redistribution by water erosion-the role of CO2 emissions for the carbon budget. PLoS One9, e96299.

[56]

Wang, Y., Feng, F.Y., Ge, J., Li, Y., Yu, X.Y., 2022. Effects and mechanisms of plant root exudates on soil remediation. Acta Ecologica Sinica42, 829–842.

[57]

Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabo, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H.J., Kögel-Knabner, I., 2019. Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales. Geoderma333, 149–162.

[58]

Xu, Y.N., Sheng, J., Zhang, L.P., Sun, G.F., Zheng, J.C., 2025. Organic fertilizer substitution increased soil organic carbon through the association of microbial necromass C with iron oxides. Soil and Tillage Research248, 106402.

[59]

Yang, Y., Dou, Y.X., Wang, B.R., Wang, Y.Q., Liang, C., An, S.S., Soromotin, A., Kuzyakov, Y., 2022. Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence. Soil Biology and Biochemistry170, 108688.

[60]

Zhang, J.J., Lei, L., Xiao, W.F., Yang, X., Horwath, W.R., Liao, Y.L., Yang, H.B., Jian, Z.J., Zeng, L.X., 2025. Vetch cover crops increase particulate organic carbon in citrus orchard by increasing lignin phenols. Applied Soil Ecology207, 105921.

[61]

Zhang, X.D., Amelung, W., 1996. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry28, 1201–1206.

[62]

Zhang, Y., Li, Y., Wang, R.M., Xu, L., Li, M.X., Liu, Z.G., Wu, Z.L., Zhang, J.H., Yu, G.R., He, N.P., 2020. Spatial variation of leaf chlorophyll in northern hemisphere grasslands. Frontiers in Plant Science11, 1244.

[63]

Zhao, G., Mu, X., Wen, Z., Wang, F., Gao, P., 2013. Soil erosion, conservation, and eco‐environment changes in the Loess Plateau of China. Land Degradation & Development24, 499–510.

[64]

Zhao, Y.F., Wang, X., Li, Y.Z., Yuan, M.H., Li, J., Zhu, H.W., Cheng, Z.Y., Duan, W.H., Wang, J.W., 2024. Aridity-driven divergence in soil microbial necromass carbon in alpine grasslands of the Tibetan Plateau. Biology and Fertility of Soils60, 799–812.

[65]

Zheng, T.T., Miltner, A., Liang, C., Nowak, K.M., Kästner, M., 2023. Turnover of bacterial biomass to soil organic matter via fungal biomass and its metabolic implications. Soil Biology and Biochemistry180, 108995.

[66]

Zhu, E.X., Liu, Z.G., Wang, S.M., Wang, Y.Y., Liu, T., Feng, X.J., 2023. Organic carbon and lignin protection by metal oxides versus silicate clay: comparative study based on wetland and upland soils. Journal of Geophysical Research: Biogeosciences128, e2023JG007474.

[67]

Zhu, Y.R., Hu, M.H., Hui, D.F., Niu, G.X., Li, J.L., Yao, X.Y., Hu, Y.L., Huang, X.L., Li, Y.H., Zhang, D.Q., Deng, Q., 2024. Plants and microorganisms both contribute to soil organic matter formation through mineral interactions: evidence from a subtropical forest succession. Geoderma452, 117099.

[68]

Zhu, Z.H., Zhu, T.B., Fang, Y.T., Gu, R., Li, D.J., 2025. Increasing plant species diversity stimulates soil microbial necromass nitrogen accumulation in a subtropical forest. Journal of Applied Ecology62, 921–931.

[69]

Zhuang, J., Yu, G.R., 2002. Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals. Chemosphere49, 619–628.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (6114KB)

Supplementary files

Supplementary materials

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/