Livestock-induced changes in soil properties and microbial dominance determine soil microbial diversity in a conifer forest

Fan Fan , Jiangling Zhu , Kai Dong , Suhui Ma , Chengjun Ji , Zhiyao Tang , Shaopeng Wang , Xiaoli Shen , Sheng Li , Jingyun Fang

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 250364

PDF (2870KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 250364 DOI: 10.1007/s42832-025-0364-5
RESEARCH ARTICLE

Livestock-induced changes in soil properties and microbial dominance determine soil microbial diversity in a conifer forest

Author information +
History +
PDF (2870KB)

Abstract

The conifer forest in southwest China is the key habitat for the giant panda (Ailuropoda melanoleuca) and vital for ecosystem services, but is being degraded by livestock grazing. Grazing influences soil environment and biota through top-down control of aboveground-belowground systems. Despite its significance, the effects of livestock grazing on soil environment and microbial communities in forest ecosystems, particularly in biodiversity hotspots, remain underexplored compared to aboveground system. Using fence experiments and structural equation models, our study identified three key mechanisms through which livestock grazing affects soil environments and microbial dynamics in a primary coniferous forest in southwest China. Livestock grazing boosted soil bacterial diversity, and altered soil properties (reducing soil organic matter and increasing pH), which indirectly suppressed bacterial diversity and diminished the prevalence of the dominant fungal group, Basidiomycota. The decreased dominance of Basidiomycota fostered greater diversity, with increased representation of subordinate groups like Ascomycota and Actinobacteria, which suggested a significant "dominance effect" within soil microbial communities. The rapid response of soil environments and microbial diversity to short-term fencing experiments suggests that rotational grazing management could be beneficial for soil ecosystem restoration. We recommend incorporating soil and microbial indicators, such as Basidiomycota's relative abundance, into conservation monitoring to track soil recovery. Short-term monitoring of these indicators allows for timely assessment of grazing management, enabling quick strategic adjustments to prevent irreversible long-term degradation. Continued monitoring of microbial shifts in relation to functions like forest growth and litter decomposition is essential for understanding the ecological consequences of livestock disturbance.

Graphical abstract

Keywords

bacteria / competition / coniferous forest / dominant effect / fungi / grazing management

Highlight

● Livestock grazing in giant panda habitat altered soil chemistry, reducing carbon and available phosphorus while increasing pH.

● Grazing increased soil bacterial richness while altering fungal community structure, shifting from Basidiomycota dominance to Basidiomycota-Ascomycota co-dominance.

● Livestock-induced changes in soil properties and microbial dominance collectively reshape soil microbial community composition.

● Short-term grazing exclusion suggests potential for rotational grazing to restore below-ground ecosystem functions.

● Incorporating monitoring of soil factors and key microbial taxa into forest restoration protocols was recommended.

Cite this article

Download citation ▾
Fan Fan, Jiangling Zhu, Kai Dong, Suhui Ma, Chengjun Ji, Zhiyao Tang, Shaopeng Wang, Xiaoli Shen, Sheng Li, Jingyun Fang. Livestock-induced changes in soil properties and microbial dominance determine soil microbial diversity in a conifer forest. Soil Ecology Letters, 2026, 8(1): 250364 DOI:10.1007/s42832-025-0364-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aiken, G.E., 2016. Invited Review: grazing management options in meeting objectives of grazing experiments. The Professional Animal Scientist32, 1–9.

[2]

Allesina, S., Levine, J.M., 2011. A competitive network theory of species diversity. Proceedings of the National Academy of Sciences of the United States of America108, 5638–5642.

[3]

Bagchi, S., Ritchie, M.E., 2010. Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition. Ecology Letters13, 959–968.

[4]

Baldrian, P., 2017. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiology Reviews41, 109–130.

[5]

Baldrian, P., López-Mondéjar, R., Kohout, P., 2023. Forest microbiome and global change. Nature Reviews Microbiology21, 487–501.

[6]

Bardgett, R.D., Jones, A.C., Jones, D.L., Kemmitt, S.J., Cook, R., Hobbs, P.J., 2001. Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems. Soil Biology and Biochemistry33, 1653–1664.

[7]

Bardgett, R.D., Wardle, D.A., 2003. Herbivore-mediated linkages between aboveground and belowground communities. Ecology84, 2258–2268.

[8]

Byrnes, R.C., Eastburn, D.J., Tate, K.W., Roche, L.M., 2018. A global meta-analysis of grazing impacts on soil health indicators. Journal of Environmental Quality47, 758–765.

[9]

Cao, J.J., Jiao, Y.M., Che, R.X., Holden, N.M., Zhang, X.F., Biswas, A., Feng, Q., 2022. The effects of grazer exclosure duration on soil microbial communities on the Qinghai-Tibetan Plateau. Science of the Total Environment839, 156238.

[10]

Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods7, 335–336.

[11]

Chen, Y.P., Jiang, S.W., Zhao, L.J., Huang, J.Z., 2003. Surveillance on giant panda habitats in Wanglang Nature Reserve, Sichuan. Sichuan Journal of Zoology22, 49–50.

[12]

Cline, L.C., Zak, D.R., Upchurch, R.A., Freedman, Z.B., Peschel, A.R., 2017. Soil microbial communities and elk foraging intensity: implications for soil biogeochemical cycling in the sagebrush steppe. Ecology Letters20, 202–211.

[13]

Coelho, M.A., Bakkeren, G., Sun, S., Hood, M.E., Giraud, T., 2017. Fungal sex: the Basidiomycota. Microbiology Spectrum5, .

[14]

Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., Tiedje, J.M., 2009. The ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research37, D141–D145.

[15]

Coyte, K.Z., Schluter, J., Foster, K.R., 2015. The ecology of the microbiome: networks, competition, and stability. Science350, 663–666.

[16]

Cuddington, K., 2011. Legacy effects: the persistent impact of ecological interactions. Biological Theory6, 203–210.

[17]

Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., Singh, B.K., 2016a. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications7, 10541.

[18]

Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Trivedi, P., Osanai, Y., Liu, Y.R., Hamonts, K., Jeffries, T.C., Singh, B.K., 2016b. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecological Monographs86, 373–390.

[19]

Delgado-Baquerizo, M., Oliverio, A.M., Brewer, T.E., Benavent-González, A., Eldridge, D.J., Bardgett, R.D., Maestre, F.T., Singh, B.K., Fierer, N., 2018. A global atlas of the dominant bacteria found in soil. Science359, 320–325.

[20]

Delgado-Baquerizo, M., Reich, P.B., Khachane, A.N., Campbell, C.D., Thomas, N., Freitag, T.E., Abu Al-Soud, W., Sørensen, S., Bardgett, R.D., Singh, B.K., 2017. It is elemental: soil nutrient stoichiometry drives bacterial diversity. Environmental Microbiology19, 1176–1188.

[21]

Eldridge, D.J., Delgado-Baquerizo, M., Travers, S.K., Val, J., Oliver, I., Hamonts, K., Singh, B.K., 2017. Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores. Ecology98, 1922–1931.

[22]

Eldridge, D.J., Travers, S.K., Val, J., Ding, J.Y., Wang, J.T., Singh, B.K., Delgado-Baquerizo, M., 2021. Experimental evidence of strong relationships between soil microbial communities and plant germination. Journal of Ecology109, 2488–2498.

[23]

Eldridge, D.J., Travers, S.K., Val, J., Wang, J.T., Liu, H.W., Singh, B.K., Delgado-Baquerizo, M., 2020. Grazing regulates the spatial heterogeneity of soil microbial communities within ecological networks. Ecosystems23, 932–942.

[24]

Fan, F., Bu, H.L., McShea, W.J., Shen, X.L., Li, B.V., Li, S., 2020. Seasonal habitat use and activity patterns of blood pheasant Ithaginis cruentusbe in the presence of free-ranging livestock. Global Ecology and Conservation23, e01155.

[25]

Fan, F., Bu, H.L., McShea, W.J., Shen, X.L., Li, S., 2023. Free-ranging livestock cause forest understory degradation in giant panda (Ailuropoda melanoleuca) habitat. Forest Ecology and Management538, 120990.

[26]

Fan, F., Zhao, L.J., Ma, T.Y., Xiong, X.Y., Zhang, Y.B., Shen, X.L., Li, S., 2022. Community composition and structure in a 25.2 hm2 subalpine dark coniferous forest dynamics plot in Wanglang, Sichuan, China. Chinese Journal of Plant Ecology46, 1005–1017.

[27]

Guerra, C.A., Heintz-Buschart, A., Sikorski, J., Chatzinotas, A., Guerrero-Ramírez, N., Cesarz, S., Beaumelle, L., Rillig, M.C., Maestre, F.T., Delgado-Baquerizo, M., Buscot, F., Overmann, J., Patoine, G., Phillips, H.R.P., Winter, M., Wubet, T., Küsel, K., Bardgett, R.D., Cameron, E.K., Cowan, D., Grebenc, T., Marín, C., Orgiazzi, A., Singh, B.K., Wall, D.H., Eisenhauer, N., 2020. Blind spots in global soil biodiversity and ecosystem function research. Nature Communications11, 3870.

[28]

Habel, J.C., Rasche, L., Schneider, U.A., Engler, J.O., Schmid, E., Rödder, D., Meyer, S.T., Trapp, N., del Diego, R.S., Eggermont, H., Lens, L., Stork, N.E., 2019. Final countdown for biodiversity hotspots. Conservation Letters12, e12668.

[29]

Haynes, R.J., Williams, P.H., 1992. Changes in soil solution composition and pH in urine-affected areas of pasture. Journal of Soil Science43, 323–334.

[30]

He, N.P., Zhang, Y.H., Yu, Q., Chen, Q.S., Pan, Q.M., Zhang, G.M., Han, X.G., 2011. Grazing intensity impacts soil carbon and nitrogen storage of continental steppe. Ecosphere2, art8.

[31]

Hoeksema, J.D., Chaudhary, V.B., Gehring, C.A., Johnson, N.C., Karst, J., Koide, R.T., Pringle, A., Zabinski, C., Bever, J.D., Moore, J.C., Wilson, G.W.T., Klironomos, J.N., Umbanhowar, J., 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters13, 394–407.

[32]

Hoorman, J.J., de Moraes Sá, J.C., Reeder, R., 2011. The biology of soil compaction (Revised & Updated). Science68, 583–587.

[33]

Huang, Q.Y., Fei, Y.X., Yang, H.B., Gu, X.D., Songer, M., 2020. Giant Panda National Park, a step towards streamlining protected areas and cohesive conservation management in China. Global Ecology and Conservation22, e00947.

[34]

Hull, V., Zhang, J.D., Zhou, S.Q., Huang, J.Y., Viña, A., Liu, W., Tuanmu, M.N., Li, R.G., Liu, D., Xu, W.H., Li, R.G., Liu, D., Xu, W.H., Huang, Y., Ouyang, Z.Y., Zhang, H.M., Liu, J.G., 2014. Impact of livestock on giant pandas and their habitat. Journal for Nature Conservation22, 256–264.

[35]

Jiang, Y.C., 1963. Community characteristics and classification principles of subalpine coniferous forests in western Sichuan. Chinese Journal of Plant Ecology1, 42–50.

[36]

Kang, D.W., 2021. A review of the impacts of four identified major human disturbances on the habitat and habitat use of wild giant pandas from 2015 to 2020. Science of the Total Environment763, 142975.

[37]

Ke, P.J., Miki, T., 2015. Incorporating the soil environment and microbial community into plant competition theory. Frontiers in Microbiology6, 1066.

[38]

Knapp, A.K., Smith, M.D., Hobbie, S.E., Collins, S.L., Fahey, T.J., Hansen, G.J.A., Landis, D.A., La Pierre, K.J., Melillo, J.M., Seastedt, T.R., Shaver, G.R., Webster, J.R., 2012. Past, present, and future roles of long-term experiments in the LTER network. BioScience62, 377–389.

[39]

Lai, L.M., Kumar, S., 2020. A global meta-analysis of livestock grazing impacts on soil properties. PLoS One15, e0236638.

[40]

Larreguy, C., Carrera, A.L., Bertiller, M.B., 2014. Effects of long-term grazing disturbance on the belowground storage of organic carbon in the Patagonian Monte, Argentina. Journal of Environmental Management134, 47–55.

[41]

Levine, J.M., Bascompte, J., Adler, P.B., Allesina, S., 2017. Beyond pairwise mechanisms of species coexistence in complex communities. Nature546, 56–64.

[42]

Li, B.V., Jiang, B.K., 2021. Responses of forest structure, functions, and biodiversity to livestock disturbances: a global meta-analysis. Global Change Biology27, 4745–4757.

[43]

Li, B.V., Kim, M.J., Xu, W.H., Jiang, S.W., Yu, L., 2021. Increasing livestock grazing, the unintended consequence of community development funding on giant panda habitat. Biological Conservation257, 109074.

[44]

Li, B.V., Pimm, S.L., Li, S., Zhao, L.J., Luo, C.P., 2017. Free-ranging livestock threaten the long-term survival of giant pandas. Biological Conservation216, 18–25.

[45]

Machado, D., Maistrenko, O.M., Andrejev, S., Kim, Y., Bork, P., Patil, K.R., Patil, K.R., 2021. Polarization of microbial communities between competitive and cooperative metabolism. Nature Ecology & Evolution5, 195–203.

[46]

Maestre, F.T., Eldridge, D.J., Gross, N., Le Bagousse-Pinguet, Y., Saiz, H., Gozalo, B., Ochoa, V., Gaitán, J.J., 2022. The BIODESERT survey: assessing the impacts of grazing on the structure and functioning of global drylands. Web Ecology22, 75–96.

[47]

Mikola, J., Setälä, H., Virkajärvi, P., Saarijärvi, K., Ilmarinen, K., Voigt, W., Vestberg, M., 2009. Defoliation and patchy nutrient return drive grazing effects on plant and soil properties in a dairy cow pasture. Ecological Monographs79, 221–244.

[48]

Milchunas, D.G., Lauenroth, W.K., 1993. Quantitative effects of grazing on vegetation and soils over a global range of environments: ecological archives M063-001. Ecological Monographs63, 327–366.

[49]

Morris, S.J., Blackwood, C.B., 2024. The ecology of soil biota and their function. In: Paul, E.A., Frey, S.D., eds. Soil Microbiology, Ecology and Biochemistry. 5th ed. Amsterdam: Elsevier, 275–302.

[50]

Nendissa, D.R., Alimgozhaevich, I.K., Sapaev, I.B., Karimbaevna, T.M., Bakhtiyarovna, S.Z., Abdullah, D., Ugli Zokirov, K.G., Sharifovna, A.G., 2023. Sustainable livestock grazing in Kazakhstan practices, challenges, and environmental considerations. Caspian Journal of Environmental Sciences21, 977–988.

[51]

Öllerer, K., Varga, A., Kirby, K., Demeter, L., Biró, M., Bölöni, J., Molnár, Z., 2019. Beyond the obvious impact of domestic livestock grazing on temperate forest vegetation – A global review. Biological Conservation237, 209–219.

[52]

Peschel, A.R., Zak, D.R., Cline, L.C., Freedman, Z., 2015. Elk, sagebrush, and saprotrophs: indirect top-down control on microbial community composition and function. Ecology96, 2383–2393.

[53]

Pittarello, M., Probo, M., Lonati, M., Lombardi, G., 2016. Restoration of sub-alpine shrub-encroached grasslands through pastoral practices: effects on vegetation structure and botanical composition. Applied Vegetation Science19, 381–390.

[54]

Potapov, P., Hansen, M.C., Laestadius, L., Turubanova, S., Yaroshenko, A., Thies, C., Smith, W., Zhuravleva, I., Komarova, A., Minnemeyer, S., Esipova, E., 2017. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Science Advances3, e1600821.

[55]

R Core Team, 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

[56]

Ratzke, C., Barrere, J., Gore, J., 2020. Strength of species interactions determines biodiversity and stability in microbial communities. Nature Ecology & Evolution4, 376–383.

[57]

Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., Fierer, N., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal4, 1340–1351.

[58]

Schermelleh-Engel, K., Moosbrugger, H., Müller, H., 2003. Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online8, 23–74.

[59]

Semmartin, M., Di Bella, C., de Salamone, I.G., 2010. Grazing-induced changes in plant species composition affect plant and soil properties of grassland mesocosms. Plant and Soil328, 471–481.

[60]

Shade, A., Gregory Caporaso, J., Handelsman, J., Knight, R., Fierer, N., 2013. A meta-analysis of changes in bacterial and archaeal communities with time. The ISME Journal7, 1493–1506.

[61]

Siciliano, S.D., Palmer, A.S., Winsley, T., Lamb, E., Bissett, A., Brown, M.V., van Dorst, J., Ji, M.K., Ferrari, B.C., Grogan, P., Chu, H.Y., Snape, I., 2014. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biology and Biochemistry78, 10–20.

[62]

Silva, V., Catry, F.X., Fernandes, P.M., Rego, F.C., Paes, P., Nunes, L., Caperta, A.D., Sérgio, C., Bugalho, M.N., 2019. Effects of grazing on plant composition, conservation status and ecosystem services of Natura 2000 shrub-grassland habitat types. Biodiversity and Conservation28, 1205–1224.

[63]

Soares, M., Rousk, J., 2019. Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biology and Biochemistry131, 195–205.

[64]

State Forestry Administration, 2015. The fourth national giant panda survey. .

[65]

Swaisgood, R.R., Wang, D.J., Wei, F.W., 2018. Panda downlisted but not out of the woods. Conservation Letters11, e12355.

[66]

Treseder, K.K., Holden, S.R., 2013. Fungal carbon sequestration. Science339, 1528–1529.

[67]

Tuo, B., García-Palacios, P., Guo, C., Yan, E.R., Berg, M.P., Cornelissen, J.H.C., 2024. Meta-analysis reveals that vertebrates enhance plant litter decomposition at the global scale. Nature Ecology & Evolution8, 411–422.

[68]

Van Der Wal, R., Bardgett, R.D., Harrison, K.A., Stien, A., 2004. Vertebrate herbivores and ecosystem control: cascading effects of faeces on tundra ecosystems. Ecography27, 242–252.

[69]

Wan, W.J., Hao, X.L., Xing, Y.H., Liu, S., Zhang, X.Y., Li, X., Chen, W.L., Huang, Q.Y., 2021. Spatial differences in soil microbial diversity caused by pH-driven organic phosphorus mineralization. Land Degradation & Development32, 766–776.

[70]

Wang, M.J., Li, J.Q., 2008. Research on habitat restoration of Giant Panda after a grave disturbance of earthquake in Wanglang Nature Reserve, Sichuan Province. Acta Ecologica Sinica28, 5848–5855.

[71]

Wang, Y., Wesche, K., 2016. Vegetation and soil responses to livestock grazing in Central Asian grasslands: a review of Chinese literature. Biodiversity and Conservation25, 2401–2420.

[72]

Wei, F.W., Costanza, R., Dai, Q., Stoeckl, N., Gu, X.D., Farber, S., Nie, Y.G., Kubiszewski, I., Hu, Y.B., Swaisgood, R., Yang, X.Y., Bruford, M., Chen, Y.P., Voinov, A., Qi, D.W., Owen, M., Yan, L., Kenny, D.C., Zhang, Z.J., Hou, R., Jiang, S.W., Liu, H.B., Zhan, X.J., Zhang, L., Yang, B., Zhao, L.J., Zheng, X.J., Zhou, W.L., Wen, Y.L., Gao, H.R., Zhang, W., 2018. The value of ecosystem services from Giant Panda reserves. Current Biology28, 2174–2180.e7.

[73]

Wu, Y., Chen, D.M., Delgado-Baquerizo, M., Liu, S.E., Wang, B., Wu, J.P., Hu, S.J., Bai, Y.F., 2022. Long-term regional evidence of the effects of livestock grazing on soil microbial community structure and functions in surface and deep soil layers. Soil Biology and Biochemistry168, 108629.

[74]

Wubet, T., Kottke, I., Teketay, D., Oberwinkler, F., 2009. Arbuscular mycorrhizal fungal community structures differ between co-occurring tree species of dry Afromontane tropical forest, and their seedlings exhibit potential to trap isolates suited for reforestation. Mycological Progress8, 317–328.

[75]

Xian, J.R., Hu, T.X., Wang, K.Y., Zhang, Y.B., 2004. Characteristics of gap in subalpine coniferous forest in western Sichuan. Chinese Journal of Ecology23, 6–10.

[76]

Xun, W.B., Yan, R.R., Ren, Y., Jin, D.Y., Xiong, W., Zhang, G.S., Cui, Z.L., Xin, X.P., Zhang, R.F., 2018. Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe. Microbiome6, 170.

[77]

Zhalnina, K., Dias, R., de Quadros, P.D., Davis-Richardson, A., Camargo, F.A.O., Clark, I.M., McGrath, S.P., Hirsch, P.R., Triplett, E.W., 2015. Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology69, 395–406.

[78]

Zhan, X.J., Li, M., Zhang, Z.J., Goossens, B., Chen, Y.P., Wang, H.J., Bruford, M.W., Wei, F.W., 2006. Molecular censusing doubles giant panda population estimate in a key nature reserve. Current Biology16, R451–R452.

[79]

Zhou, X.Q., Wang, J.Z., Hao, Y.B., Wang, Y.F., 2010. Intermediate grazing intensities by sheep increase soil bacterial diversities in an Inner Mongolian steppe. Biology and Fertility of Soils46, 817–824.

[80]

Zhou, Z.H., Wang, C.K., Luo, Y.Q., 2020. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications11, 3072.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2870KB)

Supplementary files

supplementary material

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/