Soil pH and bacterial diversity synergistically regulate trace element transfer and accumulation in soil-rice systems

Ying Ding , Bao-Min Yao , Hong-Ling Chen , Dong-Li Sun , Zi-Yang Pan , Qing Zeng , Chang-Chun Zhai , Yuan-Kun Liu , Guo-Xin Sun

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250362

PDF (8045KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250362 DOI: 10.1007/s42832-025-0362-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Soil pH and bacterial diversity synergistically regulate trace element transfer and accumulation in soil-rice systems

Author information +
History +
PDF (8045KB)

Abstract

Rice, feeding billions, accumulates both toxic trace elements (Cd, As, Al) and essential micronutrients (Se, Cu, Zn, Mn, Fe), posing food safety challenges. This study explores the interactions among soil properties, bacterial communities, and trace element dynamics across Chinaʼs major paddy soil types. Our analysis showed that strongly acidic soils (pH ≤ 5.5) had higher total As, Al, and Se, while neutral soils (6.5 < pH ≤ 7.5) exhibited greater Cd and Mn bioavailability. Bacterial diversity (alpha and beta) significantly influenced trace element accumulation in rice. Bacterial diversity, soil nutrients, and pH explained a large part of the variance in trace element content in soil (total: 35.24%, 21.69%, and 13.02%; bioavailable: 23.68%, 29.63%, and 11.81%) and rice grains (23.09%, 10.25%, and 17.42%). Co-occurrence networks identified keystone bacterial ASVs, predominantly uncultured lineages (64%), strongly correlated with specific ASVs (R2 = 0.53−0.80, P < 0.001). Structural Equation Modeling revealed soil type, pH, and nutrients collectively explained 32% of bacterial alpha diversity and 75% of community composition variation, driving subsequent trace element distribution in soil and rice. Our findings underscore complex soil-microbe-element interactions, emphasizing managing soil pH and bacterial diversity to optimize rice nutrition of essential elements and mitigate risks from toxic elements.

Graphical abstract

Keywords

trace elements / soil-rice system / soil physicochemical properties / bacterial communities / co-occurrence network

Highlight

● Soil pH drives trace element mobility and bioavailability.

● Bacterial β-diversity enhances trace element accumulation via functional diversity.

● Uncultured bacterial ASVs are key in trace element cycling and plant interactions.

● Networks analysis shows Pseudonocardia -Fe/As and Blastopirellula -Al regulatory nodes.

Cite this article

Download citation ▾
Ying Ding, Bao-Min Yao, Hong-Ling Chen, Dong-Li Sun, Zi-Yang Pan, Qing Zeng, Chang-Chun Zhai, Yuan-Kun Liu, Guo-Xin Sun. Soil pH and bacterial diversity synergistically regulate trace element transfer and accumulation in soil-rice systems. Soil Ecology Letters, 2025, 7(4): 250362 DOI:10.1007/s42832-025-0362-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allison, S.D., Wallenstein, M.D., Bradford, M.A., 2010. Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience3, 336–340.

[2]

Bahram, M., Hildebrand, F., Forslund, S.K., Anderson, J.L., Soudzilovskaia, N.A., Bodegom, P.M., Bengtsson-Palme, J., Anslan, S., Coelho, L.P., Harend, H., Huerta-Cepas, J., Medema, M.H., Maltz, M.R., Mundra, S., Olsson, P.A., Pent, M., Põlme, S., Sunagawa, S., Ryberg, M., Tedersoo, L., Bork, P., 2018. Structure and function of the global topsoil microbiome. Nature560, 233–237.

[3]

Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the 3rd International AAAI Conference on Weblogs and Social Media. San Jose: AAAI361–362.

[4]

Bernard, A., 2016. Confusion about cadmium risks: the unrecognized limitations of an extrapolated paradigm. Environmental Health Perspectives124, 1–5.

[5]

Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I., Lux, A., 2007. Zinc in plants. New Phytologist173, 677–702.

[6]

Chen, D., Guo, H., Li, R.Y., Li, L.Q., Pan, G.X., Chang, A., Joseph, S., 2016. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice - a field study over four rice seasons in Hunan, China. Science of the Total Environment541, 1489–1498.

[7]

Dai, Z.M., Guo, X., Lin, J.H., Wang, X., He, D., Zeng, R.J., Meng, J., Luo, J.P., Delgado-Baquerizo, M., Moreno-Jiménez, E., Brookes, P.C., Xu, J.M., 2023. Metallic micronutrients are associated with the structure and function of the soil microbiome. Nature Communications14, 8456.

[8]

Delgado-Baquerizo, M., Gallardo, A., Covelo, F., Prado-Comesaña, A., Ochoa, V., Maestre, F.T., 2015. Differences in thallus chemistry are related to species-specific effects of biocrust-forming lichens on soil nutrients and microbial communities. Functional Ecology29, 1087–1098.

[9]

Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., Singh, B.K., 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications7, 10541.

[10]

Ding, C.F., Du, S.Y., Ma, Y.B., Li, X.G., Zhang, T.L., Wang, X.X., 2019. Changes in the pH of paddy soils after flooding and drainage: modeling and validation. Geoderma337, 511–513.

[11]

Duan, Y.F., Nan, Y.X., Zhu, X.Y., Yang, Y.K., Xing, Y.F., 2024. The adverse impacts of ammonia stress on the homeostasis of intestinal health in Pacific white shrimp (Litopenaeus vannamei). Environmental Pollution340, 122762.

[12]

Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nature Reviews Microbiology10, 538–550.

[13]

Fierer, N., Jackson, R.B., 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America103, 626–631.

[14]

Gadd, G.M., 2004. Microbial influence on metal mobility and application for bioremediation. Geoderma122, 109–119.

[15]

Gonçalves, B.R., Guimarães, R.O., Batista, L.L., Ueira-Vieira, C., Starling, M.C.V.M., Trovó, A.G., 2020. Reducing toxicity and antimicrobial activity of a pesticide mixture via photo-Fenton in different aqueous matrices using iron complexes. Science of the Total Environment740, 140152.

[16]

Han, H., Wu, X.J., Yao, L.G., Chen, Z.J., 2020. Heavy metal-immobilizing bacteria combined with calcium polypeptides reduced the uptake of Cd in wheat and shifted the rhizosphere bacterial communities. Environmental Pollution267, 115432.

[17]

Han, R., Dai, H.P., Skuza, L., Wei, S.H., 2021. Comparative study on different organic acids for promoting Solanum nigrum L. hyperaccumulation of Cd and Pb from the contaminated soil. Chemosphere278, 130446.

[18]

Harding, K.L., Aguayo, V.M., Webb, P., 2018. Hidden hunger in South Asia: a review of recent trends and persistent challenges. Public Health Nutrition21, 785–795.

[19]

He, P., Baiocchi, G., Hubacek, K., Feng, K., Yu, Y., 2018. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nature Sustainability1, 122.

[20]

Hodge, A., Fitter, A.H., 2013. Microbial mediation of plant competition and community structure. Functional Ecology27, 865–875.

[21]

Hou, J.F., Cheng, X., Li, J.G., Dong, Y.H., 2021. Magnesium and nitrogen drive soil bacterial community structure under long-term apple orchard cultivation systems. Applied Soil Ecology167, 104103.

[22]

Lauber, C.L., Strickland, M.S., Bradford, M.A., Fierer, N., 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry40, 2407–2415.

[23]

Lewin, S., Francioli, D., Ulrich, A., Kolb, S., 2021. Crop host signatures reflected by co-association patterns of keystone Bacteria in the rhizosphere microbiota. Environmental Microbiome16, 18.

[24]

Li, C.X., Li, M., Zeng, J.Q., Yuan, S.X., Luo, X.H., Wu, C., Xue, S.G., 2024a. Migration and distribution characteristics of soil heavy metal(loid)s at a lead smelting site. Journal of Environmental Sciences135, 600–609.

[25]

Li, L., Hou, M.J., Cao, L., Xia, Y., Shen, Z.G., Hu, Z.B., 2018. Glutathione S-transferases modulate Cu tolerance in Oryza sativa. Environmental and Experimental Botany155, 313–320.

[26]

Li, M.M., Chen, L., Yang, Y., Wu, S.J., Zhang, Q.G., Deng, X., Luo, S., Zeng, Q.R., 2024b. Analysis of the phytoremediation potential, rice safety, and economic benefits of light to moderate Cd-contaminated farmland in oilseed rape-rice rotation with straw removal: a three-year field trial. Environmental Research263, 120280.

[27]

Li, R.Y., Zhou, Z.G., Zhang, Y.H., Xie, X.J., Li, Y.X., Shen, X.H., 2015. Uptake and accumulation characteristics of arsenic and iron plaque in rice at different growth stages. Communications in Soil Science and Plant Analysis46, 2509–2522.

[28]

Li, S., Wu, J.L., Huo, Y.L., Zhao, X., Xue, L.G., 2021a. Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in Northwest China. Science of the Total Environment752, 141827.

[29]

Li, Y.B., Zhang, M.M., Xu, R., Lin, H.Z., Sun, X.X., Xu, F.Q., Gao, P., Kong, T.L., Xiao, E.Z., Yang, N., Sun, W.M., 2021b. Arsenic and antimony co-contamination influences on soil microbial community composition and functions: relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling. Environment International153, 106522.

[30]

Lin, Y., Liu, G.X., Xue, Y.B., Guo, X.Q., Luo, J.K., Pan, Y.L., Chen, K., Tian, J., Liang, C.Y., 2021. Functional characterization of aluminum (Al)-responsive membrane-bound NAC transcription factors in soybean roots. International Journal of Molecular Sciences22, 12854.

[31]

Liu, W.J., Zhu, Y.G., Hu, Y., Williams, P.N., Gault, A.G., Meharg, A.A., Charnock, J.M., Smith, F.A., 2006. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L. ). Environmental Science & Technology40, 5730–5736.

[32]

Ma, S.Y., Qiao, L.K., Liu, X.X., Zhang, S., Zhang, L.Y., Qiu, Z.L., Yu, C.H., 2022. Microbial community succession in soils under long-term heavy metal stress from community diversity-structure to KEGG function pathways. Environmental Research214, 113822.

[33]

Masscheleyn, P.H., Delaune, R.D., Patrick, W.H.Jr., 1991. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science & Technology25, 1414–1419.

[34]

Mikutta, R., Baumgärtner, A., Schippers, A., Haumaier, L., Guggenberger, G., 2012. Extracellular polymeric substances from Bacillus subtilis associated with minerals modify the extent and rate of heavy metal sorption. Environmental Science & Technology46, 3866–3873.

[35]

Moreno-Jiménez, E., Plaza, C., Saiz, H., Manzano, R., Flagmeier, M., Maestre, F.T., 2019. Aridity and reduced soil micronutrient availability in global drylands. Nature Sustainability2, 371–377.

[36]

Murdoch, C.C., Skaar, E.P., 2022. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nature Reviews Microbiology20, 657–670.

[37]

Navarrete, A.A., Kuramae, E.E., de Hollander, M., Pijl, A.S., van Veen, J.A., Tsai, S.M., 2013. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiology Ecology83, 607–621.

[38]

Oteino, N., Lally, R.D., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K.J., Dowling, D.N., 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology6, 745.

[39]

Pan, Y., Cassman, N., de Hollander, M., Mendes, L.W., Korevaar, H., Geerts, R.H. E.M., van Veen, J.A., Kuramae, E.E., 2014. Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil. FEMS Microbiology Ecology90, 195–205.

[40]

Ray, D.K., Ramankutty, N., Mueller, N.D., West, P.C., Foley, J.A., 2012. Recent patterns of crop yield growth and stagnation. Nature Communications3, 1293.

[41]

Schalk, I.J., 2025. Bacterial siderophores: diversity, uptake pathways and applications. Nature Reviews Microbiology23, 24–40.

[42]

Scudiero, E., Skaggs, T.H., Corwin, D.L., 2017. Simplifying field-scale assessment of spatiotemporal changes of soil salinity. Science of the Total Environment587–588, 273–281.

[43]

Shepherd, R.M., Oliverio, A.M., 2024. Micronutrients modulate the structure and function of soil bacterial communities. Soil Biology and Biochemistry192, 109384.

[44]

Shi, L.D., Guo, T., Lv, P.L., Niu, Z.F., Zhou, Y.J., Tang, X.J., Zheng, P., Zhu, L.Z., Zhu, Y.G., Kappler, A., Zhao, H.P., 2020. Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils. Nature Geoscience13, 799–805.

[45]

Shukla, A.K., Behera, S.K., Prakash, C., Patra, A.K., Rao, C.S., Chaudhari, S.K., Das, S., Singh, A.K., Green, A., 2021. Assessing multi-micronutrients deficiency in agricultural soils of India. Sustainability13, 9136.

[46]

Soffer, N., Zaneveld, J., Vega-Thurber, R., 2015. Phage-bacteria network analysis and its implication for the understanding of coral disease. Environmental Microbiome17, 1203–1218.

[47]

Sridevi, G., Minocha, R., Turlapati, S.A., Goldfarb, K.C., Brodie, E.L., Tisa, L.S., Minocha, S.C., 2012. Soil bacterial communities of a calcium-supplemented and a reference watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. FEMS Microbiology Ecology79, 728–740.

[48]

Stevens, G.A., Beal, T., Mbuya, M.N.N., Luo, H.O., Neufeld, L.M., 2022. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: a pooled analysis of individual-level data from population-representative surveys. The Lancet Global Health10, e1590–e1599.

[49]

Sun, G.X., Liu, X., Williams, P.N., Zhu, Y.G., 2010. Distribution and translocation of selenium from soil to grain and its speciation in paddy rice (Oryza sativa L. ). Environmental Science & Technology44, 6706–6711.

[50]

Sun, G.X., Meharg, A.A., Li, G., Chen, Z., Yang, L., Chen, S.C., Zhu, Y.G., 2016. Distribution of soil selenium in China is potentially controlled by deposition and volatilization?. Scientific Reports6, 20953.

[51]

Sun, G.X., Williams, P.N., Carey, A.M., Zhu, Y.G., Deacon, C., Raab, A., Feldmann, J., Islam, R.M., Meharg, A.A., 2008. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environmental Science & Technology42, 7542–7546.

[52]

Sun, H.X., Chen, M.M., Wei, L., Xue, P.Y., Zhao, Q.L., Gao, P.P., Geng, L.P., Wen, Q.X., Liu, W.J., 2024. Roots recruited distinct rhizo-microbial communities to adapt to long-term Cd and As co-contaminated soil in wheat-maize rotation. Environmental Pollution342, 123053.

[53]

Sun, H.X., Gao, P.P., Dong, J.W., Zhao, Q.L., Xue, P.Y., Geng, L.P., Zhao, J.J., Liu, W.J., 2023. Rhizosphere bacteria regulated arsenic bioavailability and accumulation in the soil-Chinese cabbage system. Ecotoxicology and Environmental Safety249, 114420.

[54]

Sun, X.X., Li, B.Q., Han, F., Xiao, E.Z., Xiao, T.F., Sun, W.M., 2019. Impacts of arsenic and antimony co-contamination on sedimentary microbial communities in rivers with different pollution gradients. Microbial Ecology78, 589–602.

[55]

Takahashi, Y., Minamikawa, R., Hattori, K.H., Kurishima, K., Kihou, N., Yuita, K., 2004. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environmental Science & Technology38, 1038–1044.

[56]

Terry, L.R., Kulp, T.R., Wiatrowski, H., Miller, L.G., Oremland, R.S., 2015. Microbiological oxidation of Antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments. Applied and Environmental Microbiology81, 8478–8488.

[57]

Wang, D., Scheckel, K.G., Ma, L.Q., 2016. Selenium sorption in soils as a function of phosphate and sulfate concentrations. Environmental Pollution215, 258–265.

[58]

Wang, M., Mu, C.Y., Lin, X.Y., Ma, W.Y., Wu, H.T., Si, D.F., Ge, C.H., Cheng, C., Zhao, L.J., Li, H.B., Zhou, D.M., 2024. Foliar application of nanoparticles reduced cadmium content in wheat (Triticum aestivum L.) grains via long-distance “leaf−root−microorganism” regulation. Environmental Science & Technology58, 6900–6912.

[59]

Wang, X., Hu, K., Xu, Q., Lu, L.F., Liao, S.J., Wang, G.J., 2020. Immobilization of Cd using mixed Enterobacter and Comamonas bacterial reagents in pot experiments with Brassica rapa L. Environmental Science & Technology54, 15731–15741.

[60]

Wang, X.H., Luo, W.W., Wang, Q., He, L.Y., Sheng, X.F., 2018. Metal(loid)-resistant bacteria reduce wheat Cd and As uptake in metal(loid)-contaminated soil. Environmental Pollution241, 529–539.

[61]

Wang, X.Z., Dou, Z.X., Feng, S., Zhang, Y., Ma, L., Zou, C.Q., Bai, Z.H., Lakshmanan, P., Shi, X.J., Liu, D.Y., Zhang, W., Deng, Y., Zhang, W.S., Chen, X.J., Zhang, F.S., Chen, X.P., 2023. Global food nutrients analysis reveals alarming gaps and daunting challenges. Nature Food4, 1007–1017.

[62]

Xiao, M., Liu, G.M., Jiang, S.G., Guan, X.W., Chen, J.L., Yao, R.J., Wang, X.P., 2022. Bio-organic fertilizer combined with different amendments improves nutrient enhancement and salt leaching in saline soil: a soil column experiment. Water14, 4084.

[63]

Xie, J.C., Fan, Q.Y., Liang, T., Liang, H., Wang, H., Gui, Z.G., Wu, J., Gao, S.J., Cao, W.D., 2024. Green manuring reduces cadmium accumulation in rice: roles of iron plaque and dissolved organic matter. Environmental Research251, 118719.

[64]

Xiu, W., Guo, H.M., Liu, Q., Liu, Z.Y., Zou, Y.E., Zhang, B.G., 2015. Arsenic removal and transformation by Pseudomonas sp. strain GE-1-induced ferrihydrite: Co-precipitation versus adsorption. Water, Air, & Soil Pollution226, 167.

[65]

Xu, X.Y., McGrath, S.P., Meharg, A.A., Zhao, F.J., 2008. Growing rice aerobically markedly decreases arsenic accumulation. Environmental Science & Technology42, 5574–5579.

[66]

Yamaguchi, N., Nakamura, T., Dong, D., Takahashi, Y., Amachi, S., Makino, T., 2011. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere83, 925–932.

[67]

Yang, C.F., Lu, G.N., Xie, Y.Y., Guo, L., Chen, M.Q., Ge, L.Y., Dang, Z., 2021a. Sulfate migration and transformation characteristics in paddy soil profile affected by acid mine drainage. Environmental Research200, 111732.

[68]

Yang, W.H., Zhang, X.T., Wu, L.Q., Rensing, C., Xing, S.H., 2021b. Short-term application of magnesium fertilizer affected soil microbial biomass, activity, and community structure. Journal of Soil Science and Plant Nutrition21, 675–689.

[69]

Yang, Y.P., Wang, P., Yan, H.J., Zhang, H.M., Cheng, W.D., Duan, G.L., Zhu, Y.G., 2019. NH4H2PO4-extractable arsenic provides a reliable predictor for arsenic accumulation and speciation in pepper fruits (Capsicum annum L. ). Environmental Pollution251, 651–658.

[70]

Yang, Y.P., Zhang, H.M., Yuan, H.Y., Duan, G.L., Jin, D.C., Zhao, F.J., Zhu, Y.G., 2018. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Environmental Pollution236, 598–608.

[71]

Yao, B.M., Chen, P., Sun, G.X., 2020. Distribution of elements and their correlation in bran, polished rice, and whole grain. Food Science & Nutrition8, 982–992.

[72]

Yao, B.M., Chen, P., Zhang, H.M., Sun, G.X., 2021. A predictive model for arsenic accumulation in rice grains based on bioavailable arsenic and soil characteristics. Journal of Hazardous Materials412, 125131.

[73]

Yao, B.M., Wang, S.Q., Xie, S.T., Li, G., Sun, G.X., 2022. Optimal soil Eh, pH for simultaneous decrease of bioavailable Cd, As in co-contaminated paddy soil under water management strategies. Science of the Total Environment806, 151342.

[74]

Yuan, Q., Li, H.H., Liu, H.J., 2022. Electroadsorption of different valence ions on an HNO3-modified activated carbon/nickel foam electrode. International Journal of Electrochemical Science17, 22116.

[75]

Yue, J.R., Li, T., Tian, J., Ge, F., Li, F., Liu, Y., Zhang, D.Y., Li, J.W., 2024. Penicillium oxalicum induced phosphate precipitation enhanced cadmium (Cd) immobilization by simultaneously accelerating Cd biosorption and biomineralization. Journal of Hazardous Materials470, 134306.

[76]

Zeng, Q., Yin, M., Fu, L.B., Singh, B.K., Liu, S.Y., Chen, H., Ge, A.H., Han, L.L., Zhang, L.M., 2024. Green manure substitution for potassium fertilizer promotes agro-ecosystem multifunctionality via triggering interactions among soil, plant and rhizosphere microbiome. Plant and Soil498, 431–450.

[77]

Zhalnina, K., Louie, K.B., Hao, Z., Mansoori, N., da Rocha, U.N., Shi, S.J., Cho, H., Karaoz, U., Loqué, D., Bowen, B.P., Firestone, M.K., Northen, T.R., Brodie, E.L., 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology3, 470–480.

[78]

Zhang, M., Zhang, H., Wang, X., Zhao, Q., Huang, D., Huang, Y., 2020b. Selenium fractionation and bioavailability in paddy soils as affected by irrigation and fertilization. Geoderma361, 114070.

[79]

Zhang, M.M., Li, Z., Häggblom, M.M., Young, L., He, Z.J., Li, F.B., Xu, R., Sun, X.X., Sun, W.M., 2020a. Characterization of nitrate-dependent As(III)-oxidizing communities in arsenic-contaminated soil and investigation of their metabolic potentials by the combination of DNA-stable isotope probing and metagenomics. Environmental Science & Technology54, 7366–7377.

[80]

Zhang, T.B., Zhan, X.Y., He, J.Q., Feng, H., Kang, Y.H., 2018. Salt characteristics and soluble cations redistribution in an impermeable calcareous saline-sodic soil reclaimed with an improved drip irrigation. Agricultural Water Management197, 91–99.

[81]

Zhu, Q., Riley, W.J., Tang, J., Koven, C.D., 2016. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests. Biogeosciences13, 341–363.

[82]

Zhu, Y.G., Williams, P.N., Meharg, A.A., 2008. Exposure to inorganic arsenic from rice: a global health issue?. Environmental Pollution154, 169–171.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (8045KB)

849

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/