Agropedogenesis alters microbial communities and antibiotic resistomes in tundra soils: A comparison of modern and ancient cryogenic ecosystems in West Siberia

Alexey S. Vasilchenko , Darya V. Poshvina , Аrtyom A. Stepanov , Alexander V. Balkin , Diana S. Dilbaryan , Aleksandr V. Iashnikov , Elya Shmidt , Olga Domanskaya , Andrey V. Soromotin , Timur Nizamutdinov , Andrey V. Lisitsa , Anastasia V. Teslya

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250358

PDF (3396KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250358 DOI: 10.1007/s42832-025-0358-3
RESEARCH ARTICLE

Agropedogenesis alters microbial communities and antibiotic resistomes in tundra soils: A comparison of modern and ancient cryogenic ecosystems in West Siberia

Author information +
History +
PDF (3396KB)

Abstract

Agricultural technologies play a significant role in shaping the landscape of our planet. Their impact will be particularly noticeable in subarctic and Arctic regions, where the consequences are likely to be the most significant. This study examines the functional properties of pristine and agricultural tundra soils (Histosols, Podzols) and ancient borehole sediments (aged 10000 to 35000 years). Using PacBio sequencing, we found that bacterial and fungal diversity varies by soil type and land use. Borehole samples showed bacterial diversity comparable to modern soils but significantly lower fungal diversity. Agricultural activity introduced fungal plant pathogens and reduced bacterial metabolic pathways. Hydrolase activity in tundra soils depended on nutrient availability and microbial diversity. Compared to modern soils, ancient deposits had a 2.3-fold greater diversity of antibiotic resistance genes (ARGs) and resistance mechanisms, despite lower microbial diversity. Environmental factors strongly influenced microbial and resistome diversity in modern forest-tundra soils. In contrast, ancient ARG diversity likely arose from antibiotic-producing species, which enriched ARGs while reducing microbial diversity. In summary, this study advances our understanding of structure-function relationships in cryogenic soil microbiomes, the transformative effects of agropedogenesis on microbial communities and resistomes, and provides critical baseline data for developing sustainable agricultural practices in permafrost-affected regions.

Graphical abstract

Keywords

cryogenic ecosystems / plaggen agriculture / plaggic anthrosols / soil microbiome / permafrost / ancient microbiome / ARGs

Highlight

● Reversible microbial community restructuring observed in subarctic agricultural soils.

● Full-length sequencing revealed 13.7% bacterial and 5.2% fungal taxa unclassified in refDBs.

● Patescibacteria and Dependentiae accounted for 3.5% of soil microbiota, suggesting unique subarctic adaptations.

● While C and N-cycling enzymes remained stable, P and S metabolism decreased in agrosystems.

● Permafrost sediments contained 2.3-fold higher ARG diversity compared to modern tundra soils.

Cite this article

Download citation ▾
Alexey S. Vasilchenko, Darya V. Poshvina, Аrtyom A. Stepanov, Alexander V. Balkin, Diana S. Dilbaryan, Aleksandr V. Iashnikov, Elya Shmidt, Olga Domanskaya, Andrey V. Soromotin, Timur Nizamutdinov, Andrey V. Lisitsa, Anastasia V. Teslya. Agropedogenesis alters microbial communities and antibiotic resistomes in tundra soils: A comparison of modern and ancient cryogenic ecosystems in West Siberia. Soil Ecology Letters, 2025, 7(4): 250358 DOI:10.1007/s42832-025-0358-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abarenkov, K., Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., May, T.W., Frøslev, T.G., Pawlowska, J., Lindahl, B., Põldmaa, K., Truong, C., Vu, D., Hosoya, T., Niskanen, T., Piirmann, T., Ivanov, F., Zirk, A., Peterson, M., Cheeke, T.E., Ishigami, Y., Jansson, A.T., Jeppesen, T.S., Kristiansson, E., Mikryukov, V., Miller, J.T., Oono, R., Ossandon, F.J., Paupério, J., Saar, I., Schigel, D., Suija, A., Tedersoo, L., Kõljalg, U., 2024. The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa and classifications reconsidered. Nucleic Acids Research52, D791–D797.

[2]

Alcock, B.P., Huynh, W., Chalil, R., Smith, K.W., Raphenya, A.R., Wlodarski, M.A., Edalatmand, E., Petkau, A., Syed, S.A., Tsang, K.K., Baker, S.J.C., Dave, M., McCarthy, M.C., Mukiri, K.M., Nasir, J.Z., Golbon, B., Imtiaz, H., Jiang, X.J., Kaur, K., Kwong, M., Liang, Z.V., Niu, C.K., Shan, P., Yang, J.Y.J., Gray, K.L., Hoad, G.R., Jia, B.F., Bhando, T., Carfrae, L.A., Farha, M.A., French, S., Gordzevich, R., Rachwalski, K., Tu, M.M., Bordeleau, M., Dooley, D., Griffiths, E., Zubyk, H.L., Brown, E.D., Maguire, F., Beiko, R.G., Hsiao, W.W.L., Brinkman, F.S.L., Van Domselaar, G., McArthur, A.G., 2023. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research51, D690–D699.

[3]

AMAP (Arctic Monitoring, Assessment Programme), 2017. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017 [Online]. AMAP, Oslo, Norway. xiv + 269.

[4]

Anderson, J.P.E., Domsch, K.H., 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry10, 215–221.

[5]

Anderson, T.H., Domsch, K.H., 1990. Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry22, 251–255.

[6]

Anderson, T.H., Domsch, K.H., 1993. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as ph, on the microbial biomass of forest soils. Soil Biology and Biochemistry25, 393–395.

[7]

Andrews, S., 2010. A Quality Control Tool for High Throughput Sequence Data [Online]. Babraham Bioinformatics.

[8]

Ashraf, M.N., Waqas, M.A., Rahman, S., 2022. Microbial metabolic quotient is a dynamic indicator of soil health: trends, implications and perspectives (review). Eurasian Soil Science55, 1794–1803.

[9]

Bambalov, N.N., 2020. Separation of components in the group analysis of the organic matter of peat: a review. Solid Fuel Chemistry54, 280–298.

[10]

Bengtsson-Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., De Wit, P., Sánchez-García, M., Ebersberger, I., de Sousa, F., Amend, A.S., Jumpponen, A., Unterseher, M., Kristiansson, E., Abarenkov, K., Bertrand, Y.J.K., Sanli, K., Eriksson, K.M., Vik, U., Veldre, V., Nilsson, R.H., 2013. Improved software detection and extraction of ITS1 and ITS 2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution4, 914–919.

[11]

Biasi, C., Jokinen, S., Marushchak, M.E., Hämäläinen, K., Trubnikova, T., Oinonen, M., Martikainen, P.J., 2014. Microbial respiration in Arctic upland and peat soils as a source of atmospheric carbon dioxide. Ecosystems17, 112–126.

[12]

Blagodatskaya, E.V., Anderson, T.H., 1998. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biology and Biochemistry30, 1269–1274.

[13]

Brookes, P.C., 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils19, 269–279.

[14]

Brouns, K., Verhoeven, J.T.A., Hefting, M.M., 2014. Short period of oxygenation releases latch on peat decomposition. Science of the Total Environment481, 61–68.

[15]

Brück, S.A., Amán, K.T., Buitrón, P.B., Paredes, W.P., Quituizaca, P.R., de Lourdes Teixeira de Moraes Polizeli, M., 2023. Potential impacts of seasonal and altitudinal changes on enzymatic peat decomposition in the High Andean Paramo region of Ecuador. Science of the Total Environment890, 164365.

[16]

Buetas, E., Jordán-López, M., López-Roldán, A., D’Auria, G., Martínez-Priego, L., De Marco, G., Carda-Diéguez, M., Mira, A., 2024. Full-length 16S rRNA gene sequencing by PacBio improves taxonomic resolution in human microbiome samples. BMC Genomics25, 310.

[17]

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.

[18]

Campbell, B.J., Polson, S.W., Hanson, T.E., Mack, M.C., Schuur, E.A.G., 2010. The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environmental Microbiology12, 1842–1854.

[19]

Chu, H.Y., Fierer, N., Lauber, C.L., Caporaso, J.G., Knight, R., Grogan, P., 2010. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology12, 2998–3006.

[20]

Clymo, R.S., 1984. The limits to peat bog growth. Philosophical Transactions of the Royal Society B: Biological Sciences303, 605–654.

[21]

Craine, J. M., Morrow, C., Fierer, N. 2007. Microbial nitrogen limitation increases decomposition. Ecology88( 8), 2105–2113.

[22]

Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, T., McCarthy, S.A., Davies, R.M., Li, H., 2021. Twelve years of SAMtools and BCFtools. GigaScience10, giab008.

[23]

Delgado-Baquerizo, M., Hu, H.W., Maestre, F.T., Guerra, C.A., Eisenhauer, N., Eldridge, D.J., Zhu, Y.G., Chen, Q.L., Trivedi, P., Du, S., Makhalanyane, T.P., Verma, J.P., Gozalo, B., Ochoa, V., Asensio, S., Wang, L., Zaady, E., Illán, J.G., Siebe, C., Grebenc, T., Zhou, X.B., Liu, Y.R., Bamigboye, A.R., Blanco-Pastor, J.L., Duran, J., Rodríguez, A., Mamet, S., Alfaro, F., Abades, S., Teixido, A.L., Peñaloza-Bojacá, G.F., Molina-Montenegro, M.A., Torres-Díaz, C., Perez, C., Gallardo, A., García-Velázquez, L., Hayes, P.E., Neuhauser, S., He, J.Z., 2022. The global distribution and environmental drivers of the soil antibiotic resistome. Microbiome10, 219.

[24]

Dilly, O., 2005. Microbial energetics in soils. In: Varma, A., Buscot, F., eds. Microorganisms in Soils: Roles in Genesis and Functions. Berlin, Heidelberg: Springer123–138.

[25]

Elberling, B., 2007. Annual soil CO2 effluxes in the High Arctic: the role of snow thickness and vegetation type. Soil Biology and Biochemistry39, 646–654.

[26]

Esiana, B.O.I., Coates, C.J., Adderley, W.P., Berns, A.E., Bol, R., 2021. Phenoloxidase activity and organic carbon dynamics in historic Anthrosols in Scotland, UK. PLoS One16, e0259205.

[27]

Forsberg, K.J., Patel, S., Gibson, M.K., Lauber, C.L., Knight, R., Fierer, N., Dantas, G., 2014. Bacterial phylogeny structures soil resistomes across habitats. Nature509, 612–616.

[28]

Freeman, C., Ostle, N., Kang, H., 2001. An enzymic 'latch' on a global carbon store. Nature,409, 149.

[29]

Gong, J., Qing, Y., Guo, X.H., Warren, A., 2014. “Candidatus Sonnebornia yantaiensis”, a member of candidate division OD1, as intracellular bacteria of the ciliated protist Paramecium bursaria (Ciliophora, Oligohymenophorea). Systematic and Applied Microbiology37, 35–41.

[30]

Guillaume, T., Damris, M., Kuzyakov, Y., 2015. Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ13C. Global Change Biology21, 3548–3560.

[31]

Guo, L.B., Gifford, R.M., 2002. Soil carbon stocks and land use change: a meta analysis. Global Change Biology8, 345–360.

[32]

Hájek, T., Urbanová, Z., 2024. Enzyme adaptation in Sphagnum peatlands questions the significance of dissolved organic matter in enzyme inhibition. Science of the Total Environment911, 168685.

[33]

Hall, S.J., Treffkorn, J., Silver, W.L., 2014. Breaking the enzymatic latch: impacts of reducing conditions on hydrolytic enzyme activity in tropical forest soils. Ecology95, 2964–2973.

[34]

Hammer, Ø., Harper, D.A., Ryan, P.D., 2001. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica4, 4.

[35]

Hartmann, M., Six, J., 2023. Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment4, 4–18.

[36]

Hu, H.F., Kristensen, J.M., Herbold, C.W., Pjevac, P., Kitzinger, K., Hausmann, B., Dueholm, M.K.D., Nielsen, P.H., Wagner, M., 2024. Global abundance patterns, diversity, and ecology of Patescibacteria in wastewater treatment plants. Microbiome12, 55.

[37]

Hugelius, G., Routh, J., Kuhry, P., Crill, P., 2012. Mapping the degree of decomposition and thaw remobilization potential of soil organic matter in discontinuous permafrost terrain. Journal of Geophysical Research: Biogeosciences117, G02030.

[38]

Kalinina, O., Goryachkin, S.V., Karavaeva, N.A., Lyuri, D.I., Najdenko, L., Giani, L., 2009. Self-restoration of post-agrogenic sandy soils in the southern Taiga of Russia: soil development, nutrient status, and carbon dynamics. Geoderma152, 35–42.

[39]

Kalinina, O., Krause, S.E., Goryachkin, S.V., Karavaeva, N.A., Lyuri, D.I., Giani, L., 2011. Self-restoration of post-agrogenic chernozems of Russia: soil development, carbon stocks, and dynamics of carbon pools. Geoderma162, 196–206.

[40]

Kjøller, A. H., Struwe, S. 2002. Fungal communities, succession, enzymes, and decomposition. Enzymes in the environment: Activity, ecology and applications1, 267–284.

[41]

Kraus, T.E.C., Dahlgren, R.A., Zasoski, R.J., 2003. Tannins in nutrient dynamics of forest ecosystems-a review. Plant and Soil256, 41–66.

[42]

Kurganova, I.N., Telesnina, V.M., de Gerenyu, V.O.L., Lichko, V.I., Ovsepyan, L.A., 2022. Changes in the carbon stocks, microbial and enzyme activities of retic Albic Podzol in southern taiga during postagrogenic evolution. Eurasian Soil Science55, 895–910.

[43]

Lauricella, D., Butterly, C.R., Clark, G.J., Sale, P.W.G., Li, G.D., Tang, C.X., 2020. Effectiveness of innovative organic amendments in acid soils depends on their ability to supply P and alleviate Al and Mn toxicity in plants. Journal of Soils and Sediments20, 3951–3962.

[44]

Lundström, U.V., van Breemen, N., Bain, D., 2000. The podzolization process. A review. Geoderma94, 91–107.

[45]

Luo, W.T., Xu, Z.F., Riber, L., Hansen, L.H., Sørensen, S.J., 2016. Diverse gene functions in a soil mobilome. Soil Biology and Biochemistry101, 175–183.

[46]

Malard, L.A., Anwar, M.Z., Jacobsen, C.S., Pearce, D.A., 2019. Biogeographical patterns in soil bacterial communities across the Arctic region. FEMS Microbiology Ecology95, fiz128.

[47]

Matisic, M., Dugan, I., Bogunovic, I., 2024. Challenges in sustainable agriculture—the role of organic amendments. Agriculture14, 643.

[48]

McGivern, B.B., Tfaily, M.M., Borton, M.A., Kosina, S.M., Daly, R.A., Nicora, C.D., Purvine, S.O., Wong, A.R., Lipton, M.S., Hoyt, D.W., Northen, T.R., Hagerman, A.E., Wrighton, K.C., 2021. Decrypting bacterial polyphenol metabolism in an anoxic wetland soil. Nature Communications12, 2466.

[49]

Nannipieri, P., Greco, S., Ceccanti, B., 1990. Ecological significance of the biological activity in soil. In: Bollag, J.M., ed. Soil Biochemistry. New York: Routledge293–355.

[50]

Nguyen, N.H., Song, Z.W., Bates, S.T., Branco, S., Tedersoo, L., Menke, J., Schilling, J.S., Kennedy, P.G., 2016. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology20, 241–248.

[51]

Nizamutdinov, T., Suleymanov, A., Morgun, E., Yakkonen, K., Abakumov, E., 2022. Soils and olericultural practices in circumpolar region of Russia at present and in the past. Frontiers in Sustainable Food Systems6, 1032058.

[52]

Nizamutdinov, T., Yang, S.Z., Abakumov, E., 2025. Post-agricultural shifts in soils of subarctic environment on the example of Plaggic Podzols chronosequence. Agronomy15, 584.

[53]

Nizamutdinov, T., Zhemchueva, D., Zverev, A., Andronov, E., Pechkin, A., Abakumov, E., 2024. Agropedogenesis and related changes in morphology, fertility and microbiome diversity of soils in cryogenic ecosystems on the example of the central part of Yamal region (West Siberia). Geoderma449, 117014.

[54]

Overland, J.E., Wang, M.Y., 2013. When will the summer Arctic be nearly sea ice free. Geophysical Research Letters40, 2097–2101.

[55]

Ovsepyan, L.A., Kurganova, I.N., de Gerenyu, V.O.L., Rusakov, A.V., Kuzyakov, Y.V., 2020. Changes in the fractional composition of organic matter in the soils of the forest–steppe zone during their postagrogenic evolution. Eurasian Soil Science53, 50–61.

[56]

Pal, R., Bhattacharyya, P., Das, P., Chakrabarti, K., Chakraborty, A., Kim, K., 2007. Relationship between acidity and microbiological properties in some tea soils. Biology and Fertility of Soils44, 399–404.

[57]

Pansu, M., Gautheyrou, J., 2006. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Berlin, Heidelberg: Springer.

[58]

Parks, D.H., Chuvochina, M., Rinke, C., Mussig, A.J., Chaumeil, P.A., Hugenholtz, P., 2022. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Research50, D785–D794.

[59]

Patra, A., Sharma, V.K., Nath, D.J., Ghosh, A., Purakayastha, T.J., Barman, M., Kumar, S., Chobhe, K.A., Anil, A.S., Rekwar, R.K., 2021. Impact of soil acidity influenced by long-term integrated use of enriched compost, biofertilizers, and fertilizer on soil microbial activity and biomass in rice under acidic soil. Journal of Soil Science and Plant Nutrition21, 756–767.

[60]

Perron, G.G., Whyte, L., Turnbaugh, P.J., Goordial, J., Hanage, W.P., Dantas, G., Desai, M.M., 2015. Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS One10, e0069533.

[61]

Raich, J.W., Potter, C.S., 1995. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles9, 23–36.

[62]

Raiesi, F., 2012. Soil properties and C dynamics in abandoned and cultivated farmlands in a semi-arid ecosystem. Plant and Soil351, 161–175.

[63]

Razavi, B.S., Blagodatskaya, E., Kuzyakov, Y., 2015. Nonlinear temperature sensitivity of enzyme kinetics explains canceling effect—a case study on loamy haplic Luvisol. Frontiers in Microbiology6, 1126.

[64]

Ripple, W.J., Wolf, C., Newsome, T.M., Gregg, J.W., Lenton, T.M., Palomo, I., Eikelboom, J.A.J., Law, B.E., Huq, S., Duffy, P.B., Rockström, J., 2021. World scientists’ warning of a climate emergency 2021. BioScience71, 894–898.

[65]

Sauer, D., Sponagel, H., Sommer, M., Giani, L., Jahn, R., Stahr, K., 2007. Podzol: soil of the year 2007. A review on its genesis, occurrence, and functions. Journal of Plant Nutrition and Soil Science170, 581–597.

[66]

Saxinger, G., Carson, D.A., 2021. Seeing green: lifecycles of an Arctic agricultural frontier. Arctic74, 293–308.

[67]

Schädel, C., Bader, M.K.F., Schuur, E.A.G., Biasi, C., Bracho, R., Čapek, P., De Baets, S., Diáková, K., Ernakovich, J., Estop-Aragones, C., Graham, D.E., Hartley, I.P., Iversen, C.M., Kane, E., Knoblauch, C., Lupascu, M., Martikainen, P.J., Natali, S.M., Norby, R.J., O’Donnell, J., Chowdhury, T.R., Šantrůčková, H., Shaver, G., Sloan, V., Treat, C.C., Turetsky, M.R., Waldrop, M.P., Wickland, K.P., 2016. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nature Climate Change6, 950–953.

[68]

Schädel, C., Schuur, E.A.G., Bracho, R., Elberling, B., Knoblauch, C., Lee, H., Luo, Y.Q., Shaver, G.R., Turetsky, M.R., 2014. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Global Change Biology20, 641–652.

[69]

Schuur, E.A.G., Bockheim, J., Canadell, J.G., Euskirchen, E., Field, C.B., Goryachkin, S.V., Hagemann, S., Kuhry, P., Lafleur, P.M., Lee, H., Mazhitova, G., Nelson, F.E., Rinke, A., Romanovsky, V.E., Shiklomanov, N., Tarnocai, C., Venevsky, S., Vogel, J.G., Zimov, S.A., 2008. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience58, 701–714.

[70]

Schwelm, A., Badstöber, J., Bulman, S., Desoignies, N., Etemadi, E., Falloon, R.E., Gachon, C.M.M., Legreve, A., Lukeš, J., Merz, U., Nenarokova, A., Strittmatter, M., Sullivan, B.K., Neuhauser, S., 2016. Not in your usual Top 10: protists that infect plants and algae. Molecular Plant Pathology17, 729–745.

[71]

Sequeira, J.C., Rocha, M., Alves, M.M., Salvador, A.F., 2022. UPIMAPI, reCOGnizer and KEGGCharter: bioinformatics tools for functional annotation and visualization of (meta)-omics datasets. Computational and Structural Biotechnology Journal20, 1798–1810.

[72]

Silvola, J., Alm, J., Ahlholm, U., Nykänen, H., Martikainen, P.J., 1996. The contribution of plant roots to CO2 fluxes from organic soils. Biology and Fertility of Soils23, 126–131.

[73]

Singh, J., Arabely Navas Soto, J., Elena Ibarra Lόpez, R., Margenot, A.J., 2023. Soil aminopeptidase activities under 145-year crop rotation and fertility practices in the North Central US. Geoderma440, 116703.

[74]

Sizov, O.S., Yurtaev, A.A., Soromotin, A.V., Koptseva, E.M., Volvakh, A.O., Abakumov, E.V., Berdnikov, N.M., Prikhodko, N.V., Guryev, N.V., 2021. Reconstruction of the formation history of the peat plateau in the lower reaches of the Nadym River. Earth’s Cryosphere25, 3–13.

[75]

Skogland, T., Lomeland, S., Goksøyr, J., 1988. Respiratory burst after freezing and thawing of soil: experiments with soil bacteria. Soil Biology and Biochemistry20, 851–856.

[76]

Soromotin, A.V., Lanza, G.R., Sizov, O.S., Lobotrosova, S.A., Abakumov, E.V., Zverev, A.O., Yakimov, A.S., Konstantinov, A.O., Kurasova, A.O., Prihod'ko, N.V., Salavatulin, V.M., Varentsov, M.I., Alharbi, S.A., Alotaibi, K.D., Kuzyakov, Y., 2024. Cyclic and linear trajectories of ecosystem evolution on sand dunes in Siberian taiga: a comprehensive analysis. Science of the Total Environment928, 172265.

[77]

Stark, S., Männistö, M.K., Eskelinen, A., 2014. Nutrient availability and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils. Plant and Soil383, 373–385.

[78]

Teslya, A.V., Gurina, E.V., Poshvina, D.V., Stepanov, A.A., Iashnikov, A.V., Vasilchenko, A.S., 2024. Fungal secondary metabolite gliotoxin enhances enzymatic activity in soils by reshaping their microbiome. Rhizosphere32, 100960.

[79]

Tian, P., Razavi, B.S., Zhang, X.C., Wang, Q.K., Blagodatskaya, E., 2020. Microbial growth and enzyme kinetics in rhizosphere hotspots are modulated by soil organics and nutrient availability. Soil Biology and Biochemistry141, 107662.

[80]

Turetsky, M.R., Wieder, R.K., Vitt, D.H., Evans, R.J., Scott, K.D., 2007. The disappearance of relict permafrost in boreal North America: effects on peatland carbon storage and fluxes. Global Change Biology13, 1922–1934.

[81]

Unc, A., Altdorff, D., Abakumov, E., Adl, S., Baldursson, S., Bechtold, M., Cattani, D.J., Firbank, L.G., Grand, S., Guðjónsdóttir, M., Kallenbach, C., Kedir, A.J., Li, P.F., McKenzie, D.B., Misra, D., Nagano, H., Neher, D.A., Niemi, J., Oelbermann, M., Overgård Lehmann, J., Parsons, D., Quideau, S., Sharkhuu, A., Smreczak, B., Sorvali, J., Vallotton, J.D., Whalen, J.K., Young, E.H., Zhang, M.C., Borchard, N., 2021. Expansion of agriculture in northern cold-climate regions: a cross-sectoral perspective on opportunities and challenges. Frontiers in Sustainable Food Systems5, 663448.

[82]

Uwituze, Y., Nyiraneza, J., Fraser, T.D., Dessureaut-Rompré, J., Ziadi, N., Lafond, J., 2022. Carbon, nitrogen, phosphorus, and extracellular soil enzyme responses to different land use. Frontiers in Soil Science2, 814554.

[83]

Van Goethem, M.W., Pierneef, R., Bezuidt, O.K.I., Van De Peer, Y., Cowan, D.A., Makhalanyane, T.P., 2018. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome6, 40.

[84]

Vasilchenko, A.V., Vasilchenko, A.S., 2024. Plaggic anthrosol in modern research: genesis, properties and carbon sequestration potential. CATENA234, 107626.

[85]

Wang, W.H., Gao, Y., Li, N., Lu, H.M., Lan, R.X., Gu, X.G., 2023. PacBio sequencing unravels soil bacterial assembly processes along a gradient of organic fertilizer application. Agronomy13, 1875.

[86]

Weisse, L., Héchard, Y., Moumen, B., Delafont, V., 2023. Here, there and everywhere: ecology and biology of the Dependentiae phylum. Environmental Microbiology25, 597–605.

[87]

Wu, R.N., Trubl, G., Taş, N., Jansson, J.K., 2022. Permafrost as a potential pathogen reservoir. One Earth5, 351–360.

[88]

Xiang, W., Wan, X., Yan, S., Wu, Y., Bao, Z.Y., 2013. Inhibitory effects of drought induced acidification on phenol oxidase activities in Sphagnum-dominated peatland. Biogeochemistry116, 293–301.

[89]

Yan, T.M., Yang, L.Z., Campbell, C.D., 2003. Microbial biomass and metabolic quotient of soils under different land use in the Three Gorges Reservoir area. Geoderma115, 129–138.

[90]

Zhang, J., Lei, S.H., Zhang, X.L., Xie, S.T., Zheng, Y., Yang, W.J., Wang, Z., Chen, A.X., Zhao, J.Q., 2024. Enhanced nitrogen and phosphorus removal by Saccharimonadales sp. in a sequencing batch reactor. Biochemical Engineering Journal211, 109456.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3396KB)

Supplementary files

Supplementary Information

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/