Wheat straw incorporation and nitrogen fertilization increase antibiotic resistance gene abundance and dissemination potential in agricultural soil

Feng-Hua Wang , Rui-Ao Ma , Zi-Teng Liu , Xin-Di Zhao , Ruibo Sun , Wenxu Dong , Yuming Zhang , Min Qiao , Si-Yu Zhang

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250357

PDF (6103KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250357 DOI: 10.1007/s42832-025-0357-4
RESEARCH ARTICLE

Wheat straw incorporation and nitrogen fertilization increase antibiotic resistance gene abundance and dissemination potential in agricultural soil

Author information +
History +
PDF (6103KB)

Abstract

Straw incorporation and nitrogen amendment in agricultural soils have been shown to increase the diversity of bacterial communities and antibiotic resistance genes (ARGs). However, the effects of straw types and nitrogen amendment levels on ARG dissemination potential lack genetic evidence. Here, we conducted a metagenomic analysis of 24 agricultural soils amended with wheat or maize straw under a nitrogen fertilization gradient (0, 200, 400, and 600 kya). Our results showed that the incorporation of wheat straw in soils significantly increased the abundance of ARGs and mobile genetic elements (MGEs) compared with maize straw. Moreover, genetic evidence of the coexistence of ARGs and MGEs (distance < 5000 bp) demonstrated that the dissemination potential of ARGs was significantly greater in wheat than in maize straw-returning soils. Glycopeptide, fluoroquinolone and diaminopyrimidine resistance were the dominant ARGs and were assigned to Pseudomonadota, Actinobacteria and Firmicutes, which were also the predominant bacteria harboring ARG-MGE. Compared with the absence of nitrogen amendment or at 600 kya, nitrogen amendment at 200 and 400 kya increased the ARG dissemination potential in wheat straw-returning soils. The different correlation patterns between the dominant ARGs and the carbon and nitrogen metabolism genes implied that bacteria involved in degrading organic substrates and nitrogen metabolism may have antibiotic resistance ability. This study suggested that wheat straw incorporation and nitrogen fertilization contribute to the spread of ARGs in agricultural soils and should not be neglected.

Graphical abstract

Keywords

straw incorporation / nitrogen / antibiotic resistance genes / ARG dissemination / agricultural soils

Highlight

● Wheat straw return increases soil ARG abundances and dissemination potential.

● N fertilization at 200 and 400 kya increases ARG dissemination potential.

● Dominant ARGs are glycopeptide-, fluoroquinolone- and diaminopyrimidine-resistance.

● Dominant ARGs’ abundance correlated with those of C degradation and N metabolism.

Cite this article

Download citation ▾
Feng-Hua Wang, Rui-Ao Ma, Zi-Teng Liu, Xin-Di Zhao, Ruibo Sun, Wenxu Dong, Yuming Zhang, Min Qiao, Si-Yu Zhang. Wheat straw incorporation and nitrogen fertilization increase antibiotic resistance gene abundance and dissemination potential in agricultural soil. Soil Ecology Letters, 2025, 7(4): 250357 DOI:10.1007/s42832-025-0357-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alcock, B.P., Huynh, W., Chalil, R., Smith, K.W., Raphenya, A.R., Wlodarski, M.A., Edalatmand, A., Petkau, A., Syed, S.A., Tsang, K.K., Baker, S.J.C., Dave, M., McCarthy, M.C., Mukiri, K.M., Nasir, J.A., Golbon, B., Imtiaz, H., Jiang, X.J., Kaur, K., Kwong, M., Liang, Z.C., Niu, K.Y.C., Shan, P., Yang, J.Y.J., Gray, K.L., Hoad, G.R., Jia, B.F., Bhando, T., Carfrae, L.A., Farha, M.A., French, S., Gordzevich, R., Rachwalski, K., Tu, M.M., Bordeleau, E., Dooley, D., Griffiths, E., Zubyk, H.L., Brown, E.D., Maguire, F., Beiko, R.G., Hsiao, W.W.L., Brinkman, F.S.L., Van Domselaar, G., McArthur, A.G., 2023. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research51, D690–D699.

[2]

Allen, H.K., Donato, J., Wang, H.H., Cloud-Hansen, K.A., Davies, J., Handelsman, J., 2010. Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology8, 251–259.

[3]

Arango-Argoty, G.A., Dai, D., Pruden, A., Vikesland, P., Heath, L.S., Zhang, L., 2019. NanoARG: a web service for detecting and contextualizing antimicrobial resistance genes from nanopore-derived metagenomes. Microbiome7, 88.

[4]

Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the 3rd International AAAI Conference on Web and Social Media. San Jose: AAAI, 361–362.

[5]

Bender, C.L., Cooksey, D.A., 1986. Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. Journal of Bacteriology165, 534–541.

[6]

Berhane, M., Xu, M., Liang, Z.Y., Shi, J.L., Wei, G.H., Tian, X.H., 2020. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: a meta-analysis. Global Change Biology26, 2686–2701.

[7]

Blanco-Míguez, A., Beghini, F., Cumbo, F., McIver, L.J., Thompson, K.N., Zolfo, M., Manghi, P., Dubois, L., Huang, K.D., Thomas, A.M., Nickols, W.A., Piccinno, G., Piperni, E., Punčochář, M., Valles-Colomer, M., Tett, A., Giordano, F., Davies, R., Wolf, J., Berry, S.E., Spector, T.D., Franzosa, E.A., Pasolli, E., Asnicar, F., Huttenhower, C., Segata, N., 2023. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nature Biotechnology41, 1633–1644.

[8]

Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods12, 59–60.

[9]

Chen, L.M., Sun, S.L., Yao, B., Peng, Y.T., Gao, C.F., Qin, T., Zhou, Y.Y., Sun, C.R., Quan, W., 2022. Effects of straw return and straw biochar on soil properties and crop growth: a review. Frontiers in Plant Science13, 986763.

[10]

Chen, Y.F., Yan, Z.H., Zhang, Y., Zhu, P.Y., Jiang, R.R., Wang, M., Wang, Y.H., Lu, G.H., 2024. Co-exposure of microplastics and sulfamethoxazole propagated antibiotic resistance genes in sediments by regulating the microbial carbon metabolism. Journal of Hazardous Materials463, 132951.

[11]

Cui, E.P., Fan, X.Y., Hu, C., Neal, A.L., Cui, B.J., Liu, C.C., Gao, F., 2022. Reduction effect of individual N, P, K fertilization on antibiotic resistance genes in reclaimed water irrigated soil. Ecotoxicology and Environmental Safety231, 113185.

[12]

Cycoń, M., Mrozik, A., Piotrowska-Seget, Z., 2019. Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Frontiers in Microbiology10, 338.

[13]

Davis, M.P.A., van Dongen, S., Abreu-Goodger, C., Bartonicek, N., Enright, A.J., 2013. Kraken: a set of tools for quality control and analysis of high-throughput sequence data. Methods63, 41–49.

[14]

D'Costa, V.M., King, C.E., Kalan, L., Morar, M., Sung, W.W.L., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G.B., Poinar, H.N., Wright, G.D., 2011. Antibiotic resistance is ancient. Nature477, 457–461.

[15]

Ellabaan, M.M.H., Munck, C., Porse, A., Imamovic, L., Sommer, M.O.A., 2021. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nature Communications12, 2435.

[16]

Forsberg, K.J., Patel, S., Gibson, M.K., Lauber, C.L., Knight, R., Fierer, N., Dantas, G., 2014. Bacterial phylogeny structures soil resistomes across habitats. Nature509, 612–616.

[17]

Friedman, J., Alm, E.J., 2012. Inferring correlation networks from genomic survey data. PLoS Computational Biology8, e1002687.

[18]

Gong, X.J., Yu, Y., Hao, Y.B., Wang, Q.J., Ma, J.T., Jiang, Y.B., Lv, G.Y., Li, L., Qian, C.R., 2022. Characterizing corn-straw-degrading actinomycetes and evaluating application efficiency in straw-returning experiments. Frontiers in Microbiology13, 1003157.

[19]

Gralka, M., Pollak, S., Cordero, O.X., 2023. Genome content predicts the carbon catabolic preferences of heterotrophic bacteria. Nature Microbiology8, 1799–1808.

[20]

Han, X.M., Hu, H.W., Chen, Q.L., Yang, L.Y., Li, H.L., Zhu, Y.G., Li, X.Z., Ma, Y.B., 2018. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. Soil Biology and Biochemistry126, 91–102.

[21]

Hu, H.W., Wang, J.T., Singh, B.K., Liu, Y.R., Chen, Y.L., Zhang, Y.J., He, J.Z., 2018. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environmental Microbiology20, 3186–3200.

[22]

Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., Hauser, L.J., 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics11, 119.

[23]

Kent, W.J., 2002. BLAT—the BLAST-like alignment tool. Genome Research12, 656–664.

[24]

Kim, J.H., Kuppusamy, S., Kim, S.Y., Kim, S.C., Kim, H.T., Lee, Y.B., 2017. Occurrence of sulfonamide class of antibiotics resistance in Korean paddy soils under long-term fertilization practices. Journal of Soils and Sediments17, 1618–1625.

[25]

Kolde, R., 2022. Pretty heatmaps. R package.

[26]

Li, B.Z., Liang, F., Wang, Y.J., Cao, W.C., Song, H., Chen, J.S., Guo, J.H., 2023. Magnitude and efficiency of straw return in building up soil organic carbon: a global synthesis integrating the impacts of agricultural managements and environmental conditions. Science of the Total Environment875, 162670.

[27]

Li, D.H., Luo, R.B., Liu, C.M., Leung, C.M., Ting, H.F., Sadakane, K., Yamashita, H., Lam, T.W., 2016. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods102, 3–11.

[28]

Liu, Z.T., Ma, R.A., Zhu, D., Konstantinidis, K.T., Zhu, Y.G., Zhang, S.Y., 2024. Organic fertilization co-selects genetically linked antibiotic and metal(loid) resistance genes in global soil microbiome. Nature Communications15, 5168.

[29]

Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

[30]

Martinez, J.L., Coque, T.M., Baquero, F., 2015. What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology13, 116–123.

[31]

Nayfach, S., Pollard, K.S., 2015. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biology16, 51.

[32]

Oberlé, K., Capdeville, M.J., Berthe, T., Budzinski, H., Petit, F., 2012. Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli: from medical center patients to a receiving environment. Environmental Science & Technology46, 1859–1868.

[33]

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., 2020. Vegan: community ecology package. R package.

[34]

Olm, M.R., Brown, C.T., Brooks, B., Banfield, J.F., 2017. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. The ISME Journal11, 2864–2868.

[35]

Orellana, L.H., Rodriguez-R, L.M., Konstantinidis, K.T., 2017. ROCker: accurate detection and quantification of target genes in short-read metagenomic data sets by modeling sliding-window bitscores. Nucleic Acids Research45, e14.

[36]

Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., Edwards, R.A., Gerdes, S., Parrello, B., Shukla, M., Vonstein, V., Wattam, A.R., Xia, F.F., Stevens, R., 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research42, D206–D214.

[37]

Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., Tyson, G.W., 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research25, 1043–1055.

[38]

Rhodes, K.A., Schweizer, H.P., 2016. Antibiotic resistance in Burkholderia species. Drug Resistance Updates28, 82–90.

[39]

Rodriguez-R, L.M., Gunturu, S., Harvey, W.T., Rosselló-Mora, R., Tiedje, J.M., Cole, J.R., Konstantinidis, K.T., 2018a. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Research46, W282–W288.

[40]

Rodriguez-R, L.M., Gunturu, S., Tiedje, J.M., Cole, J.R., Konstantinidis, K.T., Fodor, A., 2018b. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems3, e00039–18.

[41]

Rodriguez-R, L.M., Konstantinidis, K.T., 2016. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints4, e1900v1.

[42]

Su, Y., Yu, M., Xi, H., Lv, J.L., Ma, Z.H., Kou, C.L., Shen, A.L., 2020. Soil microbial community shifts with long-term of different straw return in wheat-corn rotation system. Scientific Reports10, 6360.

[43]

Sun, R.B., Wang, F.H., Hu, C.S., Liu, B.B., 2021. Metagenomics reveals taxon-specific responses of the nitrogen-cycling microbial community to long-term nitrogen fertilization. Soil Biology and Biochemistry156, 108214.

[44]

Sun, S.L., Lu, C., Liu, J., Williams, M.A., Yang, Z.Y., Gao, Y.Z., Hu, X.J., 2020. Antibiotic resistance gene abundance and bacterial community structure in soils altered by ammonium and nitrate concentrations. Soil Biology and Biochemistry149, 107965.

[45]

Tang, X.J., Lou, C.L., Wang, S.X., Lu, Y.H., Liu, M., Hashmi, M.Z., Liang, X.Q., Li, Z.P., Liao, Y.L., Qin, W.J., Fan, F., Xu, J.M., Brookes, P.C., 2015. Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: evidence from four field experiments in south of China. Soil Biology and Biochemistry90, 179–187.

[46]

Tian, S.H., Sun, X.C., Xiao, H., Zhou, Y.Y., Huang, X., An, X.L., Liu, C.X., Su, J.Q., 2023. Evaluation of rice straw and its transformation products on norfloxacin degradation and antibiotic resistome attenuation during soil incorporation. Chemosphere313, 137451.

[47]

Uritskiy, G.V., DiRuggiero, J., Taylor, J., 2018. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome6, 158.

[48]

Wang, F.H., Chen, S.M., Wang, Y.Y., Zhang, Y.M., Hu, C.S., Liu, B.B., 2018a. Long-term nitrogen fertilization elevates the activity and abundance of nitrifying and denitrifying microbial communities in an upland soil: implications for nitrogen loss from intensive agricultural systems. Frontiers in Microbiology9, 2424.

[49]

Wang, F.H., Sun, R.B., Hu, H.W., Duan, G.L., Meng, L., Qiao, M., 2022a. The overlap of soil and vegetable microbes drives the transfer of antibiotic resistance genes from manure-amended soil to vegetables. Science of the Total Environment828, 154463.

[50]

Wang, J.Z., Wang, X.J., Xu, M.G., Feng, G., Zhang, W.J., Yang, X.Y., Huang, S.M., 2015. Contributions of wheat and maize residues to soil organic carbon under long-term rotation in north China. Scientific Reports5, 11409.

[51]

Wang, L.F., Liu, S.J., Ma, G., Wang, C.Y., Sun, J.T., 2022b. Soil organic carbon and nitrogen storage under a wheat (Triticum aestivum L.)—maize (Zea mays L.) cropping system in northern China was modified by nitrogen application rates. PeerJ10, e13568.

[52]

Wang, T.T., Sun, S.L., Xu, Y.X., Waigi, M.G., Odinga, E.S., Vasilyeva, G.K., Gao, Y.Z., Hu, X.J., 2022c. Nitrogen regulates the distribution of antibiotic resistance genes in the soil-vegetable system. Frontiers in Microbiology13, 848750.

[53]

Wang, Y.D., Wang, Z.L., Zhang, Q.Z., Hu, N., Li, Z.F., Lou, Y.L., Li, Y., Xue, D.M., Chen, Y., Wu, C.Y., Zou, C.B., Kuzyakov, Y., 2018b. Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil. Science of the Total Environment624, 1131–1139.

[54]

Watson, B., Currier, T.C., Gordon, M.P., Chilton, M.D., Nester, E.W., 1975. Plasmid required for virulence of Agrobacterium tumefaciens. Journal of Bacteriology123, 255–264.

[55]

Wickham, H., 2016. ggplot2 - Elegant Graphics for Data Analysis. Cham: Springer.

[56]

Wood, D.E., Salzberg, S.L., 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biology15, R46.

[57]

Yang, H.J., Ma, J.X., Rong, Z.Y., Zeng, D.D., Wang, Y.C., Hu, S.J., Ye, W.W., Zheng, X.B., 2019. Wheat straw return influences nitrogen-cycling and pathogen associated soil microbiota in a wheat–soybean rotation system. Frontiers in Microbiology10, 1811.

[58]

Yao, S.J., Ye, J.F., Yang, Q., Hu, Y.R., Zhang, T.Y., Jiang, L., Munezero, S., Lin, K.F., Cui, C.Z., 2021. Occurrence and removal of antibiotics, antibiotic resistance genes, and bacterial communities in hospital wastewater. Environmental Science and Pollution Research28, 57321–57333.

[59]

Yi, X.Z., Liang, J.L., Su, J.Q., Jia, P., Lu, J.L., Zheng, J., Wang, Z., Feng, S.W., Luo, Z.H., Ai, H.X., Liao, B., Shu, W.S., Li, J.T., Zhu, Y.G., 2022. Globally distributed mining-impacted environments are underexplored hotspots of multidrug resistance genes. The ISME Journal16, 2099–2113.

[60]

Zhang, S.Y., Suttner, B., Rodriguez-R, L.M., Orellana, L.H., Conrad, R.E., Liu, F., Rowell, J.L., Webb, H.E., Williams-Newkirk, A.J., Huang, A., Konstantinidis, K.T., Marshall, C.W., 2022a. ROCker models for reliable detection and typing of short-read sequences carrying β-lactamase genes. Msystems7, e0128121.

[61]

Zhang, S.Y., Tsementzi, D., Hatt, J.K., Bivins, A., Khelurkar, N., Brown, J., Tripathi, S.N., Konstantinidis, K.T., 2019a. Intensive allochthonous inputs along the Ganges River and their effect on microbial community composition and dynamics. Environmental Microbiology21, 182–196.

[62]

Zhang, Y., Zheng, X.Q., Xu, X.Y., Cao, L.K., Zhang, H.Y., Zhang, H.L., Li, S.X., Zhang, J.Q., Bai, N.L., Lv, W.G., Cao, X.D., 2022b. Straw return promoted the simultaneous elimination of sulfamethoxazole and related antibiotic resistance genes in the paddy soil. Science of the Total Environment806, 150525.

[63]

Zhang, Y.J., Hu, H.W., Chen, Q.L., Singh, B.K., Yan, H., Chen, D.L., He, J.Z., 2019b. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environment International130, 104912.

[64]

Zhang, Z.Y., Zhang, Q., Wang, T.Z., Xu, N.H., Lu, T., Hong, W.J., Penuelas, J., Gillings, M., Wang, M.X., Gao, W.W., Qian, H.F., 2022c. Assessment of global health risk of antibiotic resistance genes. Nature Communications13, 1553.

[65]

Zhao, X., Wang, J.H., Zhu, L.S., Wang, J., 2019. Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils. Science of the Total Environment654, 906–913.

[66]

Zheng, D.S., Yin, G.Y., Liu, M., Hou, L.J., Yang, Y., Van Boeckel, T.P., Zheng, Y.L., Li, Y., 2022. Global biogeography and projection of soil antibiotic resistance genes. Science Advances8, eabq8015.

[67]

Zhu, D., Xiang, Q., Yang, X.R., Ke, X., O'Connor, P., Zhu, Y.G., 2019. Trophic transfer of antibiotic resistance genes in a soil detritus food chain. Environmental Science & Technology53, 7770–7781.

[68]

Zhu, L., Lian, Y.L., Lin, D., Huang, D., Yao, Y.L., Ju, F., Wang, M.Z., 2022. Insights into microbial contamination in multi-type manure-amended soils: the profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes. Journal of Hazardous Materials437, 129356.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (6103KB)

Supplementary files

Sumpplement SI_Tables

Sumpplement_SI_Figs

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/