mecoturn: An R package for deciphering microbial turnover patterns along gradients

Chi Liu , Jiahui Luo , Chunmiao Lu , Tianlong Sheng , Raymond Jianxiong Zeng , Xiangzhen Li , Minjie Yao

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250355

PDF (4628KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250355 DOI: 10.1007/s42832-025-0355-6
RESEARCH ARTICLE

mecoturn: An R package for deciphering microbial turnover patterns along gradients

Author information +
History +
PDF (4628KB)

Abstract

One of the most critical studies on microbial ecology is to reveal microbial turnover patterns along spatial, temporal, or environmental gradients. In such studies, it is often necessary to select appropriate statistical methods based on the experimental design, especially when considering random effects. However, there are few tools that can be readily applied to such cases. In this study, we present a mecoturn R package, designed to support various statistical analyses of microbial turnover along gradients. Two R6 classes (betaturn and taxaturn) have been developed to investigate the beta diversity of microbial communities and the shift profiles of taxonomic abundances, respectively. In each category, several fundamental functions and approaches were encapsulated to enable data preparation, data conversion and filtering, model fitting and visualization. Each analytical component can be implemented with the consideration of random effects, such as (generalized) linear mixed-effects model. Especially in the analysis of beta diversity, the application of linear mixed-effects model fills a gap in the field of related methodologies. To demonstrate the efficacy of two classes and their diverse methodologies, we employed microbial community datasets of bulk soil, rhizosphere soil, and root endophytes of wheat from varying regions of China to conduct a comparative analysis for different pipelines. We found that reasonable analysis considering the heterogeneity of plants can strengthen the reliability of statistical hypothesis testing. The mecoturn package can be freely installed from CRAN (The Comprehensive R Archive Network) or GitHub repository (accessible at: github.com/ChiLiubio/mecoturn).

Graphical abstract

Keywords

beta diversity / ecology / gradient / microbial community / taxonomic abundance

Highlight

● R mecoturn package is developed for microbial turnover analysis.

● Linear mixed-effects model is implemented for beta diversity analysis.

● The shift profiles of taxonomic abundances can be fitted with multiple models.

● The combination of different approaches can address complex turnover cases.

Cite this article

Download citation ▾
Chi Liu, Jiahui Luo, Chunmiao Lu, Tianlong Sheng, Raymond Jianxiong Zeng, Xiangzhen Li, Minjie Yao. mecoturn: An R package for deciphering microbial turnover patterns along gradients. Soil Ecology Letters, 2025, 7(4): 250355 DOI:10.1007/s42832-025-0355-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology26, 32–46.

[2]

Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., Sanders, N.J., Cornell, H.V., Comita, L.S., Davies, K.F., Harrison, S.P., Kraft, N.J.B., Stegen, J.C., Swenson, N.G., 2011. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters14, 19–28.

[3]

Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography19, 134–143.

[4]

Beule, L., Karlovsky, P., 2020. Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): application to microbial communities. PeerJ8, e9593.

[5]

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J.R., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L.J., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., Mcdonald, D., Mciver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y.H., Wang, M.X., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y.L., Zhu, Q.Y., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology37, 852–857.

[6]

Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Mäechler, M., Bolker, B.M., 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal9, 378–400.

[7]

Chang, W., 2025. R6: Encapsulated classes with reference semantics [Online] Available at the website of CRAN.R-project.org. .

[8]

ColemanDerr, D., Desgarennes, D., FonsecaGarcia, C., Gross, S., Clingenpeel, S., Woyke, T., North, G., Visel, A., PartidaMartinez, L.P., Tringe, S.G., 2016. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytologist209, 798–811.

[9]

Cribari-Neto, F., Zeileis, A., 2010. Beta regression in R. Journal of Statistical Software34, 1–24.

[10]

Douma, J.C., Weedon, J.T., 2019. Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods in Ecology and Evolution10, 1412–1430.

[11]

Edwards, J.A., Santos-Medellín, C.M., Liechty, Z.S., Nguyen, B., Lurie, E., Eason, S., Phillips, G., Sundaresan, V., 2018. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biology16, e2003862.

[12]

Fan, M.C., Li, J.J., Yan, W.M., Shi, H., Shangguan, Z.P., 2021. Shifts in the structure and function of wheat root-associated bacterial communities in response to long-term nitrogen addition in an agricultural ecosystem. Applied Soil Ecology159, 103852.

[13]

Fine, P.V.A., Kembel, S.W., 2011. Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography34, 552–565.

[14]

Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. lmerTest package: tests in linear mixed effects models. Journal of Statistical Software82, 1–26.

[15]

Lee, S.M., Kong, H.G., Song, G.C., Ryu, C.M., 2021. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. The ISME Journal15, 330–347.

[16]

Li, M.J., Hong, L., Ye, W.H., Wang, Z.M., Shen, H., 2022. Phyllosphere bacterial and fungal communities vary with host species identity, plant traits and seasonality in a subtropical forest. Environmental Microbiome17, 29.

[17]

Liu, C., Cui, Y.M., Li, X.Z., Yao, M.J., 2021. microeco: an R package for data mining in microbial community ecology. FEMS Microbiology Ecology97, fiaa255.

[18]

Liu, C., Li, C.N., Jiang, Y.Q., Zeng, R.J., Yao, M.J., Li, X.Z., 2023. A guide for comparing microbial co-occurrence networks. iMeta2, e71.

[19]

Liu, C., Li, N., Xiao, M., Li, X.Z., Yao, M.J., 2024. Different assembly mechanisms between prokaryotic and fungal communities in grassland plants and soil. Plant and Soil505, 299–315.

[20]

Liu, C., Li, X.Z., Mansoldo, F.R.P., An, J.X., Kou, Y.P., Zhang, X., Wang, J.M., Zeng, J.X., Vermelho, A.B., Yao, M.J., 2022. Microbial habitat specificity largely affects microbial co-occurrence patterns and functional profiles in wetland soils. Geoderma418, 115866.

[21]

Liu, C., Wang, J.L., Wang, Y.S., Li, L.J., Feng, Z.H., Xian, Y.C., Jiang, Y.Q., Yu, J.F., Tong, T.T., Li, X.Z., Yao, M.J., 2025. Crop rotation and fertilization shape the microbiomes of maize rhizosphere soil with distinct mechanisms. Plant and Soil507, 89–108.

[22]

Lozupone, C., Lladser, M.E., Knights, D., Stombaugh, J., Knight, R., 2011. UniFrac: An effective distance metric for microbial community comparison. The ISME Journal5, 169–172.

[23]

Magoč, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics27, 2957–2963.

[24]

Massoni, J., Bortfeld-Miller, M., Widmer, A., Vorholt, J.A., 2021. Capacity of soil bacteria to reach the phyllosphere and convergence of floral communities despite soil microbiota variation. Proceedings of the National Academy of Sciences of the United States of America118, e2100150118.

[25]

Meyer, K.M., Porch, R., Muscettola, I.E., Vasconcelos, A.L.S., Sherman, J.K., Metcalf, C.J.E., Lindow, S.E., Koskella, B., 2022. Plant neighborhood shapes diversity and reduces interspecific variation of the phyllosphere microbiome. The ISME Journal16, 1376–1387.

[26]

R Core Team., 2024. R: A language and environment for statistical computing. R Foundation for Statistical Computing [Online].

[27]

Ramette, A., 2007. Multivariate analyses in microbial ecology. FEMS Microbiology Ecology62, 142–160.

[28]

Stegen, J.C., Lin, X.J., Konopka, A.E., Fredrickson, J.K., 2012. Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal6, 1653–1664.

[29]

Tkacz, A., Bestion, E., Bo, Z.Y., Hortala, M., Poole, P.S., 2020. Influence of plant fraction, soil, and plant species on microbiota: a multikingdom comparison. mBio11, e02785–19.

[30]

Toju, H., Kurokawa, H., Kenta, T., 2019. Factors influencing leaf- and root-associated communities of bacteria and fungi across 33 plant orders in a grassland. Frontiers in Microbiology10, 241.

[31]

Trivedi, P., Leach, J.E., Tringe, S.G., Sa, T., Singh, B.K., 2020. Plant-microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology18, 607–621.

[32]

Wang, Z.H., Song, Y., 2022. Toward understanding the genetic bases underlying plantmediated “cry for help” to the microbiota. iMeta1, e8.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4628KB)

Supplementary files

Supplementary Information

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/