Regional-scale patterns and drivers of soil CO2 emissions in steppe ecosystems

Wei Song , Xiaodong He , Shuping Qin , Minjie Yao , Xiangzhen Li

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250353

PDF (2624KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250353 DOI: 10.1007/s42832-025-0353-8
RESEARCH ARTICLE

Regional-scale patterns and drivers of soil CO2 emissions in steppe ecosystems

Author information +
History +
PDF (2624KB)

Abstract

Soil respiration is a pivotal component of the global carbon cycle, yet the regional-scale variations in CO2 emissions across steppe ecosystems, especially under anthropogenic nitrogen deposition, remain poorly understood. Here, we investigated soil CO2 emissions from 30 sites spanning three major steppe regions (Inner Mongolia Plateau, Loess Plateau, and Tibetan Plateau) to elucidate regional patterns and underlying drivers. Our results show that desert steppes emitted 50%−90% less CO2 than meadow steppes, primarily due to differences in soil organic carbon (SOC). Simulated nitrogen deposition via nitrate (NO3) addition significantly enhanced CO2 emissions in nitrogen-limited regions (Loess and Tibetan Plateaus), while nitrogen-rich soils (Inner Mongolia Plateau) showed saturation effects. Random forest and partial least squares path modeling (PLSPM) analyses showed that nitrogen availability, climate, and elevation jointly regulated CO2 fluxes, with distinct regional pathways. These findings highlight the importance of spatial heterogeneity in regulating carbon emissions and suggest region-specific strategies. Protecting high-carbon steppes and regulating nitrogen inputs are vital for mitigating climate feedbacks in China grasslands.

Graphical abstract

Keywords

soil CO2 emission / steppe ecosystems / nitrogen deposition / regional-scale

Highlight

● Soil CO2 emissions show distinct regional patterns in steppe ecosystems.

● Altitude, soil carbon, and nitrogen availability drive regional CO2 emission variability.

● Nitrogen addition enhances CO2 emissions in nitrogen-limited regions, with saturation effects in nitrogen-rich soils.

Cite this article

Download citation ▾
Wei Song, Xiaodong He, Shuping Qin, Minjie Yao, Xiangzhen Li. Regional-scale patterns and drivers of soil CO2 emissions in steppe ecosystems. Soil Ecology Letters, 2025, 7(4): 250353 DOI:10.1007/s42832-025-0353-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., McNulty, S., Currie, W., Rustad, L., Fernandez, I., 1998. Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience48, 921–934.

[2]

Chen, H., Ju, P.J., Zhu, Q., Xu, X.L., Wu, N., Gao, Y.H., Feng, X.J., Tian, J.Q., Niu, S.L., Zhang, Y.J., Peng, C.H., Wang, Y.F., 2022. Carbon and nitrogen cycling on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment3, 701–716.

[3]

Chen, R.R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Lin, X.G., Blagodatskaya, E., Kuzyakov, Y., 2014. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biology20, 2356–2367.

[4]

Chen, X., Cao, J.J., Sinsabaugh, R.L., Moorhead, D.L., Bardgett, R.D., Fanin, N., Nottingham, A.T., Zheng, X.H., Chen, J., 2025. Soil extracellular enzymes as drivers of soil carbon storage under nitrogen addition. Biological Reviews100, 1716–1733.

[5]

Craine, J.M., Morrow, C., Fierer, N., 2007. Microbial nitrogen limitation increases decomposition. Ecology88, 2105–2113.

[6]

Crowther, T.W., Van den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L., Averill, C., Maynard, D.S., 2019. The global soil community and its influence on biogeochemistry. Science365, eaav0550.

[7]

Dash, P.K., Bhattacharyya, P., Roy, K.S., Neogi, S., Nayak, A.K., 2019. Environmental constraints’ sensitivity of soil organic carbon decomposition to temperature, management practices and climate change. Ecological Indicators107, 105644.

[8]

Deng, L., Peng, C.H., Kim, D.G., Li, J.W., Liu, Y.L., Hai, X.Y., Liu, Q.Y., Huang, C.B., Shangguan, Z.P., Kuzyakov, Y., 2021. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth-Science Reviews214, 103501.

[9]

Dorich, R.A., Nelson, D.W., 1983. Direct colorimetric measurement of ammonium in potassium chloride extracts of soils. Soil Science Society of America Journal47, 833–836.

[10]

Du, E.Z., Terrer, C., Pellegrini, A.F.A., Ahlström, A., van Lissa, C.J., Zhao, X., Xia, N., Wu, X.H., Jackson, R.B., 2020. Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience13, 221–226.

[11]

Gao, Q., Zhang, X.Y., Liu, L., Lu, X.H., Wang, Y.Y., 2023. A database of atmospheric inorganic nitrogen deposition fluxes in China from satellite monitoring. Scientific Data10, 698.

[12]

Gerke, J., 2022. The central role of soil organic matter in soil fertility and carbon storage. Soil Systems6, 33.

[13]

Kou, Y.P., Li, J.B., Wang, Y.S., Li, C.N., Tu, B., Yao, M.J., Li, X.Z., 2017. Scale-dependent key drivers controlling methane oxidation potential in Chinese grassland soils. Soil Biology and Biochemistry111, 104–114.

[14]

Li, L.H., Chen, J.Q., Han, X.G., Zhang, W.H., Shao, C.L., 2020. Grassland Ecosystems of China. Singapore: Springer2.

[15]

Li, L.J., You, M.Y., Shi, H.A., Ding, X.L., Qiao, Y.F., Han, X.Z., 2013. Soil CO2 emissions from a cultivated Mollisol: effects of organic amendments, soil temperature, and moisture. European Journal of Soil Biology55, 83–90.

[16]

Lichte, F.E., Golightly, D.W., Lamothe, P.J., 1987. Inductively coupled plasma-atomic emission spectrometry. In: Baedecker, P.A., ed. Methods for Geochemical Analysis. Bulletin: US Geological SurveyB1–B10.

[17]

Liu, L.L., Greaver, T.L., 2010. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters13, 819–828.

[18]

Liu, X.C., Zhang, S.T., 2019. Nitrogen addition shapes soil enzyme activity patterns by changing pH rather than the composition of the plant and microbial communities in an alpine meadow soil. Plant and Soil440, 11–24.

[19]

Liu, X.J., Zhang, Y., Han, W.X., Tang, A.H., Shen, J.L., Cui, Z.L., Vitousek, P., Erisman, J.W., Goulding, K., Christie, P., Fangmeier, A., Zhang, F.S., 2013. Enhanced nitrogen deposition over China. Nature494, 459–462.

[20]

Luo, Y.Q., Wan, S.Q., Hui, D.F., Wallace, L.L., 2001. Acclimatization of soil respiration to warming in a tall grass prairie. Nature413, 622–625.

[21]

Molstad, L., Dörsch, P., Bakken, L.R., 2007. Robotized incubation system for monitoring gases (O2, NO, N2O N2) in denitrifying cultures. Journal of Microbiological Methods71, 202–211.

[22]

Norman, R.J., Edberg, J.C., Stucki, J.W., 1985. Determination of nitrate in soil extracts by dual-wavelength ultraviolet spectrophotometry. Soil Science Society of America Journal49, 1182–1185.

[23]

Norman, R.J., Stucki, J.W., 1981. The determination of nitrate and nitrite in soil extracts by ultraviolet spectrophotometry. Soil Science Society of America Journal45, 347–353.

[24]

Nottingham, A.T., Whitaker, J., Turner, B.L., Salinas, N., Zimmermann, M., Malhi, Y., Meir, P., 2015. Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes. BioScience65, 906–921.

[25]

Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., Erasmi, S., 2016. Greenhouse gas emissions from soils–A review. Geochemistry76, 327–352.

[26]

Quan, Z.J., Cheng, Y.X., Tsubo, M., Shinoda, M., 2025. Sensitivity and regulation factors of soil organic carbon content in steppe and desert-steppe grasslands of the Mongolian Plateau. Plant and Soil509, 399–415.

[27]

Schädel, C., Beem-Miller, J., Aziz Rad, M., Crow, S.E., Hicks Pries, C.E., Ernakovich, J., Hoyt, A.M., Plante, A., Stoner, S., Treat, C.C., Sierra, C.A., 2020. Decomposability of soil organic matter over time: the Soil Incubation Database (SIDb, version 1.0) and guidance for incubation procedures. Earth System Science Data12, 1511–1524.

[28]

Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M.A., Zechmeister-Boltenstern, S., 2010. Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature. European Journal of Soil Science61, 683–696.

[29]

Singh, K.P., Ghoshal, N., Singh, S., 2009. Soil carbon dioxide flux, carbon sequestration and crop productivity in a tropical dryland agroecosystem: influence of organic inputs of varying resource quality. Applied Soil Ecology42, 243–253.

[30]

Stevens, C.J., Basto, S., Bell, M.D., Hao, T.X., Kirkman, K., Ochoa-Hueso, R., 2022. Research progress on the impact of nitrogen deposition on global grasslands. Frontiers of Agricultural Science and Engineering9, 425–444.

[31]

Treseder, K.K., 2008. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecology Letters11, 1111–1120.

[32]

Wen, C., Shan, Y.M., Xing, T.T., Liu, L., Yin, G.M., Ye, R.H., Liu, X.C., Chang, H., Yi, F.Y., Liu, S.B., Zhang, P.J., Huang, J.H., Baoyin, T., 2024. Effects of nitrogen and water addition on ecosystem carbon fluxes in a heavily degraded desert steppe. Global Ecology and Conservation52, e02981.

[33]

Wu, X.R., Peng, Y.R., Wang, T., Ahmad, N., Bai, X.S., Chang, R.Y., 2025. Distinct responses of soil carbon-degrading enzyme activities to warming in two alpine meadow ecosystems on the Qinghai-Tibet Plateau. Soil Ecology Letters7, 240291.

[34]

Xiao, W.Y., Chen, C., Chen, H.Y.H., 2024. Nitrogen deposition suppresses soil respiration by reducing global belowground activity. Science of the Total Environment921, 171246.

[35]

Xin, X.P., Jin, D.Y., Ge, Y., Wang, J.H., Chen, J.Q., Qi, J.G., Chu, H.S., Shao, C.L., Murray, P.J., Zhao, R.X., Qin, Q., Tang, H.J., 2020. Climate change dominated long-term soil carbon losses of Inner Mongolian grasslands. Global Biogeochemical Cycles34, e2020GB006559.

[36]

Xu, L., Cao, H.L., Li, C.N., Wang, C.H., He, N.P., Hu, S.Y., Yao, M.J., Wang, C.T., Wang, J.M., Zhou, S.G., Li, X.Z., 2022. The importance of rare versus abundant phoD-harboring subcommunities in driving soil alkaline phosphatase activity and available P content in Chinese steppe ecosystems. Soil Biology and Biochemistry164, 108491.

[37]

Xu, M., Li, X.L., Kuyper, T.W., Xu, M., Li, X.L., Zhang, J.L., 2021. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Global Change Bioloyg27, 2061–2075.

[38]

Xu, M., Shang, H., 2016. Contribution of soil respiration to the global carbon equation. Journal of Plant Physiology203, 16–28.

[39]

Zhou, J.Z., Deng, Y., Luo, F., He, Z.L., Tu, Q.C., Zhi, X.Y., 2010. Functional molecular ecological networks. mBio1, e00169–10.

[40]

Zhou, K.Y., Xu, W., Zhang, L., Ma, M.R., Liu, X.J., Zhao, Y., 2023. Estimating nitrogen and sulfur deposition across China during 2005 to 2020 based on multiple statistical models. Atmospheric Chemistry and Physics23, 8531–8551.

[41]

Zhou, Z.H., Wang, C.K., Zheng, M.H., Jiang, L.F., Luo, Y.Q., 2017. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology and Biochemistry115, 433–441.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2624KB)

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/