Characterization of arbuscular mycorrhizal fungal communities in Songnen saline-alkaline soils and potential hydroponic utilization

Yajie Liu , Menghui Yang , Na Li , Yixin Huang , Chunxue Yang

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250349

PDF (5387KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250349 DOI: 10.1007/s42832-025-0349-4
RESEARCH ARTICLE

Characterization of arbuscular mycorrhizal fungal communities in Songnen saline-alkaline soils and potential hydroponic utilization

Author information +
History +
PDF (5387KB)

Abstract

Arbuscular mycorrhizal (AM) fungi, ubiquitous in diverse habitats including salinized environments, play a pivotal role in ecological processes. Despite advances in understanding their physiological interactions with hosts and soil bioremediation potential, knowledge gaps remain regarding the utilization of stress-adapted indigenous AM fungi. This study investigated AM fungi involved in wild vegetation succession and their hydroponic applicability for plant research. Spores from rhizosphere soils of three vegetation stages in Songnen salinized land were morphologically identified, followed by potting and hydroponic experiments to explore mycorrhizal symbiosis under saline-alkali stress. Specifically, Leymus chinensis, the plant in phase III, was selected as the host, with its rhizosphere soil served as inoculum. Results revealed significant compositional variations across three stages (ANOSIM, p = 0.039). Five key species, including Rhizophagus clarus, were recognized as indicators of initial stages, and three Rhizophagus strains positively correlated with pH and carbonate concentration. In cultivation, AM fungi colonized roots (colonization rate 60%−86.67%) and alleviated salinized stress through morphological improvements, osmotic adjustments, enhanced enzymatic activity, and augmented photosynthesis, regulated by mycorrhizal metabolic pathways (e.g., PWY-7111 and LEU- DEG2-PWY). Mycorrhizal dependency varied by system, with the highest value observed in the box hydroponic setup (MD = 2.15), while tube-based cultivation showed intermediate values closer to potting group. However, sequencing indicated Glomus sensitivity in aquatic conditions, and the box system was more susceptible. These findings provide novel insights into vegetation succession from a mycorrhizal perspective and offer frameworks for AM fungal applications in diverse contexts, facilitating future biological utilization.

Graphical abstract

Keywords

salinized soil / mycorrhizal diversity / hydroponic cultivation / physiological growth / high-throughput sequencing

Highlight

● Multiple species, including Rhizophagus clarus , potentially mediated the wild succession.

● AM fungal community regulated the botanical physiology and biochemistry under salinization in both hydroponics and sand.

● The mycorrhizal roles on plant linked to their intrinsic metabolic pathways.

Glomus respond sensitively to hydroponic environments.

Cite this article

Download citation ▾
Yajie Liu, Menghui Yang, Na Li, Yixin Huang, Chunxue Yang. Characterization of arbuscular mycorrhizal fungal communities in Songnen saline-alkaline soils and potential hydroponic utilization. Soil Ecology Letters, 2025, 7(4): 250349 DOI:10.1007/s42832-025-0349-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adenan, S., Oja, J., Alatalo, J.M., Shraim, A.M., Alsafran, M., Tedersoo, L., Zobel, M., Ahmed, T., 2021. Diversity of arbuscular mycorrhizal fungi and its chemical drivers across dryland habitats. Mycorrhiza31, 685–697.

[2]

Brundett, M., Melville, L., Peterson, L., 1994. Practical Methods in Mycorrhiza Research. Guelph: Mycologue Publications.

[3]

Campbell, S.M., Anderson, S.L., Brym, Z.T., Pearson, B.J., 2021. Evaluation of substrate composition and exogenous hormone application on vegetative propagule rooting success of essential oil hemp (Cannabis sativa L. ). PLoS One16, e0249160.

[4]

Chen, F., 2017. Research of deversity and function of AM fungi from Puccinellia tenuiflora rhizosphere in Songnen alkaline grassland. Master Degree Thesis. Northeast Forestry University, Harbin, China.

[5]

Chen, X.D., Zhu, Y., Feng, M.N., Li, J.H., Shi, M.Y., 2024. Community responses of arbuscular mycorrhiza fungi to hydrological gradients in a riparian Phragmites australis wetland. Ecology and Evolution14, e11271.

[6]

Cui, Z.Y., Li, X.D., Han, P.A., Chen, R., Dong, Y.Z., Geng, G., Yu, L.H., Liu, J.H., Xu, Y., Wang, Y.G., 2025. Integrative transcriptomic and physiological analyses uncover mechanisms by which arbuscular mycorrhizal fungi mitigate salt stress in sugar beet. Mycorrhiza35, 35.

[7]

Das, D., Torabi, S., Chapman, P., Gutjahr, C., 2020. A flexible, low-cost hydroponic co-cultivation system for studying arbuscular mycorrhiza symbiosis. Frontiers in Plant Science11, 63.

[8]

de Carvalho Neta, S.J., Araújo, V.L.V.P., Fracetto, F.J.C., da Silva, C.C.G., de Souza, E.R., Silva, W.R., Lumini, E., Fracetto, G.G.M., 2024. Growth-promoting bacteria and arbuscular mycorrhizal fungus enhance maize tolerance to saline stress. Microbiological Research284, 127708.

[9]

Dong, G., Zhao, F.Y., Chen, J.Q., Qu, L.P., Jiang, S.C., Chen, J.Y., Xin, X.P., Shao, C.L., 2021. Land uses changed the dynamics and controls of carbon-water exchanges in alkali-saline Songnen Plain of Northeast China. Ecological Indicators133, 108353.

[10]

El-Sawah, A.M., Abdel-Fattah, G.G., Holford, P., Korany, S.M., Alsherif, E.A., AbdElgawad, H., Ulhassan, Z., Jośko, I., Ali, B., Sheteiwy, M.S., 2023. Funneliformis constrictum modulates polyamine metabolism to enhance tolerance of Zea mays L. to salinity. Microbiological Research266, 127254.

[11]

Feng, Z.W., Pan, C.X., Qin, Y.Q., Xie, X.L., Liu, X.D., Chen, M., Zhang, W., Zhu, H.H., Yao, Q., 2024. Natural grass coverage enriches arbuscular mycorrhizal fungal communities in subtropical citrus orchards through the regulation of Glomus on a regional scale. Applied Soil Ecology195, 105211.

[12]

Fu, W., Wu, H., Chen, B.D., 2021. High-throughput sequencing-based method for characterizing biodiversity of arbuscular mycorrhizal fungi. Mircobiome Protocol eBook Bio-101, e2003673.

[13]

Gómez-Leyva, J.F., Segura-Castruita, M.A., Hernández-Cuevas, L.V., Iñiguez-Rivas, M., 2023. Arbuscular mycorrhizal fungi associated with maize (Zea mays L. ) in the formation and stability of aggregates in two types of soil. Microorganisms11, 2615.

[14]

Gong, M.Q., Wang, F.Z., Chen, Y., Chen, Y.L., 2000. Mycorrhizal dependency and inoculant effects on the growth of Betula alnoides seedlings. Forest Research13, 8–14.

[15]

Guan, Y.M., 1986. Soil Enzymes and Research Methods. Beijing: China Agriculture Press.

[16]

Hattar, B.I., Taimeh, A.Y., Ziadat, F.M., 2010. Variation in soil chemical properties along toposequences in an arid region of the Levant. CATENA83, 34–45.

[17]

Hopkins, J.R., McKenna, T.P., Bennett, A.E., 2024. Fire season and time since fire determine arbuscular mycorrhizal fungal trait responses to fire. Plant and Soil503, 231–245.

[18]

Huang, G.M., Srivastava, A.K., Zou, Y.N., Wu, Q.S., Kuča, K., 2021. Exploring arbuscular mycorrhizal symbiosis in wetland plants with a focus on human impacts. Symbiosis84, 311–320.

[19]

Huang, H.S., Qin, X.J., Kang, Y.H., Xu, J., Shang, P.X., Chen, T.S., Cheng, T., Zhang, J.L., 2025. Three new species and a new record of arbuscular mycorrhizal fungi of the genus Acaulospora associated with citrus from south China. Journal of Fungi11, 382.

[20]

Jia, B.B., Cui, X., Zhang, Z.C., Li, X., Hou, Y.Z., Luo, J.Q., Guo, W., 2024. Arbuscular mycorrhizal fungi regulate amino acid metabolism, phytohormones and glycolysis pathway to promote the growth of Suaeda salsa under combined Cd and NaCl stresses. Plant Physiology and Biochemistry214, 108921.

[21]

Johnson, N.C., Angelard, C., Sanders, I.R., Kiers, E.T., 2013. Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecology Letters16, 140–153.

[22]

Kakouridis, A., Hagen, J.A., Kan, M.P., Mambelli, S., Feldman, L.J., Herman, D.J., Weber, P.K., Pett-Ridge, J., Firestone, M.K., 2022. Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. New Phytologist236, 210–221.

[23]

Khan, S., Purohit, A., Vadsaria, N., 2021. Hydroponics: current and future state of the art in farming. Journal of Plant Nutrition44, 1515–1538.

[24]

Lenoir, I., Fontaine, J., Sahraoui, A.L.H., 2016. Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry123, 4–15.

[25]

Lermen, C., da Cruz, R.M.S., de Souza Gonçalves, C.H., Pinc, M.M., Otênio, J.K., da Silva, C., Alberton, O., 2024. Essential oil phytochemistry and antifungal activity of lemongrass inoculated with arbuscular mycorrhizal fungi under different phosphorous levels. Rhizosphere32, 100968.

[26]

Li, Y.F., Gong, H.Y., Li, S.J., Zhang, Y.S., 2020. Ecological stoichiometry homeostasis of six microelements in Leymus chinensis growing in soda saline-alkali soil. Sustainability12, 4226.

[27]

Liu, P., Li, M.J., 2016. Experiments of Plant Physiology. 2nd ed. Beijing: Science Press.

[28]

Liu, Y.J., Fang, L.L., Wang, Z.H., Lu, X.Y., Li, J.H., Yang, C.X., 2024. Companion interference and symbiotic matching phenomenon occurred in saline-alkali habitats. Environmental and Experimental Botany226, 105940.

[29]

Liu, Y.J., Fang, L.L., Yang, C.X., 2022. Significant changes in arbuscular mycorrhizal community and soil physicochemical properties during the saline-alkali grassland vegetation succession. Biocell46, 2475–2488.

[30]

Liu, Y.J., Fang, L.L., Zhao, W.N., Yang, C.X., 2022. Effects of different arbuscular mycorrhizal fungi on physiology of Viola prionantha under salt stress. Phyton- International Journal of Experimental Botany92, 55–69.

[31]

Liu, Z.H., Fang, J., Song, B., Yang, Y., Yu, Z., Hu, J.L., Dong, K., Takahashi, K., Adams, J.M., 2023. Stochastic processes dominate soil arbuscular mycorrhizal fungal community assembly along an elevation gradient in central Japan. Science of the Total Environment855, 158941.

[32]

Malaie, S., Pourakbar, L., Moghaddam, S.S., Khezrinejad, N., Xiao, J.B., 2025. Metabolic adjustment via microbial agents and biochar synergy enhances mercury stress tolerance in Vigna radiata L. Acta Physiologiae Plantarum47, 60.

[33]

Marrassini, V., Ercoli, L., Piazza, G., Pellegrino, E., 2024. Plant genotype and inoculation with indigenous arbuscular mycorrhizal (AM) fungi modulate wheat productivity and quality of processed products through changes in the frequency of root AM fungal taxa. Field Crops Research315, 109456.

[34]

Maússe-Sitoe, S., Dames, J., 2024. Characterization of arbuscular mycorrhizal fungal species associating with Zea mays. Frontiers in Plant Science15, 1345229.

[35]

Medina, J., Meier, S., Rubio, R., Curaqueo, G., Borie, F., Aguilera, P., Oehl, F., Cornejo, P., 2015. Arbuscular mycorrhizal status of pioneer plants from the mouth of lake Budi, Araucania Region, Chile. Journal of Soil Science and Plant Nutrition15, 142–152.

[36]

Nader, A.A., Hauka, F.I.A., Afify, A.H., El-Sawah, A.M., 2024. Drought-tolerant bacteria and arbuscular mycorrhizal fungi mitigate the detrimental effects of drought stress induced by withholding irrigation at critical growth stages of soybean (Glycine max, L. ). Microorganisms12, 1123.

[37]

Phillips, J.M., Hayman, D.S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of The British Mycological Society55, 158–161.

[38]

Ramos, T.B., Gonçalves, M.C., van Genuchten, M.T., 2024. Soil salinization in Portugal: an in-depth exploration of impact, advancements, and future considerations. Vadose Zone Journal23, e20314.

[39]

Romero-Munar, A., Muñoz-Carrasco, M., Balestrini, R., de Rose, S., Giovannini, L., Aroca, R., Ruiz-Lozano, J.M., 2024. Differential root and cell regulation of maize aquaporins by the arbuscular mycorrhizal symbiosis highlights its role in plant water relations. Plant, Cell & Environment47, 4337–4353.

[40]

Sheteiwy, M.S., El-Sawah, A.M., Korany, S.M., Alsherif, E.A., Mowafy, A.M., Chen, J., Jośko, I., Selim, S., AbdElgawad, H., 2022. Arbuscular mycorrhizal fungus "Rhizophagus irregularis" impacts on physiological and biochemical responses of ryegrass and chickpea plants under beryllium stress. Environmental Pollution315, 120356.

[41]

Shi, L.J., Yu, J.X., Chen, Y.L., Guo, S.X., Liu, R.J., 2019. Colonization and community structure of arbuscular mycorrhizal fungi in urbanising landscapes of China. Mycosystema38, 2016–2029.

[42]

Tao, C.Y., Wang, Z., Liu, S.S., Lv, N.N., Deng, X.H., Xiong, W., Shen, Z.Z., Zhang, N., Geisen, S., Li, R., Shen, Q.R., Kowalchuk, G.A., 2023. Additive fungal interactions drive biocontrol of Fusarium wilt disease. New Phytologist238, 1198–1214.

[43]

Thomas, B.O., Lechner, S.L., Ross, H.C., Joris, B.R., Glick, B.R., Stegelmeier, A.A., 2024. Friends and foes: bacteria of the hydroponic plant microbiome. Plants13, 3069.

[44]

Tian, B.L., Zhu, M.K., Pei, Y.C., Ran, G.Y., Shi, Y., Ding, J.Q., 2022. Climate warming alters the soil microbial association network and role of keystone taxa in determining wheat quality in the field. Agriculture, Ecosystems & Environment326, 107817.

[45]

Trouvelot, A., Kough, J.L., Gianinazzi-Pearson, V., 1986. Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methods d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson, V., Gianinazzi, S., eds. Physiological and Genetical Aspects of Mycorrhizae. Paris: Institut Nationale de la Recherche Agronomigue Press.

[46]

Vahter, T., Taylor, A.R., Landa, B.B., Linsler, D., Rodriguez, E.M.M., Moreno, F.G., Pérès, G., Engell, I., Hiiesalu, I., Bengtsson, J., Oja, J., Torppa, K.A., Arias-Giraldo, L.F., Guzmán, G., Potthoff, M., Vasar, M., Sandor, M., Sepp, S.K., Stoian, V., Öpik, M., 2024. Reduced tillage intensity does not increase arbuscular mycorrhizal fungal diversity in European long-term experiments. European Journal of Soil Science75, e13546.

[47]

Velazquez-Gonzalez, R.S., Garcia-Garcia, A.L., Ventura-Zapata, E., Barceinas-Sanchez, J.D.O., Sosa-Savedra, J.C., 2022. A review on hydroponics and the technologies associated for medium- and small-scale operations. Agriculture12, 646.

[48]

Wang, B.L., Wang, C., Zhao, L., Liu, X.L., Xue, R., Cao, J., Li, S.P., Guo, M.Y., Huang, H.Y., 2024. Earthworms and arbuscular mycorrhizal fungi alleviated salt stress in maize seedlings by regulating the root endodermis diffusion barrier. Journal of Plant Growth Regulation43, 3490–3503.

[49]

Wang, F.Y., Rengel, Z., 2024. Disentangling the contributions of arbuscular mycorrhizal fungi to soil multifunctionality. Pedosphere34, 269–278.

[50]

Wang, X.K., Huang, J.L., 2015. Princilpes and Techniques of Plant Physiological Biochemical Experiment. 3nd ed. Beijing: Higher Education Press.

[51]

Wang, Y.D., Wang, N., Huang, S.C., Zhang, L., Gao, X.M., Yang, C.X., 2019. The effect of dominant AMF in the rhizosphere of Iris lactea in Songnen Saline-Alkali Grassland on salt tolerance physiology of Petunia hybrida. Fresenius Environmental Bulletin28, 5099–5108.

[52]

Wang, Y.S., Zhang, S.B., Zhang, M.Q., 2012. Resources and Germplasm of Arbuscular Mycorrhizal Fungi in China. Beijing: China Agriculture Press.

[53]

Wei, H.J., He, W.Y., Mao, X.J., Liao, S.K., Wang, Q., Wang, Z.H., Tang, M., Xu, T.Y., Chen, H., 2024. Arbuscular mycorrhizal fungi and exogenous Ca2+ application synergistically enhance salt and alkali resistance in perennial ryegrass through diverse adaptive strategies. Microbiological Research289, 127906.

[54]

Weingarten, M., Mattson, N., Grab, H., 2024. Evaluating propagation techniques for Cannabis sativa L. cultivation: a comparative analysis of soilless methods and aeroponic parameters. Plants13, 1256.

[55]

Xing, S.P., Zhang, K.X., Hao, Z.P., Zhang, X., Chen, B.D., 2023. Arbuscular mycorrhizal fungi alter arsenic translocation characteristics of Iris tectorum Maxim. Journal of Fungi9, 998.

[56]

Xu, X.H., Liu, S., Zhao, Y.J., Xu, Z.Q., Yang, X.K., Teng, M.Y., Wang, D.Z., Zhao, S.J., 2018. Effects of different environmental factors on distribution of soda saline-alkaline land in western Jilin Province. Bulletin of Soil and Water Conservation38, 89–95.

[57]

Yamato, M., Nakazato, Y., Kusakabe, R., Hosaka, K., 2025. Community of arbuscular mycorrhizal fungi in a broad-leaved forest in the Fukiage Garden of the Imperial Palace, Tokyo Japan. Mycoscience66, 189–194.

[58]

Yang, C.X., Liu, Y.J., Zhao, W.N., Wang, N., 2021. Colonization characteristics and diversity of arbuscular mycorrhizal fungi in the rhizosphere of Iris lactea in Songnen Saline-alkaline Grassland. Phyton-International Journal of Experimental Botany90, 719–729.

[59]

Yang, H.S., Fang, C., Li, Y.F., Wu, Y.C., Fransson, P., Rillig, M.C., Zhai, S.L., Xie, J.J., Tong, Z.Y., Zhang, Q., Sheteiwy, M.S., Li, F.M., Weih, M., 2022. Temporal complementarity between roots and mycorrhizal fungi drives wheat nitrogen use efficiency. New Phytologist236, 1168–1181.

[60]

Yang, X., Zhang, K., Chang, T.T., Shaghaleh, H., Qi, Z.M., Zhang, J., Ye, H., Hamoud, Y.A., 2024. Interactive effects of microbial fertilizer and soil salinity on the hydraulic properties of salt-affected soil. Plants-Basel13, 473.

[61]

Yue, Y.N., 2015. Effects of arbuscular mycorrhizal fungi on the salt tolerance of plants in saline-alkaline grassland of Songnen Plain. Master Degree Thesis. Northeast Forestry University, Harbin, China.

[62]

Zhang, C.F., van der Heijden, M.G.A., Dodds, B.K., Nguyen, T.B., Spooren, J., Valzano-Held, A., Cosme, M., Berendsen, R.L., 2024b. A tripartite bacterial-fungal-plant symbiosis in the mycorrhiza-shaped microbiome drives plant growth and mycorrhization. Microbiome12, 13.

[63]

Zhang, Y.X., Ma, Y.X., Ma, X.Z., Li, G.T., Zhang, B., 2024a. Effects of four arbuscular mycorrhizal fungi inoculation on the drought resistance of Ulmus pumila seedlings. Science of Soil and Water Conservation22, 146–153.

[64]

Zhou, Y.H., Liu, Y.J., Zhao, W.N., Chen, F., Wang, Y.D., Yang, C.X., 2022b. Isolation and species diversity of arbuscular mycorrhizal fungi in the rhizosphere of Puccinellia tenuiflora of Songnen saline-alkaline grassland, China. Biocell46, 2465–2474.

[65]

Zhou, Y.X., Chen, K.Y., Muneer, M.A., Li, C.C., Shi, H.L., Tang, Y., Zhang, J., Ji, B.M., 2022a. Soil moisture and pH differentially drive arbuscular mycorrhizal fungal composition in the riparian zone along an alpine river of Nam Co watershed. Frontiers in Microbiology13, 994918.

[66]

Zong, N., Fu, G., 2021. Variations in species and function diversity of soil fungal community along a desertification gradient in an alpine steppe. Ecological Indicators131, 108197.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5387KB)

Supplementary files

Supplementary Information

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/