Long-term tea cultivation degrades soil health: Insights from microbial structure and function in tea gardens

Xinyi Chen , Mengqi Lin , Zhenghao Wu , Lei Yu , Qingxue Guo

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250347

PDF (5695KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250347 DOI: 10.1007/s42832-025-0347-6
RESEARCH ARTICLE

Long-term tea cultivation degrades soil health: Insights from microbial structure and function in tea gardens

Author information +
History +
PDF (5695KB)

Abstract

Tea (Camellia sinensis L.) is a globally cultivated beverage crop, but long-term cultivation may degrade soil health by altering biological properties. We used high-throughput sequencing, phospholipid fatty acid (PLFA) analysis, and the Quantitative Microbial Ecology Chip (QMEC) to compare soil microbial structure and function in tea gardens and adjacent natural forests. Soil pH was significantly lower in tea gardens across all depths compared to natural forests. PLFA analysis showed reduced Gram-positive and Gram-negative bacterial, fungal, and total microbial biomass in tea gardens. High-throughput sequencing revealed distinct bacterial and fungal communities, with tea gardens exhibiting lower alpha-diversity than natural forests. Unique bacterial operational taxonomic units (OTUs) in tea gardens were negatively correlated with key functional genes (e.g., carbon and nitrogen cycling), whereas natural forest OTUs showed positive correlations. Soil pH decline, driven by long-term tea cultivation, was the primary factor shaping these microbial shifts. These findings indicate that extended tea planting impairs soil functions, compromising soil health. The observed deterioration underscores the need for targeted management to address the interplay between land use, soil health, and microbial dynamics, highlighting avenues for future research to enhance soil resilience in tea gardens.

Graphical abstract

Keywords

soil health / carbon and nitrogen cycling / tea planting / soil microbiome / tea plantation

Highlight

● Long-term tea planting practices caused strong soil acidification across all soil layers.

● All tea gardens showed much lower Gram-positive and -negative bacteria, fungi, and total microbial biomass relative to natural forests.

● The relative abundance of bacteria related carbon and nitrogen cycling functions predicted by FAPROTAX was much lower in all tea plantations compared with natural forest.

● Soil acidification was the main reason in affecting microbial community and functions by selecting a large number of microbial tax and causing remarkable decline in alpha-diversity.

Cite this article

Download citation ▾
Xinyi Chen, Mengqi Lin, Zhenghao Wu, Lei Yu, Qingxue Guo. Long-term tea cultivation degrades soil health: Insights from microbial structure and function in tea gardens. Soil Ecology Letters, 2025, 7(4): 250347 DOI:10.1007/s42832-025-0347-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anders, S., Huber, W., 2010. Differential expression analysis for sequence count data. Genome Biology11, R106.

[2]

Beckers, B., De Beeck, M.O., Thijs, S., Truyens, S., Weyens, N., Boerjan, W., Vangronsveld, J., 2016. Performance of 16s rDNA primer pairs in the study of rhizosphere and endosphere bacterial microbiomes in metabarcoding studies. Frontiers in Microbiology7, 650.

[3]

Burel, C., Kala, A., Purevdorj-Gage, L., 2021. Impact of pH on citric acid antimicrobial activity against Gram-negative bacteria. Letters in Applied Microbiology72, 332–340.

[4]

Chien, H.H., Tokuda, M., Van Minh, D., Kang, Y.M., Iwasaki, K., Tanaka, S., 2019. Soil physicochemical properties in a high-quality tea production area of Thai Nguyen province in northern region, Vietnam. Soil Science and Plant Nutrition65, 73–81.

[5]

Cotter, P.D., Hill, C., 2003. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiology and Molecular Biology Reviews67, 429–453.

[6]

Csardi, G., Nepusz, T., 2006. The igraph software package for complex network research. InterJournal, complex systems 1695[Online].

[7]

Dini-Andreote, F., Stegen, J.C., van Elsas, J.D., Salles, J.F., 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America112, E1326–E1332.

[8]

Fan, K.K., Delgado-Baquerizo, M., Guo, X.S., Wang, D.Z., Zhu, Y.G., Chu, H.Y., 2021. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. The ISME Journal15, 550–561.

[9]

Fan, L.C., Shao, G.D., Pang, Y.H., Dai, H.C., Zhang, L., Yan, P., Zou, Z.H., Zhang, Z., Xu, J.C., Zamanian, K., Dorodnikov, M., Li, X., Gui, H., Han, W.Y., 2022. Enhanced soil quality after forest conversion to vegetable cropland and tea plantations has contrasting effects on soil microbial structure and functions. Catena211, 106029.

[10]

Feng, J.J., Jia, M.M., Tan, Y., Yue, H.W., Feng, X.Q., Zheng, N.G., Wang, J., Xue, J.T., 2024. Diversity and influencing factors of microbial communities in rhizosphere and nonrhizosphere soils of tea plant. Journal of Soils and Sediments24, 2803–2815.

[11]

Fierer, N., Jackson, R.B., 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America103, 626–631.

[12]

Guimerà, R., Nunes Amaral, L.A., 2005. Functional cartography of complex metabolic networks. Nature433, 895–900.

[13]

Guo, Q.X., Xiao, Y.X., Zhu, Y.J., Korpelainen, H., Li, C.Y., 2024. Selenium availability in tea: unraveling the role of microbiota assembly and functions. Science of the Total Environment952, 175995.

[14]

Henneron, L., Kardol, P., Wardle, D.A., Cros, C., Fontaine, S., 2020. Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies. New Phytologist228, 1269–1282.

[15]

Hou, M.D., Ohkama-Ohtsu, N., Suzuki, S., Tanaka, H., Schmidhalter, U., Bellingrath-Kimura, S.D., 2015. Nitrous oxide emission from tea soil under different fertilizer managements in Japan. Catena135, 304–312.

[16]

Joergensen, R.G., 2022. Phospholipid fatty acids in soil—drawbacks and future prospects. Biology and Fertility of Soils58, 1–6.

[17]

Kolde, R., 2025. Pretty Heatmaps[Online]. .

[18]

Kurtz, Z.D., Müller, C.L., Miraldi, E.R., Littman, D.R., Blaser, M.J., Bonneau, R.A., 2015. Sparse and compositionally robust inference of microbial ecological networks. PLoS Computational Biology11, e1004226.

[19]

Lai, J.S., Zou, Y., Zhang, J.L., Peres-Neto, P.R., 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp R package. Methods in Ecology and Evolution13, 782–788.

[20]

Le, V.S., Herrmann, L., Hudek, L., Nguyen, T.B., Bräu, L., Lesueur, D., 2022. How application of agricultural waste can enhance soil health in soils acidified by tea cultivation: a review. Environmental Chemistry Letters20, 813–839.

[21]

Lefcheck, J.S., 2016. PIECEWISESEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution7, 573–579.

[22]

Li, S.Y., Li, H.X., Yang, C.L., Wang, Y.D., Xue, H., Niu, Y.F., 2016. Rates of soil acidification in tea plantations and possible causes. Agriculture, Ecosystems & Environment233, 60–66.

[23]

Liu, C., Cui, Y.M., Li, X.Z., Yao, M.J., 2021. microeco: an R package for data mining in microbial community ecology. FEMS Microbiology Ecology97, fiaa255.

[24]

Luo, R.Y., Kuzyakov, Y., Zhu, B., Qiang, W., Zhang, Y., Pang, X.Y., 2022. Phosphorus addition decreases plant lignin but increases microbial necromass contribution to soil organic carbon in a subalpine forest. Global Change Biology28, 4194–4210.

[25]

McKay, G.J., Brown, A.E., Bjourson, A.J., Mercer, P.C., 1999. Molecular characterisation of Alternaria linicola and its detection in linseed. European Journal of Plant Pathology105, 157–166.

[26]

Morugán-Coronado, A., Pérez-Rodríguez, P., Insolia, E., Soto-Gómez, D., Fernández-Calviño, D., Zornoza, R., 2022. The impact of crop diversification, tillage and fertilization type on soil total microbial, fungal and bacterial abundance: a worldwide meta-analysis of agricultural sites. Agriculture, Ecosystems & Environment329, 107867.

[27]

Oh, K., Kato, T., Li, Z.P., Li, F.Y., 2006. Environmental problems from tea cultivation in Japan and a control measure using calcium cyanamide. Pedosphere16, 770–777.

[28]

Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Borman, T., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H.B.A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M.O., Lahti, L., Martino, C., McGlinn, D., Ouellette, M.H., Ribeiro Cunha, E., Smith, T., Stier, A., Ter Braak, C.J.F., Weedon, J., 2025. vegan: Community Ecology Package[Online]. .

[29]

Raza, S., Miao, N., Wang, P.Z., Ju, X.T., Chen, Z.J., Zhou, J.B., Kuzyakov, Y., 2020. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Global Change Biology26, 3738–3751.

[30]

Ruan, J.Y., Gerendás, J., Härdter, R., Sattelmacher, B., 2007. Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Annals of Botany99, 301–310.

[31]

Sainju, U.M., Liptzin, D., Dangi, S., Ghimire, R., 2021. Soil health indicators and crop yield in response to long-term cropping sequence and nitrogen fertilization. Applied Soil Ecology168, 104182.

[32]

Sansupa, C., Wahdan, S.F.M., Hossen, S., Disayathanoowat, T., Wubet, T., Purahong, W., 2021. Can we use functional annotation of prokaryotic taxa (FAPROTAX) to assign the ecological functions of soil bacteria. Applied Sciences11, 688.

[33]

Wang, C.Y., Zhou, X., Guo, D., Zhao, J.H., Yan, L., Feng, G.Z., Gao, Q., Yu, H., Zhao, L.P., 2019. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Annals of Microbiology69, 1461–1473.

[34]

Wang, X.L., Zhang, H.K., Sun, H.Y., Chang, S.X., Lin, Y., Cai, Y.J., 2024. Converting natural forests to tea plantations reduced soil phosphorus sorption capacity in subtropical China. Land Degradation & Development35, 659–669.

[35]

Wen, T., Xie, P.H., Yang, S.D., Niu, G.Q., Liu, X.Y., Ding, Z.X., Xue, C., Liu, Y.X., Shen, Q.R., Yuan, J., 2022. ggClusterNet: an R package for microbiome network analysis and modularity-based multiple network layouts. iMeta1, e32.

[36]

Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. Cham: Springer.

[37]

Yan, P., Wu, L.Q., Wang, D.H., Fu, J.Y., Shen, C., Li, X., Zhang, L.P., Zhang, L., Fan, L.C., Han, W.Y., 2020. Soil acidification in Chinese tea plantations. Science of the Total Environment715, 136963.

[38]

Yang, X.D., Ni, K., Shi, Y.Z., Yi, X.Y., Ji, L.F., Wei, S.R., Jiang, Y.Y., Zhang, Y.L., Cai, Y.J., Ma, Q.X., Tang, S., Ma, L.F., Ruan, J.Y., 2023b. Metagenomics reveals N-induced changes in carbon-degrading genes and microbial communities of tea (Camellia sinensis L.) plantation soil under long-term fertilization. Science of the Total Environment856, 159231.

[39]

Yang, X.D., Ni, K., Shi, Y.Z., Yi, X.Y., Zhang, Q.F., Fang, L., Ma, L.F., Ruan, J.Y., 2018. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agriculture, Ecosystems & Environment252, 74–82.

[40]

Yang, X.D., Tang, S., Ni, K., Shi, Y.Z., Yi, X.Y., Ma, Q.X., Cai, Y.J., Ma, L.F., Ruan, J.Y., 2023a. Long-term nitrogen addition increases denitrification potential and functional gene abundance and changes denitrifying communities in acidic tea plantation soil. Environmental Research216, 114679.

[41]

Ye, J., Wang, Y., Wang, Y., Hong, L., Kang, J., Jia, Y., Li, M., Chen, Y., Wu, Z., Wang, H., 2023. Improvement of soil acidification and ammonium nitrogen content in tea plantations by long-term use of organic fertilizer. Plant Biology25, 994–1008.

[42]

Zhalnina, K., Louie, K.B., Hao, Z., Mansoori, N., Da Rocha, U.N., Shi, S.J., Cho, H., Karaoz, U., Loqué, D., Bowen, B.P., Firestone, M.K., Northen, T.R., Brodie, E.L., 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology3, 470–480.

[43]

Zhang, B.W., Liu, C.W., Li, Q., Ye, J., Lin, Y., Wang, Y.X., Burton, D.L., 2025. Evaluating the effect of biochar rate and combination with fertilizer on the dynamics of soil nitrogen supply in tea plantation. Scientific Reports15, 3135.

[44]

Zhao, Y.P., Wang, Z.H., Cai, K., Wang, S.L., Wright, A.L., Jiang, X.J., 2024. Stability of nitrogen-cycling microbial communities and impact on microbial nitrogen function under different land use practices. Applied Soil Ecology204, 105729.

[45]

Zheng, B.X., Zhu, Y.G., Sardans, J., Peñuelas, J., Su, J.Q., 2018. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Science China Life Sciences61, 1451–1462.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5695KB)

Supplementary files

Supplementary Information

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/