Spatiotemporal dynamics and driving factors of soil organic carbon storage in the Yangtze River Basin under climate change and land use scenarios

Yu-Qian Liu , Xiao Tan , Gui-Lan Duan

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250345

PDF (5697KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250345 DOI: 10.1007/s42832-025-0345-8
RESEARCH ARTICLE

Spatiotemporal dynamics and driving factors of soil organic carbon storage in the Yangtze River Basin under climate change and land use scenarios

Author information +
History +
PDF (5697KB)

Abstract

Soil is crucial in the global carbon cycle, while modeling the spatiotemporal changes of soil organic carbon (SOC) is challenging. This study integrates an ensemble model and the spatiotemporal substitution method to predict and map SOC reserves in the surface layer of the Yangtze River Basin under future climate change and land use patterns. We identified total nitrogen, precipitation, altitude, fertilization amount, and land use as the main factors affecting the spatial variability of SOC reserves. Under the scenario of moderate greenhouse gas emissions with some climate mitigation efforts (SSP245), the soil will act as a carbon sink, increasing by 20 Tg C in the 2030s and by 70 Tg C in the 2050s compared to 2010. In contrast, under the scenario of high greenhouse gas emissions with minimal climate mitigation efforts (SSP585), the soil will act as a carbon source, decreasing by 50 Tg C in the 2030s and by 20 Tg C in the 2050s. In the future, SOC reserves will be mainly concentrated in cultivated land and forests, accounting for 70.23% and 72.07%, respectively. These findings provide insights for ecological restoration and land use planning, guiding future carbon sequestration policies in the Yangtze River Basin.

Graphical abstract

Keywords

ensemble learning / soil organic carbon stocks / climate scenarios / land use change

Highlight

● A predicting model for SOC stocks was developed at a 1 km spatial resolution.

● Spatiotemporal distribution of SOC in the topsoil of the Yangtze Basin was mapped.

● SOC stocks in topsoil of the Yangtze Basin under future scenarios were predicted.

● The key environmental factors influencing SOC stocks successfully were identified.

Cite this article

Download citation ▾
Yu-Qian Liu, Xiao Tan, Gui-Lan Duan. Spatiotemporal dynamics and driving factors of soil organic carbon storage in the Yangtze River Basin under climate change and land use scenarios. Soil Ecology Letters, 2025, 7(4): 250345 DOI:10.1007/s42832-025-0345-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

An, X.X., Zhang, M., Zhang, H.Q., Liu, Y., 2025. Spatiotemporal changes and driving mechanisms of carbon stocks in the Yangtze River Basin of China over the past 20 years. Advances in Space Research75, 53–73.

[2]

Anuo, C.O., Li, L.D., Moreland, K.C., McFarlane, K.J., Malakar, A., Cooper, J.A., Maharjan, B., Kaiser, M., 2025. Storage and persistence of organic carbon in the upper three meters of soil under arable and native prairie land use. Plant and Soil509, 157–179.

[3]

Beillouin, D., Corbeels, M., Demenois, J., Berre, D., Boyer, A., Fallot, A., Feder, F., Cardinael, R., 2023. A global meta-analysis of soil organic carbon in the Anthropocene. Nature Communications14, 3700.

[4]

Biney, J.K.M., Vašát, R., Bell, S.M., Kebonye, N.M., Klement, A., John, K., Borůvka, L., 2022. Prediction of topsoil organic carbon content with Sentinel-2 imagery and spectroscopic measurements under different conditions using an ensemble model approach with multiple pre-treatment combinations. Soil and Tillage Research220, 105379.

[5]

Chen, M., Vernon, C.R., Graham, N.T., Hejazi, M., Huang, M.Y., Cheng, Y.Y., Calvin, K., 2020. Global land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Scientific Data7, 320.

[6]

Choudhury, B.U., Verma, B.C., Ramesh, T., Hazarika, S., 2018. Altitude regulates accumulation of organic carbon in soil: case studies from the hilly ecosystem of northeastern region of India. In: Bal, S.K., Mukherjee, J., Choudhury, B.U., Dhawan, A.K., eds. Advances in Crop Environment Interaction. Singapore: Springer137–149.

[7]

Derrien, D., Barré, P., Basile-Doelsch, I., Cécillon, L., Chabbi, A., Crème, A., Fontaine, S., Henneron, L., Janot, N., Lashermes, G., Quénéa, K., Rees, F., Dignac, M.F., 2023. Current controversies on mechanisms controlling soil carbon storage: implications for interactions with practitioners and policy-makers. A review. Agronomy for Sustainable Development43, 21.

[8]

Du, B.M., Kang, H.Z., Pumpanen, J., Zhu, P.H., Yin, S., Zou, Q., Wang, Z., Kong, F.Q., Liu, C.J., 2014. Soil organic carbon stock and chemical composition along an altitude gradient in the Lushan Mountain, subtropical China. Ecological Research29, 433–439.

[9]

Fan, X.L., Gao, D.C., Zhao, C.H., Wang, C., Qu, Y., Zhang, J., Bai, E., 2021. Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool. The ISME Journal15, 2248–2263.

[10]

Fei, R.L., Lin, Z.Y., Chunga, J., 2021. How land transfer affects agricultural land use efficiency: evidence from China’s agricultural sector. Land Use Policy103, 105300.

[11]

Forkuor, G., Hounkpatin, O.K.L., Welp, G., Thiel, M., 2017. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models. PLoS One12, e0170478.

[12]

Gao, J.X., Wang, Y., Zou, C.X., Xu, D.L., Lin, N.F., Wang, L.X., Zhang, K., 2020a. China’s ecological conservation redline: a solution for future nature conservation. Ambio49, 1519–1529.

[13]

Gao, Y.C., Liu, Z.H., Li, R.P., Shi, Z.D., 2020b. Long-term impact of China’s returning farmland to forest program on rural economic development. Sustainability12, 1492.

[14]

Ge, J.L., Xu, W.T., Xiong, G.M., Zhao, C.M., Li, J.X., Liu, Q., Tang, Z.Y., Xie, Z.Q., 2023. Depth-dependent controls over soil organic carbon stock across Chinese shrublands. Ecosystems26, 277–289.

[15]

Ho, V.H., Morita, H., Bachofer, F., Ho, T.H., 2024. Random forest regression kriging modeling for soil organic carbon density estimation using multi-source environmental data in central Vietnamese forests. Modeling Earth Systems and Environment10, 7137–7158.

[16]

Hou, L.L., Dai, Q.L., Song, C.B., Liu, B.W., Guo, F.Z., Dai, T.J., Li, L.X., Liu, B.S., Bi, X.H., Zhang, Y.F., Feng, Y.C., 2022. Revealing drivers of haze pollution by explainable machine learning. Environmental Science & Technology Letters9, 112–119.

[17]

Huang, X.Z., Ibrahim, M.M., Luo, Y.Q., Jiang, L.F., Chen, J., Hou, E.Q., 2024. Land use change alters soil organic carbon: constrained global patterns and predictors. Earth’s Future12, e2023EF004254.

[18]

Jia, H.C., Chen, F., Pan, D.H., Du, E.Y., Wang, L., Wang, N., Yang, A.Q., 2022. Flood risk management in the Yangtze River basin—Comparison of 1998 and 2020 events. International Journal of Disaster Risk Reduction68, 102724.

[19]

Lee, Y.H., Sang, W.G., Baek, J.K., Kim, J.H., Shin, P., Seo, M.C., Cho, J.I., 2020. The effect of concurrent elevation in CO2 and temperature on the growth, photosynthesis, and yield of potato crops. PLoS One15, e0241081.

[20]

Li, L.X., Xu, H.B., Zhang, Q., Zhan, Z.S., Liang, X.W., Xing, J., 2024. Estimation methods of wetland carbon sink and factors influencing wetland carbon cycle: a review. Carbon Research3, 50.

[21]

Lin, Y.X., Ye, G.P., Kuzyakov, Y., Liu, D.Y., Fan, J.B., Ding, W.X., 2019. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biology and Biochemistry134, 187–196.

[22]

Liu, F., Wu, H.Y., Zhao, Y.G., Li, D.C., Yang, J.L., Song, X.D., Shi, Z., Zhu, A.X., Zhang, GL., 2022. Mapping high resolution National Soil Information Grids of China. Science Bulletin67, 328–340.

[23]

Liu, H.Y., Huang, N., Zhao, C.M., Li, J.H., 2023. Responses of carbon cycling and soil organic carbon content to nitrogen addition in grasslands globally. Soil Biology and Biochemistry186, 109164.

[24]

Lundberg, S.M., Lee, S.I., 2017. A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc.4768–4777.

[25]

Luo, M., Hu, G.H., Chen, G.Z., Liu, X.J., Hou, H.Y., Li, X., 2022. 1 km land use/land cover change of China under comprehensive socioeconomic and climate scenarios for 2020–2100. Scientific Data9, 110.

[26]

Ma, L.N., Huang, W.W., Guo, C.Y., Wang, R.Z., Xiao, C.W., 2012. Soil microbial properties and plant growth responses to carbon and water addition in a temperate steppe: the importance of nutrient availability. PLoS One7, e35165.

[27]

Mishra, U., Gautam, S., Riley, W.J., Hoffman, F.M., 2020. Ensemble machine learning approach improves predicted spatial variation of surface soil organic carbon stocks in data-limited northern circumpolar region. Frontiers in Big Data3, 528441.

[28]

Mondal, A., Khare, D., Kundu, S., 2016. Impact assessment of climate change on future soil erosion and SOC loss. Natural Hazards82, 1515–1539.

[29]

Nazarenko, L.S., Tausnev, N., Russell, G.L., Rind, D., Miller, R.L., Schmidt, G.A., Bauer, S.E., Kelley, M., Ruedy, R., Ackerman, A.S., Aleinov, I., Bauer, M., Bleck, R., Canuto, V., Cesana, G., Cheng, Y., Clune, T.L., Cook, B.I., Cruz, C.A., Del Genio, A.D., Elsaesser, G.S., Faluvegi, G., Kiang, N.Y., Kim, D., Lacis, A.A., Leboissetier, A., Legrande, A.N., Lo, K.K., Marshall, J., Matthews, E.E., Mcdermid, S., Mezuman, K., Murray, L.T., Oinas, V., Orbe, C., García-pando, C.P., Perlwitz, J.P., Puma, M.J., Romanou, A., Shindell, D.T., Sun, S., Tsigaridis, K., Tselioudis, G., Weng, E.S., Wu, J.B., Yao, M.S., 2022. Future climate change under SSP emission scenarios with GISS-E2.1. Journal of Advances in Modeling Earth Systems14, e2021MS002871.

[30]

Negassa, M.K., Haile, M., Feyisa, G.L., Wogi, L., Liben, F.M., 2023. Soil organic carbon stock prediction: fate under 2050 climate scenarios, the case of Eastern Ethiopia. Sustainability15, 6495.

[31]

Nemo, Klumpp, K., Coleman, K., Dondini, M., Goulding, K., Hastings, A., Jones, M.B., Leifeld, J., Osborne, B., Saunders, M., Scott, T., The, Y.A., Smith, P., 2017. Soil organic carbon (SOC) equilibrium and model initialisation methods: an application to the rothamsted carbon (RothC) model. Environmental Modeling & Assessment22, 215–229.

[32]

Nguemezi, C., Tematio, P., Silatsa, F. B. T., Yemefack, M., 2021. Spatial variation and temporal decline (1985–2017) of soil organic carbon stocks (SOCS) in relation to land use types in Tombel area, South-West Cameroon. Soil and Tillage Research213, 105114.

[33]

Nwaogu, C., Okeke, O. J., Fashae, O., Nwankwoala, H., 2018. Soil organic carbon and total nitrogen stocks as affected by different land use in an Ultisol in Imo Watershed, southern Nigeria. Chemistry and Ecology34, 854–870.

[34]

Ou, Y., Rousseau, A. N., Wang, L.X., Yan, B.X., 2017. Spatio-temporal patterns of soil organic carbon and pH in relation to environmental factors—A case study of the Black Soil Region of Northeastern China. Agriculture, Ecosystems & Environment245, 22–31.

[35]

Parton, W.J., 1996. The CENTURY model. In: Powlson, D.S., Smith, P., Smith, J.U., eds. Evaluation of Soil Organic Matter Models. Berlin: Springer283–291.

[36]

Piao, S., Huang, M.T., Liu, Z., Wang, X.H., Ciais, P., Canadell, J. G., Wang, K., Bastos, A., Friedlingstein, P., Houghton, R.A., Le Quéré, C., Liu, Y.W., Myneni, R.B., Peng, S.S., Pongratz, J., Sitch, S., Yan, T., Wang, Y.L., Zhu, Z.C., Wu, D.H., Wang, T., 2018. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nature Geoscience11, 739–743.

[37]

Pickett, S.T.A., 1989. Space-for-time substitution as an alternative to long-term studies. In: Likens, G.E., ed. Long-Term Studies in Ecology. New York: Springer110–135.

[38]

Pierson, D., Lohse, K.A., Wieder, W.R., Patton, N.R., Facer, J., De Graaff, M.A., Georgiou, K., Seyfried, M.S., Flerchinger, G., Will, R., 2022. Optimizing process-based models to predict current and future soil organic carbon stocks at high-resolution. Scientific Reports12, 10824.

[39]

Pongratz, J., Schwingshackl, C., Bultan, S., Obermeier, W., Havermann, F., Guo, S.Q., 2021. Land use effects on climate: current state, recent progress, and emerging topics. Current Climate Change Reports7, 99–120.

[40]

Ren, H.Y., Xu, Z.W., Isbell, F., Huang, J.H., Han, X.G., Wan, S.Q., Chen, S.P., Wang, R.Z., Zeng, D.H., Jiang, Y., Fang, Y.T., 2017. Exacerbated nitrogen limitation ends transient stimulation of grassland productivity by increased precipitation. Ecological Monographs87, 457–469.

[41]

Ripple, W.J., Wolf, C., Gregg, J.W., Rockström, J., Mann, M.E., Oreskes, N., Lenton, T.M., Rahmstorf, S., Newsome, T.M., Xu, C., Svenning, J.C., Pereira, C.C., Law, B.E., Crowther, T.W., 2024. The 2024 state of the climate report: perilous times on planet Earth. BioScience74, 812–824.

[42]

Sakhaee, A., Gebauer, A., Ließ, M., Don, A., 2022. Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms. Soil8, 587–604.

[43]

Sharma, P.K., Kumar, S., 2023. Soil temperature and plant growth. In: Sharma, P.K., Kumar, S., eds. Soil Physical Environment and Plant Growth. Cham: Springer, 175–204.

[44]

Sun, X.L., Tang, Z.X., Ryan, M.G., You, Y.M., Sun, O.J., 2019. Changes in soil organic carbon contents and fractionations of forests along a climatic gradient in China. Forest Ecosystems6, 1.

[45]

Szatmári, G., Pirkó, B., Koós, S., Laborczi, A., Bakacsi, Z., Szabó, J., Pásztor, L., 2019. Spatio-temporal assessment of topsoil organic carbon stock change in Hungary. Soil and Tillage Research195, 104410.

[46]

Taghizadeh-Mehrjardi, R., Schmidt, K., Amirian-Chakan, A., Rentschler, T., Zeraatpisheh, M., Sarmadian, F., Valavi, R., Davatgar, N., Behrens, T., Scholten, T., 2020. Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space. Remote Sensing12, 1095.

[47]

Tang, K., Zhao, X., Xu, Z., Sun, H.J., 2024. A stacking ensemble model for predicting soil organic carbon content based on visible and near-infrared spectroscopy. Infrared Physics & Technology140, 105404.

[48]

Terrer, C., Phillips, R.P., Hungate, B.A., Rosende, J., Pett-Ridge, J., Craig, M.E., Van Groenigen, K.J., Keenan, T.F., Sulman, B.N., Stocker, B.D., Reich, P.B., Pellegrini, A.F.A., Pendall, E., Zhang, H., Evans, R.D., Carrillo, Y., Fisher, J.B., Van Sundert, K., Vicca, S., Jackson, R.B., 2021. A trade-off between plant and soil carbon storage under elevated CO2. Nature591, 599–603.

[49]

Tian, M., Wu, C., Zhu, X., Hu, Q.H., Wang, X.Q., Sun, B.B., Zhou, J., Wang, W., Chi, Q.H., Liu, H.L., Liu, Y.H., Yang, J.W., Li, X.R., 2024. Spatial–temporal variations in soil organic carbon and driving factors in Guangdong, China (2009–2023). Land13, 1096.

[50]

Varney, R.M., Chadburn, S.E., Burke, E.J., Jones, S., Wiltshire, A.J., Cox, P.M., 2023. Simulated responses of soil carbon to climate change in CMIP6 Earth system models: the role of false priming. Biogeosciences20, 3767–3790.

[51]

Wang, G.Q., Yuan, D., Wu, P., Qin, S.P., Hu, C.S., 2025. Research advances on deep soil organic carbon storage, stability and responses to human activities. Chinese Journal of Eco-Agriculture33, 435–448.

[52]

Wang, M.M., Zhang, S., Guo, X.W., Xiao, L.J., Yang, Y.H., Luo, Y.Q., Mishra, U., Luo, Z.K., 2024. Responses of soil organic carbon to climate extremes under warming across global biomes. Nature Climate Change14, 98–105.

[53]

Wang, Q., Li, C.B., Hao, D.M., Xu, Y.F., Shi, X.W., Liu, T.X., Sun, W.M., Zheng, Z.L., Liu, J.F., Li, W.Q., Liu, W.G., Zheng, J.X., Li, F.B., 2023a. A novel four-dimensional prediction model of soil heavy metal pollution: geographical explanations beyond artificial intelligence ‘black box’. Journal of Hazardous Materials458, 131900.

[54]

Wang, S., Xu, L., Zhuang, Q.L., He, N.P., 2021. Investigating the spatio-temporal variability of soil organic carbon stocks in different ecosystems of China. Science of the Total Environment758, 143644.

[55]

Wang, S., Zhang, X.Y., Adhikari, K., Roland, B., Zhuang, Q.L., Wang, Z.C., Shi, D., Jin, X.X., Qian, F.K., 2023b. Predicting soil organic carbon stocks under future land use and climate change conditions in Northeast China. Environmental Impact Assessment Review103, 107278.

[56]

Wang, W.X., Ingwersen, J., Yang, G., Wang, Z.X., Alimu, A., 2022. Effects of farmland conversion to orchard or agroforestry on soil organic carbon fractions in an arid desert oasis area. Forests13, 181.

[57]

Wang, Y., Gao, S.Q., Li, C.L., Zhang, J.J., Wang, L.C., 2016. Effects of temperature on soil organic carbon fractions contents, aggregate stability and structural characteristics of humic substances in a Mollisol. Journal of Soils and Sediments16, 1849–1857.

[58]

Wang, Y.C., Bao, H., Kavana, D. J., Li, Y.C., Li, X.Y., Yan, L.L., Xu, W.J., Yu, B., 2023c. Effects of vegetation types and soil properties on regional soil carbon and nitrogen in salinized reservoir wetland, northeast China. Plants12, 3767.

[59]

Wang, Y.D., Wang, Z.L., Zhang, Q.Z., Hu, N., Li, Z.F., Lou, Y.L., Li, Y., Xue, D.M., Chen, Y., Wu, C.Y., Zou, C.B., Kuzyakov, Y., 2018. Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil. Science of the Total Environment624, 1131–1139.

[60]

World Meteorological Organization (WMO), 2023. The state of greenhouse gases in the atmosphere based on global observations through 2022. Geneva: World Meteorological Organization.

[61]

Wu, J.Z., Liu, S.R., Peng, C.H., Luo, Y.Q., Terrer, C., Yue, C., Peng, S.Z., Li, J.W., Wang, B., Shangguan, Z.P., Deng, L., 2024a. Future soil organic carbon stocks in China under climate change. Cell Reports Sustainability1, 100179.

[62]

Wu, Q., Wang, L., Wang, T.Y., Ruan, Z.Y., Du, P., 2024b. Spatial–temporal evolution analysis of multi-scenario land use and carbon storage based on PLUS-InVEST model: a case study in Dalian, China. Ecological Indicators166, 112448.

[63]

Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., 2017. Climate science special report: fourth national climate assessment, volume I. U.S. National Oceanic and Atmospheric Administration.

[64]

Xia, J., Li, Z., Zeng, S.D., Zou, L., She, D.X., Cheng, D.D., 2021. Perspectives on eco-water security and sustainable development in the Yangtze River Basin. Geoscience Letters8, 18.

[65]

Xian, Y.Y., Liu, G.L., Yao, H.Z., 2022. Predicting the current and future distributions of major food crop designated geographical indications (GIs) in China under climate change. Geocarto International37, 8148–8171.

[66]

Yang, R.M., Liu, L.A., Zhang, X., He, R.X., Zhu, C.M., Zhang, Z.Q., Li, J.G., 2022a. The effectiveness of digital soil mapping with temporal variables in modeling soil organic carbon changes. Geoderma405, 115407.

[67]

Yang, Y., Tang, X.L., Jia, Y.Y., Zhan, Q.Q., 2021. Spatial-temporal coupling coordination degree and driving factors of population, land and economy urbanization in the Yangtze Basin. World Regional Studies30, 978–990.

[68]

Yang, Y.H., Mohammat, A., Feng, J.M., Zhou, R., Fang, J.Y., 2007. Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry84, 131–141.

[69]

Yang, Y.H., Shi, Y., Sun, W.J., Chang, J.F., Zhu, J.X., Chen, L.Y., Wang, X., Guo, Y.P., Zhang, H.T., Yu, L.F., Zhao, S.Q., Xu, K., Zhu, J.L., Shen, H.H., Wang, Y.Y., Peng, Y.F., Zhao, X., Wang, X.P., Hu, H.F., Chen, S.P., Huang, M., Wen, X.F., Wang, S.P., Zhu, B., Niu, S.L., Tang, Z.Y., Liu, L.L., Fang, J.Y., 2022b. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Sciences65, 861–895.

[70]

Yao, J.Y., Jin, S.G., 2022. Long-term changes of land use and land cover in the Yangtze River Basin from 1990–2020 Landsat data. Photogrammetric Engineering & Remote Sensing88, 573–582.

[71]

Ye, J.Y., Tian, W.H., Jin, C.W., 2022. Nitrogen in plants: from nutrition to the modulation of abiotic stress adaptation. Stress Biology2, 4.

[72]

Zhang, B., Xu, C.H., Zhang, Z.H., Hu, C., Zhong, C.F., Chen, S.Y., Hu, G., 2024a. Elevational patterns of soil organic carbon and its fractions in tropical seasonal rainforests in karst peak-cluster depression region. Frontiers in Plant Science15, 1424891.

[73]

Zhang, S.Y., Zhang, J.J., Niu, L.L., Chen, Q., Zhou, Q., Xiao, N., Man, J., Ma, J.Q., Wei, C.L., Zhang, S.H., Luo, Y.M., Yao, Y.J., 2024b. Escalating arsenic contamination throughout Chinese soils. Nature Sustainability7, 766–775.

[74]

Zhang, T.Y., Cheng, C.X., Wu, X.D., 2023a. Mapping the spatial heterogeneity of global land use and land cover from 2020 to 2100 at a 1 km resolution. Scientific Data10, 748.

[75]

Zhang, X., Xie, E.Z., Chen, J., Peng, Y.X., Yan, G.J., Zhao, Y.C., 2023c. Modelling the spatiotemporal dynamics of cropland soil organic carbon by integrating process-based models differing in structures with machine learning. Journal of Soils and Sediments23, 2816–2831.

[76]

Zhang, X.H., Meng, X.T., Tang, H.T., Liu, H.J., Zhang, X.L., Liu, Q., 2023b. Random forest prediction model for the soil organic matter with optimized spectral inputs. Transactions of the Chinese Society of Agricultural Engineering39, 90–99.

[77]

Zhang, Y.H., Zhao, L., Zhao, H., Gao, X.F., 2021. Urban development trend analysis and spatial simulation based on time series remote sensing data: a case study of Jinan, China. PLoS One16, e0257776.

[78]

Zhang, Y.J., Yu, Y.C., Niu, J.J., Gong, L.L., 2020. The elevational patterns of soil organic carbon storage on the northern slope of Taibai Mountain of Qinling. Acta Ecologica Sinica40, 629–639.

[79]

Zhang, Z.P., Ding, J.L., Zhu, C.M., Wang, J.J., Ge, X.Y., Li, X., Han, L.J., Chen, X.Y., Wang, J.Z., 2023d. Historical and future variation of soil organic carbon in China. Geoderma436, 116557.

[80]

Zhang, Z.P., Ding, J.L., Zhu, C.M., Wang, J.J., Li, X., Ge, X.Y., Han, L.J., Chen, X.Y., Wang, J.Z., 2023e. Exploring the inter-decadal variability of soil organic carbon in China. CATENA230, 107242.

[81]

Zhao, M., Zhou, Y.Y., Li, X.C., Cheng, W.M., Zhou, C.H., Ma, T., Li, M.C., Huang, K., 2020. Mapping urban dynamics (1992–2018) in Southeast Asia using consistent nighttime light data from DMSP and VIIRS. Remote Sensing of Environment248, 111980.

[82]

Zhao, M.J., Shi, R., Du, R.R., Yao, L.Y., 2023. The pathway to China’s carbon–neutral agriculture: measures, potential and future strategies. Chinese Political Science Review8, 304–324.

[83]

Zhao, X.C., Yang, D.J., Duan, X., 2024. Temporal and spatial evolution characteristics and decoupling trend of Chinese agricultural carbon emission efficiency. PLoS One19, e0311562.

[84]

Zhou, J.G., Zhang, J.F., Lambers, H., Wu, J.T., Qin, G.M., Li, Y.W., Li, Y.X., Li, Z.A., Wang, J., Wang, F.M., 2022. Intensified rainfall in the wet season alters the microbial contribution to soil carbon storage. Plant and Soil476, 337–351.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5697KB)

Supplementary files

supplementary material

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/