Misestimation of forest soil carbon and nitrogen stocks due to rock fragments: A case study in a boreal forest watershed ecosystem of northeast China

Jinhao Zhang , Hans Lambers , Yushan Cai , Tijiu Cai , Yuanyuan Huang , Liangliang Duan

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250344

PDF (4212KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250344 DOI: 10.1007/s42832-025-0344-9
RESEARCH ARTICLE

Misestimation of forest soil carbon and nitrogen stocks due to rock fragments: A case study in a boreal forest watershed ecosystem of northeast China

Author information +
History +
PDF (4212KB)

Abstract

Rock fragments occur commonly in the pedosphere, but the total soil carbon stocks (STC) and total soil nitrogen stocks (STN) they comprise are generally overlooked in soil studies. To accurately eva-luate the impact of erroneous calculation of STC and STN in rock fragments in soil research, we calculated errors in STC and STN by assuming the content of C and N in rock fragments are the same as those in fine soil or assuming them to be zero in a boreal forest watershed ecosystem of northeast China. Generally, the overestimation of STC and STN is 34% and 48% in the surface soil layer of 0−40 cm, respectively, assuming the same values for rock fragments as for fine soil. The underestimation of STC and STN is 16% and 12%, respectively, assuming the values to be zero. We also found that these errors may cause misinterpretations of the effects of slope position and forest type on surface soil STC and STN. Our results highlight the importance of including rock fragments in the material cycle of the pedosphere.

Graphical abstract

Keywords

rock fragments / C stocks / N stocks / misestimation

Highlight

● Treating rock fragments as soil overestimates soil C and N stocks by 34% and 48%.

● Ignoring rock fragments underestimates soil C and N stocks by 16% and 12%.

● Rock fragments cause misinterpretations of factors influencing soil C and N stocks.

Cite this article

Download citation ▾
Jinhao Zhang, Hans Lambers, Yushan Cai, Tijiu Cai, Yuanyuan Huang, Liangliang Duan. Misestimation of forest soil carbon and nitrogen stocks due to rock fragments: A case study in a boreal forest watershed ecosystem of northeast China. Soil Ecology Letters, 2025, 7(4): 250344 DOI:10.1007/s42832-025-0344-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andreetta, A., Chelli, S., Bonifacio, E., Canullo, R., Cecchini, G., Carnicelli, S., 2023. Environmental and pedological factors influencing organic carbon storage in Italian forest soils. Geoderma Regional32, e00605.

[2]

Bai, X.L., Gao, J.J., Wang, S.C., Cai, H.M., Chen, Z.J., Zhou, J.B., 2020. Excessive nutrient balance surpluses in newly built solar greenhouses over five years leads to high nutrient accumulations in soil. Agriculture, Ecosystems & Environment288, 106717.

[3]

Deb, D., Deb, S., Debbarma, P., Banik, B., 2020. Impact of disturbance on vegetation, biomass and carbon stock in tropical forests of Tripura, Northeast India. Vegetos33, 187–193.

[4]

Duan, B.X., Cai, T.J., Man, X.L., Xiao, R.H., Gao, M.L., Ge, Z.X., Mencuccini, M., 2022. Different variations in soil CO2, CH4, and N2O fluxes and their responses to edaphic factors along a boreal secondary forest successional trajectory. Science of the Total Environment838, 155983.

[5]

Duan, B.X., Man, X.L., Cai, T.J., Xiao, R.H., Ge, Z.X., 2020. Increasing soil organic carbon and nitrogen stocks along with secondary forest succession in permafrost region of the Daxing’an mountains, Northeast China. Global Ecology and Conservation24, e01258.

[6]

Heger, A., Becker, J.N., Vásconez Navas, L.K., Eschenbach, A., 2021. Factors controlling soil organic carbon stocks in hardwood floodplain forests of the lower middle Elbe River. Geoderma404, 115389.

[7]

Hilton, R.G., West, A.J., 2020. Mountains, erosion and the carbon cycle. Nature Reviews Earth & Environment1, 284–299.

[8]

Horan, K., Hilton, R.G., Selby, D., Ottley, C.J., Gröcke, D.R., Hicks, M., Burton, K.W., 2017. Mountain glaciation drives rapid oxidation of rock-bound organic carbon. Science Advances3, e1701107.

[9]

Hu, H., Bao, W., Eissenstat, D. M., Huang, L., Liu, J., Li, F., 2022. Rock fragment content in soils shift root foraging behavior in xerophytic species. Plant and Soil478, 671–688.

[10]

Huang, L., Hu, H., Bao, W.K., Hu, B., Liu, J., Li, F.L., 2023. Shifting soil nutrient stoichiometry with soil of variable rock fragment contents and different vegetation types. CATENA220, 106717.

[11]

Ji, B.Y., Yin, J.Y., Shi, Y.J., Xu, L., Tao, J.X., Zhou, Y.F., 2021. Predicting vegetation carbon density distribution in different terrains in subtropical forests in China. Journal of Sustainable Forestry40, 473–490.

[12]

Jiang, Z.W., Zhang, P.F., Wu, Y.F., Wu, X.D., Ni, H.W., Lu, Q., Zang, S.Y., 2024. Long-term surface composts application enhances saline-alkali soil carbon sequestration and increases bacterial community stability and complexity. Environmental Research240, 117425.

[13]

Jobbágy, E.G., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications10, 423–436.

[14]

Johnson, D.W., Walker, R.F., Glass, D.W., Miller, W.W., Murphy, J.D., Stein, C.M., 2012. The effect of rock content on nutrients in a Sierra Nevada forest soil. Geoderma173–174, 84–93.

[15]

Jury, W.A., Bellantuoni, B., 1976. Heat and water movement under surface rocks in a field soil: I. Thermal effects. Soil Science Society of America Journal40, 505–509.

[16]

Katra, I., Lavee, H., Sarah, P., 2008. The effect of rock fragment size and position on topsoil moisture on arid and semi-arid hillslopes. CATENA72, 49–55.

[17]

Keller, A.B., Phillips, R.P., 2019. Leaf litter decay rates differ between mycorrhizal groups in temperate, but not tropical, forests. New Phytologist222, 556–564.

[18]

Koarashi, J., Atarashi-Andoh, M., Ishizuka, S., Miura, S., Saito, T., Hirai, K., 2009. Quantitative aspects of heterogeneity in soil organic matter dynamics in a cool-temperate Japanese beech forest: a radiocarbon-based approach. Global Change Biology15, 631–642.

[19]

Lai, X.M., Liu, Y., Li, L.Y., Zhu, Q., Liao, K.H., 2022a. Spatial variation of global surface soil rock fragment content and its roles on hydrological and ecological patterns. CATENA208, 105752.

[20]

Lai, X.M., Zhou, Z.W., Liao, K.H., Zhu, Q., 2021. Responses of soil carbon and nitrogen cycles to the physical influences of rock fragment in soils. CATENA203, 105369.

[21]

Lai, X.M., Zhu, Q., Castellano, M.J., Liao, K.H., 2022b. Soil rock fragments: unquantified players in terrestrial carbon and nitrogen cycles. Geoderma406, 115530.

[22]

Lejoly, J., Quideau, S.A., Laganière, J., 2021. Invasive earthworms affect soil morphological features and carbon stocks in boreal forests. Geoderma404, 115262.

[23]

Liao, K.H., Lai, X.M., Zhou, Z.W., Zeng, X.K., Xie, W.Y., Castellano, M.J., Zhu, Q., 2019. Whether the rock fragment content should be considered when investigating nitrogen cycle in stony soils. Journal of Geophysical Research: Biogeosciences124, 521–536.

[24]

Liao, X.L., Kang, H., Haidar, G., Wang, W.F., Malghani, S., 2022. The impact of biochar on the activities of soil nutrients acquisition enzymes is potentially controlled by the pyrolysis temperature: a meta-analysis. Geoderma411, 115692.

[25]

Liu, C., Song, Y.Y., Dong, X.F., Wang, X.W., Ma, X.Y., Zhao, G.Y., Zang, S.Y., 2021. Soil enzyme activities and their relationships with soil C, N, and P in peatlands from different types of permafrost regions, Northeast China. Frontiers in Environmental Science9, 670769.

[26]

Lu, B.Q., Song, L.Q., Zang, S.Y., Wang, H.X., 2022. Warming promotes soil CO2 and CH4 emissions but decreasing moisture inhibits CH4 emissions in the permafrost peatland of the Great Xing'an Mountains. Science of the Total Environment829, 154725.

[27]

Ma, D.H., Shao, M.G., 2008. Simulating infiltration into stony soils with a dual-porosity model. European Journal of Soil Science59, 950–959.

[28]

Man, H.R., Dong, X.F., Li, M., Zheng, Z.C., Wang, C.Z., Zang, S.Y., 2023. Spatial distribution and influencing factors of humus layer thickness of forest land in permafrost region of Northeast China. CATENA224, 106979.

[29]

Marčiulynienė, D., Marčiulynas, A., Mishcherikova, V., Lynikienė, J., Gedminas, A., Franic, I., Menkis, A., 2022. Principal drivers of fungal communities associated with needles, shoots, roots and adjacent soil of Pinus sylvestris. Journal of Fungi8, 1112.

[30]

Menezes, R.S.C., Sales, A.T., Primo, D.C., de Albuquerque, E.R.G.M., de Jesus, K.N., Pareyn, F.G.C., da Silva Santana, M., dos Santos, U.J., Martins, J.C.R., Althoff, T.D., do Nascimento, D.M., Gouveia, R.F., Fernandes, M.M., Loureiro, D.C., de Araújo Filho, J.C., Giongo, V., Duda, G.P., Alves, B.J.R., de Mello Ivo, W.M.P., de Andrade, E.M., de Siqueira Pinto, A., de Sá Barretto Sampaio, E.V., 2021. Soil and vegetation carbon stocks after land-use changes in a seasonally dry tropical forest. Geoderma390, 114943.

[31]

Menichetti, L., Leifeld, J., Kirova, L., Szidat, S., Zhiyanski, M., 2017. Consequences of planned afforestation versus natural forest regrowth after disturbance for soil C stocks in eastern European mountains. Geoderma297, 19–27.

[32]

Meyer, L.D., Johnson, C.B., Foster, G.R., 1972. Stone and woodchip mulches for erosion control on construction sites. Journal of Soil and Water Conservation27, 264–269.

[33]

Moon, S., Chamberlain, C.P., Hilley, G.E., 2014. New estimates of silicate weathering rates and their uncertainties in global rivers. Geochimica et Cosmochimica Acta134, 257–274.

[34]

Mudge, P.L., Millar, J., Pronger, J., Roulston, A., Penny, V., Fraser, S., Eger, A., Caspari, T., Robertson, B., Mason, N.W.H., Schipper, L.A., 2021. Impacts of irrigation on soil C and N stocks in grazed grasslands depends on aridity and irrigation duration. Geoderma399, 115109.

[35]

Poesen, J., Lavee, H., 1994. Rock fragments in top soils: significance and processes. CATENA23, 1–28.

[36]

Reinmann, A.B., Hutyra, L.R., 2017. Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests. Proceedings of the National Academy of Sciencesof the United States of America114, 107–112.

[37]

Román-Sánchez, A., Vanwalleghem, T., Peña, A., Laguna, A., Giráldez, J.V., 2018. Controls on soil carbon storage from topography and vegetation in a rocky, semi-arid landscapes. Geoderma311, 159–166.

[38]

Rytter, R.M., 2012. Stone and gravel contents of arable soils influence estimates of C and N stocks. CATENA95, 153–159.

[39]

Sekucia, F., Dlapa, P., Kollár, J., Cerdá, A., Hrabovský, A., Svobodová, L., 2020. Land-use impact on porosity and water retention of soils rich in rock fragments. CATENA195, 104807.

[40]

Tang, X.Y., Liu, S.G., Liu, J.X., Zhou, G.Y., 2010. Effects of vegetation restoration and slope positions on soil aggregation and soil carbon accumulation on heavily eroded tropical land of southern China. Journal of Soils and Sediments10, 505–513.

[41]

Toïgo, M., Castagneyrol, B., Jactel, H., Morin, X., Meredieu, C., 2022. Effects of tree mixture on forest productivity: tree species addition versus substitution. European Journal of Forest Research141, 165–175.

[42]

Torres, M.A., West, A.J., Li, G.J., 2014. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nature507, 346–349.

[43]

Wang, N.N., Luo, J., He, S.Q., Li, T.X., Zhao, Y.H., Zhang, X.Z., Wang, Y.D., Huang, H.G., Yu, H.Y., Ye, D.H., Zheng, Z.C., 2023. Characterizing the rill erosion process from eroded morphology and sediment connectivity on purple soil slope with upslope earthen dike terraces. Science of the Total Environment860, 160486.

[44]

Wang, T., Kang, F.F., Cheng, X.Q., Han, H.R., Ji, W.J., 2016. Soil organic carbon and total nitrogen stocks under different land uses in a hilly ecological restoration area of North China. Soil and Tillage Research163, 176–184.

[45]

Wang, W.J., Qiu, L., Zu, Y.G., Su, D.X., An, J., Wang, H.Y., Zheng, G.Y., Sun, W., Chen, X.Q., 2011. Changes in soil organic carbon, nitrogen, pH and bulk density with the development of larch (Larix gmelinii) plantations in China. Global Change Biology17, 2657–2676.

[46]

Xiao, R.H., Man, X.L., Duan, B.X., 2020. Carbon and nitrogen stocks in three types of Larix gmelinii forests in Daxing'an mountains, Northeast China. Forests11, 305.

[47]

Xiao, R.H., Man, X.L., Duan, B.X., Cai, T.J., Ge, Z.X., Li, X.F., Vesala, T., 2022. Changes in soil bacterial communities and nitrogen mineralization with understory vegetation in boreal larch forests. Soil Biology and Biochemistry166, 108572.

[48]

Xu, Z.P., Hu, P., Man, X.L., Duan, L.L., Cai, T.J., 2024. Responsive characteristics of soil water regimes to rainfall events in a boreal larch forest in China: dynamic processes and decoupling effects. Geoderma441, 116741.

[49]

Xu, Z.P., Man, X.L., Duan, L.L., Cai, T.J., 2022. Improved subsurface soil moisture prediction from surface soil moisture through the integration of the (de)coupling effect. Journal of Hydrology608, 127634.

[50]

Yang, X., Shao, M.A., Li, T.C., Zhang, Q.Y., Gan, M., Chen, M.Y., Bai, X., 2021. Distribution of soil nutrients under typical artificial vegetation in the desert–loess transition zone. CATENA200, 105165.

[51]

Yang, Y.H., Ma, W.H., Mohammat, A., Fang, J.Y., 2007. Storage, patterns and controls of soil nitrogen in China. Pedosphere17, 776–785.

[52]

Yang, Z.B., Rao, I.M., Horst, W.J., 2013. Interaction of aluminium and drought stress on root growth and crop yield on acid soils. Plant and Soil372, 3–25.

[53]

Yu, P.J., Li, Q., Jia, H.T., Li, G.D., Zheng, W., Shen, X.J., Diabate, B., Zhou, D.W., 2014. Effect of cultivation on dynamics of organic and inorganic carbon stocks in Songnen Plain. Agronomy Journal106, 1574–1582.

[54]

Zeferino, L.B., Filho, J.F.L., dos Santos, A.C., Cerri, C.E.P., de Oliveira, T.S., 2021. Simulation of changes in C and N stocks with land use and cover in Amazon Forest-Cerrado transition environment. Geoderma404, 115388.

[55]

Zhang, J.H., Cai, Y.S., Duan, L.L., 2024. Rock fragments significantly affect the carbon and nitrogen distribution in the surface soil - evidences from large number samples of soil rock fragment interfaces in a boreal forest watershed. Science of the Total Environment925, 171640.

[56]

Zhang, J.T., Zhu, Y.H., Zhang, K.X., Hu, Z.Y., Yao, D.H., Li, Y., Liu, L.L., Du, B.Y., Lou, Y.H., 2023. Petrogenesis and tectonic implication of the early Paleozoic highly fractionated granites in the Xinlin region, the northern Great Xing’an range, NE China. South China Geology39, 292–308.

[57]

Zhang, Y., Wei, L.Y., Wei, X.R., Liu, X.T., Shao, M.G., 2018. Long-term afforestation significantly improves the fertility of abandoned farmland along a soil clay gradient on the Chinese Loess Plateau. Land Degradation & Development29, 3521–3534.

[58]

Zondervan, J.R., Hilton, R.G., Dellinger, M., Clubb, F.J., Roylands, T., Ogrič, M., 2023. Rock organic carbon oxidation CO2 release offsets silicate weathering sink. Nature623, 329–333.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4212KB)

Supplementary files

Supplementary Information

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/