Interactions of r/K-strategist bacteria and bacterivorous nematodes regulate herbivorous nematodes abundances under organic and inorganic fertilization practices

Wanning Zheng , Xiaoping Fan , Cécile Gubry-Rangin , Hao Chen , Lei Zhang , Chunyan Wu , Chang Yin , Hongyun Peng , Qingxu Ma , Yongchao Liang

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250343

PDF (3394KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250343 DOI: 10.1007/s42832-025-0343-x
RESEARCH ARTICLE

Interactions of r/K-strategist bacteria and bacterivorous nematodes regulate herbivorous nematodes abundances under organic and inorganic fertilization practices

Author information +
History +
PDF (3394KB)

Abstract

Microbial food web organisms’ responses to fertilization are influenced by their r/K-strategies. The roles of r/K-strategist microbes and their associated microbivorous nematodes in regulating herbivorous nematodes abundances remain unexplored, especially under different fertilization regimes. Filling this knowledge gap is critical for enhancing agricultural sustainability through optimization of microbial food web. Here, the microbial food web community structure was analyzed in two soil compartments (bulk/rhizosphere soil) from oilseed rape (Brassica napus L.) season to investigate interactions between r/K-strategist microbes and nematodes under organic and inorganic fertilization regimes. Fertilization regimes, rather than soil compartments, predominantly controlled the microbial food web community structure. Under organic fertilization, the relative abundances of r-strategist bacteria and bacterivores of cp-3 guild were greater in the rhizosphere than in the bulk soil. In contrast, under inorganic fertilization regimes, K-strategist bacteria and bacterivores of cp-2 guild were enriched in the rhizosphere versus the bulk soil. Differential r/K-strategist bacteria controlled the microbial food web network, with r- and K-strategist bacteria predominating under organic and inorganic fertilization, respectively. Soil organic carbon from organic fertilization stimulated the growth of r-strategist bacteria, which interacted with bacterivores of cp-3 guild to reduce the relative abundance of herbivores in the rhizosphere soil. Acidification from inorganic fertilization enriched K-strategist bacteria, which interacted with bacterivores cp-2 or cp-3 guilds to suppress herbivores abundances in the rhizosphere soil. Overall, our findings highlight the importance of cross-kingdom interactions among r/K-strategist organisms for the biocontrol of herbivores, providing guidance for harnessing microbial food web to create a healthy plant rhizosphere.

Graphical abstract

Keywords

soil microbial food web / r/K-strategist bacteria / r/K-strategist bacterivorous nematodes / herbivorous nematodes / interaction

Highlight

● Long-term organic fertilization promoted the positive rhizosphere effects on r-strategist bacteria and K-strategist bacterivorous nematodes.

● Long-term inorganic fertilization facilitated the positive rhizosphere effects on K-strategist bacteria and r-strategist bacterivorous nematodes.

● The r/K-strategist bacteria interact with r/K-strategist bacterivorous nematodes to suppress herbivorous nematodes abundances.

Cite this article

Download citation ▾
Wanning Zheng, Xiaoping Fan, Cécile Gubry-Rangin, Hao Chen, Lei Zhang, Chunyan Wu, Chang Yin, Hongyun Peng, Qingxu Ma, Yongchao Liang. Interactions of r/K-strategist bacteria and bacterivorous nematodes regulate herbivorous nematodes abundances under organic and inorganic fertilization practices. Soil Ecology Letters, 2025, 7(4): 250343 DOI:10.1007/s42832-025-0343-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abarenkov, K., Henrik Nilsson, R., Larsson, K.H., Alexander, I.J., Eberhardt, U., Erland, S., Høiland, K., Kjøller, R., Larsson, E., Pennanen, T., Sen, R., Taylor, A.F.S., Tedersoo, L., Ursing, B.M., Vrålstad, T., Liimatainen, K., Peintner, U., Kõljalg, U., 2010. The UNITE database for molecular identification of fungi-recent updates and future perspectives. New Phytologist186, 281–285.

[2]

Acero, N., Probanza, A., Blanco, B., Mañero, F.J.G., 1993. Seasonal changes in physiological groups of bacteria that participate in the nitrogen cycle in the rhizosphere of the alder. Geomicrobiology Journal11, 133–140.

[3]

Ai, C., Liang, G.Q., Sun, J.W., Wang, X.B., He, P., Zhou, W., 2013. Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil. Soil Biology and Biochemistry57, 30–42.

[4]

Ai, C., Liang, G.Q., Sun, J.W., Wang, X.B., Zhou, W., 2012. Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Geoderma 173–174, 173–174.

[5]

Blanc, C., Sy, M., Djigal, D., Brauman, A., Normand, P., Villenave, C., 2006. Nutrition on bacteria by bacterial-feeding nematodes and consequences on the structure of soil bacterial community. European Journal of Soil Biology42, S70–S78.

[6]

Bongers, T., 1999. The Maturity Index, the evolution of nematode life history traits, adaptive radiation and cp-scaling. Plant and Soil212, 13–22.

[7]

Bruyant, P., Moënne-Loccoz, Y., Almario, J., 2024. Root-associated helotiales fungi: overlooked players in plant nutrition. Soil Biology and Biochemistry191, 109363.

[8]

Chen, C., Chen, X.B., Xie, T.N., Louis Hatting, J., Yu, X.P., Ye, S.D., Wang, Z.L., Shentu, X.P., 2016. Diverse bacterial symbionts of insect-pathogentic fungi and possible impact on the maintenance of virulence during infection. Symbiosis69, 47–58.

[9]

Chen, T.T., Chen, X., Zhang, S.S., Zhu, J.W., Tang, B.X., Wang, A.K., Dong, L.L., Zhang, Z.W., Yu, C.X., Sun, Y.L., Chi, L.J., Chen, H.X., Zhai, S., Sun, Y.B., Lan, L., Zhang, X., Xiao, J.F., Bao, Y.M., Wang, Y.Q., Zhang, Z., Zhao, W.M., 2021. The genome sequence archive family: toward explosive data growth and diverse data types. Genomics, Proteomics & Bioinformatics19, 578–583.

[10]

CNCB-NGDC Members, Partners, 2021. Database resources of the national genomics data center, China national center for bioinformation in 2022. Nucleic Acids Research50, D27–D38.

[11]

Culman, S.W., DuPont, S.T., Glover, J.D., Buckley, D.H., Fick, G.W., Ferris, H., Crews, T.E., 2010. Long-term impacts of high-input annual cropping and unfertilized perennial grass production on soil properties and belowground food webs in Kansas, USA. Agriculture, Ecosystems & Environment137, 13–24.

[12]

de Vries, F.T., Shade, A., 2013. Controls on soil microbial community stability under climate change. Frontiers in Microbiology4, 265.

[13]

de Vries, F.T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M.A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M.V., Christensen, S., de Ruiter, P.C., d'Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V., Bardgett, R.D., 2013. Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences of the United States of American110, 14296–14301.

[14]

Deng, Y., Jiang, Y.H., Yang, Y.F., He, Z.L., Luo, F., Zhou, J.Z., 2012. Molecular ecological network analyses. BMC Bioinformatics13, 113.

[15]

Ding, L.J., Cui, H.L., Nie, S.A., Long, X.E., Duan, G.L., Zhu, Y.G., 2019. Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiology Ecology95, fiz040.

[16]

Djigal, D., Brauman, A., Diop, T.A., Chotte, J.L., Villenave, C., 2004a. Influence of bacterial-feeding nematodes (Cephalobidae) on soil microbial communities during maize growth. Soil Biology and Biochemistry36, 323–331.

[17]

Djigal, D., Sy, M., Brauman, A., Diop, T.A., Mountport, D., Chotte, J.L., Villenave, C., 2004b. Interactions between Zeldia Punctata (Cephalobidae) and bacteria in the presence or absence of maize plants. Plant and Soil262, 33–44.

[18]

Dotaniya, M.L., Meena, V.D., 2015. Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences85, 1–12.

[19]

El-Tarabily, K.A., Sivasithamparam, K., 2006. Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biology and Biochemistry38, 1505–1520.

[20]

Ferreira, B.S., Santana, M.V., Macedo, R.S., Silva, J.O., Carneiro, M.A.C., Rocha, M.R., 2018. Co-occurrence patterns between plant-parasitic nematodes and arbuscular mycorrhizal fungi are driven by environmental factors. Agriculture, Ecosystems & Environment265, 54–61.

[21]

Fu, X., Li, Y.L., Yuan, Q.Q., Cai, G.H., Deng, Y.Q., Zhang, X., Norbäck, D., Sun, Y., 2020. Continental-scale microbiome study reveals different environmental characteristics determining microbial richness, composition, and quantity in hotel rooms. mSystems5, e00119–20.

[22]

García, J.A.L., Lobo, A.P., Ramos, B., Barrientos, M.L., Mañero, F.J.G., 2000. Changes in the bacterial communities structure of the rhizosphere of four wild Lupinus species from flowering to fruiting. Orsis15, 7–25.

[23]

Ge, A.H., Liang, Z.H., Xiao, J.L., Zhang, Y., Zeng, Q., Xiong, C., Han, L.L., Wang, J.T., Zhang, L.M., 2021. Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control. Agriculture, Ecosystems & Environment312, 107336.

[24]

Hartman, K., van der Heijden, M.G.A., Wittwer, R.A., Banerjee, S., Walser, J.C., Schlaeppi, K., 2018. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome6, 14.

[25]

Hiltner, L., 1904. Über neuere erfahrungen und probleme auf dem gebiet der bodenbakteriologie und unter besonderer berücksichtigung der gründüngung und brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft98, 59–78.

[26]

Jiang, Y., Wang, Z.H., Liu, Y., Han, Y.L., Wang, Y., Wang, Q., Liu, T., 2023. Nematodes and their bacterial prey improve phosphorus acquisition by wheat. New Phytologist237, 974–986.

[27]

Jiao, Y.P., Meng, X.T., Qi, P., Li, Y.N., Zhang, X.Y., Lu, H.D., Shi, J.L., Tian, X.H., 2025. Pathways of soil organic carbon accrual affected by manure combined with different nitrogen application rates: highlighting microbial life history strategies and biomarker accumulation. Geoderma459, 117384.

[28]

Kalembasa, S.J., Jenkinson, D.S., 1973. A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. Journal of the Science of Food and Agriculture24, 1085–1090.

[29]

Korniłłowicz-Kowalska, T., Andruszczak, S., Bohacz, J., Kraska, P., Możejko, M., Kwiecińska-Poppe, E., 2022. The effect of tillage and no-tillage system on culturable fungal communities in the rhizosphere and soil of two spelt cultivars. Applied Soil Ecology174, 104413.

[30]

Lê, S., Josse, J., Husson, F., 2008. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software25, 1–18.

[31]

Li, G., Liu, T., Whalen, J.K., Wei, Z., 2024. Nematodes: an overlooked tiny engineer of plant health. Trends in Plant Science29, 52–63.

[32]

Li, N., Pan, F.J., Han, X.Z., Zhang, B., 2016. Development of soil food web of microbes and nematodes under different agricultural practices during the early stage of pedogenesis of a mollisol. Soil Biology and Biochemistry98, 208–216.

[33]

Liang, W.J., Lou, Y.L., Li, Q., Zhong, S., Zhang, X.K., Wang, J.K., 2009. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology and Biochemistry41, 883–890.

[34]

Lin, H., Yuan, Q.Y., Yu, Q.G., Chen, Z.M., Ma, J.W., 2022. Plants mitigate nitrous oxide emissions from antibiotic-contaminated agricultural soils. Environmental Science & Technology56, 4950–4960.

[35]

Ling, N., Wang, T.T., Kuzyakov, Y., 2022. Rhizosphere bacteriome structure and functions. Nature Communications13, 836.

[36]

Liu, T., Yu, L., Xu, J.J., Yan, X.M., Li, H.X., Whalen, J.K., Hu, F., 2017. Bacterial traits and quality contribute to the diet choice and survival of bacterial-feeding nematodes. Soil Biology and Biochemistry115, 467–474.

[37]

Liu, Y.X., Qin, Y., Chen, T., Lu, M.P., Qian, X.B., Guo, X.X., Bai, Y., 2021. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein & Cell12, 315–330.

[38]

López, J.L., Fourie, A., Poppeliers, S.W.M., Pappas, N., Sánchez-Gil, J.J., de Jonge, R., Dutilh, B.E., 2023. Growth rate is a dominant factor predicting the rhizosphere effect. The ISME Journal17, 1396–1405.

[39]

Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

[40]

Männistö, M., Ganzert, L., Tiirola, M., Häggblom, M.M., Stark, S., 2016. Do shifts in life strategies explain microbial community responses to increasing nitrogen in tundra soil. Soil Biology and Biochemistry96, 216–228.

[41]

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’hara, R., Simpson, G.L., Solymos, P., 2016. Vegan: Community Ecology Package. R Package Version2, .

[42]

Olsen, S.R., Sommers, L.E., 1982. Phosphorus. In: Page, A.L., ed. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. 2nd ed. Madison: American Society of Agronomy403–430.

[43]

Pan, H., Chen, M.M., Feng, H.J., Wei, M., Song, F.P., Lou, Y.H., Cui, X.M., Wang, H., Zhuge, Y.P., 2020. Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in Northern China. Soil and Tillage Research198, 104540.

[44]

Pandey, A., Palni, L.M.S., 1996. The rhizosphere effect of tea on soil microbes in a Himalayan monsoonal location. Biology and Fertility of Soils21, 131–137.

[45]

Peltoniemi, K., Velmala, S., Lloret, E., Ollio, I., Hyvönen, J., Liski, E., Brandt, K.K., Campillo-Cora, C., Fritze, H., Iivonen, S., Lassen, S.B., Loit, K., Martínez-Martínez, S., Pennanen, T., Põldmets, M., Schrader, S., Shanskiy, M., Zornoza, R., Waeyenberge, L., Calviño, D.F., 2024. Soil and climatic characteristics and farming system shape fungal communities in European wheat fields. Agriculture, Ecosystems & Environment370, 109035.

[46]

Peng, J.W., Liu, H., Hu, Y., Sun, Y., Liu, Q., Li, J.G., Dong, Y.H., 2022. Shift in soil bacterial communities from K‐ to r‐strategists facilitates adaptation to grassland degradation. Land Degradation & Development33, 2076–2091.

[47]

Pianka, E.R., 1970. On r- and K-selection. The American Naturalist104, 592–597.

[48]

Prosser, J.I., Nicol, G.W., 2012. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends in Microbiology20, 523–531.

[49]

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research41, D590–D596.

[50]

R Core Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

[51]

Sapkota, R., Nicolaisen, M., 2015. High-throughput sequencing of nematode communities from total soil DNA extractions. BMC Ecology15, 3.

[52]

Sarathchandra, S.U., Burch, G., Cox, N.R., 1997. Growth patterns of bacterial communities in the rhizoplane and rhizosphere of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) in long-term pasture. Applied Soil Ecology6, 293–299.

[53]

Shen, Z.Z., Ruan, Y.Z., Chao, X., Zhang, J., Li, R., Shen, Q.R., 2015. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biology and Fertility of Soils51, 553–562.

[54]

Shi, S.J., Nuccio, E.E., Shi, Z.J., He, Z.L., Zhou, J.Z., Firestone, M.K., 2016. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecology Letters19, 926–936.

[55]

Siddique, S., Coomer, A., Baum, T., Williamson, V.M., 2022. Recognition and response in plant–nematode interactions. Annual Review of Phytopathology60, 143–162.

[56]

Sikder, M.M., Vestergård, M., 2020. Impacts of root metabolites on soil nematodes. Frontiers in Plant Science10, 1792.

[57]

Simonin, M., Nunan, N., Bloor, J.M.G., Pouteau, V., Niboyet, A., 2017. Short-term responses and resistance of soil microbial community structure to elevated CO2 and N addition in grassland mesocosms. FEMS Microbiology Letters364, fnx077.

[58]

Sun, F., Tariq, A., Chen, H., He, Q.J., Guan, Y.X., Pan, K.W., Chen, S.Y., Li, J.T., Zhao, C.C., Wang, H., Gu, Y.F., 2017. Effect of nitrogen and phosphorus application on agricultural soil food webs. Archives of Agronomy and Soil Science63, 1176–1186.

[59]

Sun, Y.H., Liu, Y., Pan, J., Wang, F.P., Li, M., 2020. Perspectives on cultivation strategies of archaea. Microbial Ecology79, 770–784.

[60]

Topalović, O., Geisen, S., 2023. Nematodes as suppressors and facilitators of plant performance. New Phytologist238, 2305–2312.

[61]

Topalović, O., Hussain, M., Heuer, H., 2020. Plants and associated soil microbiota cooperatively suppress plant-parasitic nematodes. Frontiers in Microbiology11, 313.

[62]

Trap, J., Bonkowski, M., Plassard, C., Villenave, C., Blanchart, E., 2016. Ecological importance of soil bacterivores for ecosystem functions. Plant and Soil398, 1–24.

[63]

Tripathi, B.M., Kim, M., Tateno, R., Kim, W., Wang, J.J., Lai-Hoe, A., Ab. Shukor, N.A., Rahim, R.A., Go, R., Adams, J.M., 2015. Soil pH and biome are both key determinants of soil archaeal community structure. Soil Biology and Biochemistry88, 1–8.

[64]

Wang, B.Z., Zhao, J., Guo, Z.Y., Ma, J., Xu, H., Jia, Z.J., 2015. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. The ISME Journal9, 1062–1075.

[65]

Wang, H., Jiang, L., Weitz, J.S., 2009. Bacterivorous grazers facilitate organic matter decomposition: a stoichiometric modeling approach. FEMS Microbiology Ecology69, 170–179.

[66]

Wang, Y.D., Hu, N., Ge, T.D., Kuzyakov, Y., Wang, Z.L., Li, Z.F., Tang, Z., Chen, Y., Wu, C.Y., Lou, Y.L., 2017. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment. Applied Soil Ecology111, 65–72.

[67]

Watanabe, I., Furusaka, C., 1980. Microbial ecology of flooded rice soils. In: Alexander, M., ed. Advances in Microbial Ecology. New York: Springer, 125–168.

[68]

Wilschut, R.A., Geisen, S., 2021. Nematodes as drivers of plant performance in natural systems. Trends in Plant Science26, 237–247.

[69]

Xiang, X.J., Liu, J., Zhang, J., Li, D.M., Xu, C.X., Kuzyakov, Y., 2020. Divergence in fungal abundance and community structure between soils under long-term mineral and organic fertilization. Soil and Tillage Research196, 104491.

[70]

Yang, Y.J., Liu, S.R., Schindlbacher, A., Wang, J.X., Li, Z.Q., Wang, H., Ming, A.G., Lu, L.H., Li, Z.Y., 2021. Topsoil organic carbon increases but its stability declines after five years of reduced throughfall. Soil Biology and Biochemistry156, 108221.

[71]

Yeates, G.W., Bongers, T., de Goede, R.G.M., Freckman, D.W., Georgieva, S.S., 1993. Feeding habits in soil nematode families and genera-an outline for soil ecologists. Journal of Nematology25, 315–331.

[72]

Yue, Y., Liu, C., Xu, B.T., Wang, Y.J., Lv, Q.H., Zhou, Z.Y., Li, R., Kowalchuk, G.A., Jousset, A., Shen, Q.R., Xiong, W., 2023. Rhizosphere shapes the associations between protistan predators and bacteria within microbiomes through the deterministic selection on bacterial communities. Environmental Microbiology25, 3623–3629.

[73]

Zhang, C.Z., Zhu, T.B., Nielsen, U.N., Wright, I.J., Li, N., Chen, X.Y., Liu, M.Q., 2025. An integrated fast-slow plant and nematode economics spectrum predicts soil organic carbon dynamics during natural restoration. New Phytologist245, 2467–2479.

[74]

Zhang, T., Shao, M.F., Ye, L., 2012. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. The ISME Journal6, 1137–1147.

[75]

Zhao, J., Wang, F.M., Li, J., Zou, B., Wang, X.L., Li, Z.A., Fu, S.L., 2014. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biology and Biochemistry75, 1–10.

[76]

Zheng, W.N., Fan, X.P., Chen, H., Ye, M.J., Yin, C., Wu, C.Y., Liang, Y.C., 2024. The response patterns of r- and K-strategist bacteria to long-term organic and inorganic fertilization regimes within the microbial food web are closely linked to rice production. Science of the Total Environment942, 173681.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3394KB)

Supplementary files

Supplementary Information

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/