Distinctive mechanisms of soil priming in different stages and its response to nitrogen addition along a temperate forest elevation gradient

Qiuxiang Tian , Rudong Zhao , Qiaoling Lin , Xiaoxiang Zhao , Yu Wu , Feng Liu

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250340

PDF (6201KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250340 DOI: 10.1007/s42832-025-0340-0
RESEARCH ARTICLE

Distinctive mechanisms of soil priming in different stages and its response to nitrogen addition along a temperate forest elevation gradient

Author information +
History +
PDF (6201KB)

Abstract

Priming of soil organic carbon (SOC) mineralization by fresh carbon inputs plays an important role in terrestrial carbon cycling. Despite the attempts to elucidate the mechanisms of soil priming and its response to nitrogen addition, findings remain discordant or even contradictory. We conducted a 30-day incubation experiment using 13C-labeled glucose and nitrogen addition on 51 soils (belonging to 15 soil profiles along a temperate forest elevation gradient). Results showed that positive priming peaked in the first four days of incubation, and then declined and remained relatively stable. Early-stage priming was positively correlated with the response of soil microbial biomass and SOC-derived dissolved organic carbon. In the late stage, extracellular enzyme activities increased, and their responses were positively correlated with priming intensity. These results suggested that early-stage priming was mainly driven by the adjustment in soil microbial biomass and the abiotic mediation of mineral-protected organic compounds, and late-stage priming was caused by the increased enzyme activities. Considering the pre-increased copiotrophic bacterial taxa and the minimal nitrogen demand in the late stage, the “stoichiometric decomposition” theory might be responsible for late-stage priming. Nitrogen addition decreased MBC content and soil extracellular enzyme activities, leading to lower SOC mineralization. However, the suppression effects were comparable between the treatments without and with glucose addition. Thus, nitrogen addition had negligible effect on carbon-induced priming intensity. Knowledge about the temporal pattern of soil priming and how its response to nitrogen addition could improve the predictions of global carbon distribution and dynamics.

Graphical abstract

Keywords

priming effect / temporal variation / microbial nitrogen mining / stoichiometric decomposition / abiotic mediation / nitrogen availability

Highlight

● Positive priming peaked in the early stage, and then declined and remained stable.

● Early priming was attributed to the increased MBC content and abiotic mediation.

● Late priming was further attributed to the increased enzyme activities.

● Nitrogen addition had no effect on carbon-induced priming intensity.

Cite this article

Download citation ▾
Qiuxiang Tian, Rudong Zhao, Qiaoling Lin, Xiaoxiang Zhao, Yu Wu, Feng Liu. Distinctive mechanisms of soil priming in different stages and its response to nitrogen addition along a temperate forest elevation gradient. Soil Ecology Letters, 2025, 7(4): 250340 DOI:10.1007/s42832-025-0340-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aye, N. S., Butterly, C. R., Sale, P. W. G., Tang, C. X., 2018. Interactive effects of initial pH and nitrogen status on soil organic carbon priming by glucose and lignocellulose. Soil Biology and Biochemistry123, 33–44.

[2]

Bailey, V. L., Pries, C. H., Lajtha, K., 2019. What do we know about soil carbon destabilization. Environmental Research Letters14, 083004.

[3]

Bastida, F., García, C., Fierer, N., Eldridge, D. J., Bowker, M. A., Abades, S., Alfaro, F. D., Berhe, A. A., Cutler, N. A., Gallardo, A., García-Velázquez, L., Hart, S. C., Hayes, P. E., Hernández, T., Hseu, Z. Y., Jehmlich, N., Kirchmair, M., Lambers, H., Neuhauser, S., Peña-Ramírez, V. M., Pérez, C. A., Reed, S. C., Santos, F., Siebe, C., Sullivan, B. W., Trivedi, P., Vera, A., Williams, M. A., Luis Moreno, J., Delgado-Baquerizo, M., 2019. Global ecological predictors of the soil priming effect. Nature Communications10, 3481.

[4]

Bernard, L., Basile-Doelsch, I., Derrien, D., Fanin, N., Fontaine, S., Guenet, B., Karimi, B., Marsden, C., Maron, P. A., 2022. Advancing the mechanistic understanding of the priming effect on soil organic matter mineralisation. Functional Ecology36, 1355–1377.

[5]

Blagodatskaya, Е., Kuzyakov, Y., 2008. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils45, 115–131.

[6]

Blagodatsky, S. A., Heinemeyer, O., Richter, J., 2000. Estimating the active and total soil microbial biomass by kinetic respiration analysis. Biology and Fertility of Soils32, 73–81.

[7]

Box, G. E. P., Cox, D. R., 1964. An analysis of transformations. Journal of the Royal Statistical Society, Series B: Statistical Methodology26, 211–243.

[8]

Chao, L., Liu, Y. Y., Freschet, G. T., Zhang, W. D., Yu, X., Zheng, W. H., Guan, X., Yang, Q. P., Chen, L. C., Dijkstra, F. A., Wang, S. L., 2019. Litter carbon and nutrient chemistry control the magnitude of soil priming effect. Functional Ecology33, 876–888.

[9]

Chen, L. Y., Liu, L., Mao, C., Qin, S. Q., Wang, J., Liu, F. T., Blagodatsky, S., Yang, G. B., Zhang, Q. W., Zhang, D. Y., Yu, J. C., Yang, Y. H., 2018. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nature Communications9, 3951.

[10]

Chen, P. F., Mo, C. Y., He, C., Cui, H., Lin, J. D., Yang, J. P., 2021. Shift of microbial turnover time and metabolic efficiency strongly regulates rhizosphere priming effect under nitrogen fertilization in paddy soil. Science of the Total Environment800, 149590.

[11]

Chen, R. R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Lin, X. G., Blagodatskaya, E., Kuzyakov, Y., 2014. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biology20, 2356–2367.

[12]

Coody, P. N., Sommers, L. E., Nelson, D. W., 1986. Kinetics of glucose uptake by soil microorganisms. Soil Biology and Biochemistry18, 283–289.

[13]

Craine, J. M., Morrow, C., Fierer, N., 2007. Microbial nitrogen limitation increases decomposition. Ecology88, 2105–2113.

[14]

Cui, J., Zhu, Z. K., Xu, X. L., Liu, S. L., Jones, D. L., Kuzyakov, Y., Shibistova, O., Wu, J. S., Ge, T. D., 2020. Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biology and Biochemistry142, 107720.

[15]

Fang, Y. Y., Nazaries, L., Singh, B. K., Singh, B. P., 2018. Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Global Change Biology24, 2775–2790.

[16]

Fang, Y. Y., Singh, B. P., Farrell, M., Van Zwieten, L., Armstrong, R., Chen, C. R., Bahadori, M., Tavakkoli, E., 2020. Balanced nutrient stoichiometry of organic amendments enhances carbon priming in a poorly structured sodic subsoil. Soil Biology and Biochemistry145, 107800.

[17]

Feng, J. G., Tang, M., Zhu, B., 2021. Soil priming effect and its responses to nutrient addition along a tropical forest elevation gradient. Global Change Biology27, 2793–2806.

[18]

Feng, J. G., Zhu, B., 2021a. Does calculation method affect the nutrient-addition effect on priming. Geoderma393, 115040.

[19]

Feng, J. G., Zhu, B., 2021b. Global patterns and associated drivers of priming effect in response to nutrient addition. Soil Biology and Biochemistry153, 108118.

[20]

Fontaine, S., Mariotti, A., Abbadie, L., 2003. The priming effect of organic matter: a question of microbial competition. Soil Biology and Biochemistry35, 837–843.

[21]

Garcia-Pausas, J., Paterson, E., 2011. Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon. Soil Biology and Biochemistry43, 1705–1713.

[22]

German, D. P., Weintraub, M. N., Grandy, A. S., Lauber, C. L., Rinkes, Z. L., Allison, S. D., 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry43, 1387–1397.

[23]

Guenet, B., Camino-Serrano, M., Ciais, P., Tifafi, M., Maignan, F., Soong, J. L., Janssens, I. A., 2018. Impact of priming on global soil carbon stocks. Global Change Biology24, 1873–1883.

[24]

Heitkötter, J., Heinze, S., Marschner, B., 2017. Relevance of substrate quality and nutrients for microbial C-turnover in top-and subsoil of a Dystric Cambisol. Geoderma302, 89–99.

[25]

Kalbitz, K., Solinger, S., Park, J. H., Michalzik, B., Matzner, E., 2000. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science165, 277–304.

[26]

Keiluweit, M., Bougoure, J. J., Nico, P. S., Pett-Ridge, J., Weber, P. K., Kleber, M., 2015. Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change5, 588–595.

[27]

Keuper, F., Wild, B., Kummu, M., Beer, C., Blume-Werry, G., Fontaine, S., Gavazov, K., Gentsch, N., Guggenberger, G., Hugelius, G., Jalava, M., Koven, C., Krab, E. J., Kuhry, P., Monteux, S., Richter, A., Shahzad, T., Weedon, J. T., Dorrepaal, E., 2020. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nature Geoscience13, 560–565.

[28]

Kuzyakov, Y., Friedel, J. K., Stahr, K., 2000. Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry32, 1485–1498.

[29]

Lavoie, M., Mack, M. C., Schuur, E. A. G., 2011. Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils. Journal of Geophysical Research: Biogeosciences116, G03013.

[30]

Li, H., Bölscher, T., Winnick, M., Tfaily, M. M., Cardon, Z. G., Keiluweit, M., 2021. Simple plant and microbial exudates destabilize mineral-associated organic matter via multiple pathways. Environmental Science & Technology55, 3389–3398.

[31]

Liang, C., Schimel, J. P., Jastrow, J. D., 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology2, 17105.

[32]

Liang, J. Y., Zhou, Z. H., Huo, C. F., Shi, Z., Cole, J. R., Huang, L., Konstantinidis, K. T., Li, X. M., Liu, B., Luo, Z. K., Penton, C. R., Schuur, E. A. G., Tiedje, J. M., Wang, Y. P., Wu, L. Y., Xia, J. Y., Zhou, J. Z., Luo, Y. Q., 2018. More replenishment than priming loss of soil organic carbon with additional carbon input. Nature Communications9, 3175.

[33]

Liu, X. J. A., Sun, J. R., Mau, R. L., Finley, B. K., Compson, Z. G., van Gestel, N., Brown, J. R., Schwartz, E., Dijkstra, P., Hungate, B. A., 2017. Labile carbon input determines the direction and magnitude of the priming effect. Applied Soil Ecology109, 7–13.

[34]

Luo, Z. K., Wang, E. L., Smith, C., 2015. Fresh carbon input differentially impacts soil carbon decomposition across natural and managed systems. Ecology96, 2806–2813.

[35]

Luo, Z. K., Wang, E. L., Sun, O. J., 2016. A meta-analysis of the temporal dynamics of priming soil carbon decomposition by fresh carbon inputs across ecosystems. Soil Biology and Biochemistry101, 96–103.

[36]

Mason-Jones, K., Schmücker, N., Kuzyakov, Y., 2018. Contrasting effects of organic and mineral nitrogen challenge the N-Mining Hypothesis for soil organic matter priming. Soil Biology and Biochemistry124, 38–46.

[37]

Mo, C. Y., Jiang, Z. H., Chen, P. F., Cui, H., Yang, J. P., 2021. Microbial metabolic efficiency functions as a mediator to regulate rhizosphere priming effects. Science of the Total Environment759, 143488.

[38]

Morrissey, E. M., Mau, R. L., Schwartz, E., McHugh, T. A., Dijkstra, P., Koch, B. J., Marks, J. C., Hungate, B. A., 2017. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. The ISME Journal11, 1890–1899.

[39]

Pascault, N., Ranjard, L., Kaisermann, A., Bachar, D., Christen, R., Terrat, S., Mathieu, O., Lévêque, J., Mougel, C., Henault, C., Lemanceau, P., Péan, M., Boiry, S., Fontaine, S., Maron, P. A., 2013. Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems16, 810–822.

[40]

Qu, W. D., Han, G. X., Eller, F., Xie, B. H., Wang, J., Wu, H. T., Li, J. Y., Zhao, M. L., 2020. Nitrogen input in different chemical forms and levels stimulates soil organic carbon decomposition in a coastal wetland. CATENA194, 104672.

[41]

Ramirez, K. S., Craine, J. M., Fierer, N., 2012. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology18, 1918–1927.

[42]

Razanamalala, K., Razafimbelo, T., Maron, P. A., Ranjard, L., Chemidlin, N., Lelièvre, M., Dequiedt, S., Ramaroson, V. H., Marsden, C., Becquer, T., Trap, J., Blanchart, E., Bernard, L., 2018. Soil microbial diversity drives the priming effect along climate gradients: a case study in Madagascar. The ISME Journal12, 451–462.

[43]

Shahbaz, M., Kuzyakov, Y., Sanaullah, M., Heitkamp, F., Zelenev, V., Kumar, A., Blagodatskaya, E., 2017. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds. Biology and Fertility of Soils53, 287–301.

[44]

Sinsabaugh, R. L., Turner, B. L., Talbot, J. M., Waring, B. G., Powers, J. S., Kuske, C. R., Moorhead, D. L., Follstad Shah, J. J., 2016. Stoichiometry of microbial carbon use efficiency in soils. Ecological Monographs86, 172–189.

[45]

Soong, J. L., Fuchslueger, L., Marañon-Jimenez, S., Torn, M. S., Janssens, I. A., Penuelas, J., Richter, A., 2020. Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling. Global Change Biology26, 1953–1961.

[46]

Spohn, M., Klaus, K., Wanek, W., Richter, A., 2016. Microbial carbon use efficiency and biomass turnover times depending on soil depth – implications for carbon cycling. Soil Biology and Biochemistry96, 74–81.

[47]

Stone, B. W. G., Dijkstra, P., Finley, B. K., Fitzpatrick, R., Foley, M. M., Hayer, M., Hofmockel, K. S., Koch, B. J., Li, J. H., Liu, X. J. A., Martinez, A., Mau, R. L., Marks, J., Monsaint-Queeney, V., Morrissey, E. M., Propster, J., Pett-Ridge, J., Purcell, A. M., Schwartz, E., Hungate, B. A., 2023. Life history strategies among soil bacteria-dichotomy for few, continuum for many. The ISME Journal17, 611–619.

[48]

Sun, Z. L., Liu, S. G., Zhang, T. A., Zhao, X. C., Chen, S., Wang, Q. K., 2019. Priming of soil organic carbon decomposition induced by exogenous organic carbon input: a meta-analysis. Plant and Soil443, 463–471.

[49]

Tian, Q. X., Jiang, Q. H., Zhao, R. D., Wu, Y., Lin, Q. L., Zhao, X. X., Tang, Z. Y., Liu, F., 2023. Microbial properties control soil priming and exogenous carbon incorporation along an elevation gradient. Geoderma431, 116343.

[50]

Treseder, K. K., 2008. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecology Letters11, 1111–1120.

[51]

Vance, E. D., Brookes, P. C., Jenkinson, D. S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry19, 703–707.

[52]

Wild, B., Alaei, S., Bengtson, P., Bodé, S., Boeckx, P., Schnecker, J., Mayerhofer, W., Rütting, T., 2017. Short-term carbon input increases microbial nitrogen demand, but not microbial nitrogen mining, in a set of boreal forest soils. Biogeochemistry136, 261–278.

[53]

Wild, B., Li, J., Pihlblad, J., Bengtson, P., Rütting, T., 2019. Decoupling of priming and microbial N mining during a short-term soil incubation. Soil Biology and Biochemistry129, 71–79.

[54]

Yin, L. M., Corneo, P. E., Richter, A., Wang, P., Cheng, W. X., Dijkstra, F. A., 2019. Variation in rhizosphere priming and microbial growth and carbon use efficiency caused by wheat genotypes and temperatures. Soil Biology and Biochemistry134, 54–61.

[55]

Zhang, X. W., Han, X. Z., Yu, W. T., Wang, P., Cheng, W. X., 2017. Priming effects on labile and stable soil organic carbon decomposition: pulse dynamics over two years. PLoS One12, e0184978.

[56]

Zheng, Y. Y., Jin, J., Wang, X. J., Kopittke, P. M., O'Sullivan, J. B., Tang, C. X., 2024. Disentangling the effect of nitrogen supply on the priming of soil organic matter: a critical review. Critical Reviews in Environmental Science and Technology54, 676–697.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (6201KB)

Supplementary files

SEL-00340-OF-FL_suppl_1

819

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/