Long-term nitrogen addition enhances the energy fluxes of soil macro-food webs in young but not mature forest plantations

Haozhen Chen , Bing Zhang , Anton Potapov , Pubin Hong , Bo Meng , Tao Yan , Qi Yang , Shaopeng Wang

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250338

PDF (2441KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250338 DOI: 10.1007/s42832-025-0338-7
RESEARCH ARTICLE

Long-term nitrogen addition enhances the energy fluxes of soil macro-food webs in young but not mature forest plantations

Author information +
History +
PDF (2441KB)

Abstract

Forest plantations play a critical role in restoring ecosystems and mitigating environmental change. While soil fauna communities represent a key driver of belowground ecosystem dynamics, we know little about the structure and functioning of soil macro-food webs in plantation systems and their responses to changes in environmental conditions. In this study, we used data from a 14-year nitrogen addition experiment in larch plantations to investigate how nitrogen addition influenced the diversity and energetic processes of soil macro-food webs in young and mature plantations. We found that low and high nitrogen addition treatments promoted biodiversity (by 23% and 19%), total biomass (56% and 31%), and energy fluxes (42.5% and 39.5%) of soil macro-food webs in young plantations, but they had no significant impacts on soil macro-food webs in mature plantations. The increase in total energy fluxes was partially mediated by nitrogen-induced changes in consumer biomass. Specifically, total energy fluxes increased with the biomass of secondary consumers (e.g., Carabidae), although the biomass of primary consumers (e.g., Lumbricidae) showed a weaker correlation. The age-specific responses may be understood from the varying nitrogen demands between young and mature plantations. Our findings highlight the need to integrate soil food web dynamics into forest management and underscore the necessity of adopting age-specific strategies in nitrogen management in plantations.

Graphical abstract

Keywords

forest age / nitrogen deposition / soil macro-food web / energy flux

Highlight

● Nitrogen addition enhanced soil macro-food webs biodiversity, biomass, and energy fluxes in young but not mature larch plantations.

● In young forests, soil fauna biomass increased more under low nitrogen addition, suggesting nitrogen availability limits soil fauna growth.

● Energy flux in soil macro-food webs was driven by biomass distribution across trophic levels, with weak effects of taxonomic diversity.

Cite this article

Download citation ▾
Haozhen Chen, Bing Zhang, Anton Potapov, Pubin Hong, Bo Meng, Tao Yan, Qi Yang, Shaopeng Wang. Long-term nitrogen addition enhances the energy fluxes of soil macro-food webs in young but not mature forest plantations. Soil Ecology Letters, 2025, 7(4): 250338 DOI:10.1007/s42832-025-0338-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arim, M., Marquet, P.A., 2004. Intraguild predation: A widespread interaction related to species biology. Ecology Letters7, 557–564.

[2]

Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature515, 505–511.

[3]

Barnes, A.D., Jochum, M., Lefcheck, J.S., Eisenhauer, N., Scherber, C., O'Connor, M.I., de Ruiter, P., Brose, U., 2018. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends in Ecology & Evolution33, 186–197.

[4]

Barnes, A.D., Jochum, M., Mumme, S., Haneda, N.F., Farajallah, A., Widarto, T.H., Brose, U., 2014. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nature Communications5, 5351.

[5]

Barnes, A.D., Scherber, C., Brose, U., Borer, E.T., Ebeling, A., Gauzens, B., Giling, D.P., Hines, J., Isbell, F., Ristok, C., Tilman, D., Weisser, W.W., Eisenhauer, N., 2020. Biodiversity enhances the multitrophic control of arthropod herbivory. Science Advances6, eabb6603.

[6]

da Silva, P.M., Carvalho, F., Dirilgen, T., Stone, D., Creamer, R., Bolger, T., Sousa, J.P., 2016. Traits of collembolan life-form indicate land use types and soil properties across an European transect. Applied Soil Ecology97, 69–77.

[7]

de Ruiter, P.C., Neutel, A.M., Moore, J.C., 1995. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science269, 1257–1260.

[8]

Ehnes, R.B., Rall, B.C., Brose, U., 2011. Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecology Letters14, 993–1000.

[9]

Eisenbeis G, Wichard W., 1987. Atlas on the Biology of Soil Arthropods. Berlin: Springer.

[10]

Feng, Y.H., Schmid, B., Loreau, M., Forrester, D.I., Fei, S.L., Zhu, J.X., Tang, Z.Y., Zhu, J.L., Hong, P.B., Ji, C.J., Shi, Y., Su, H.J., Xiong, X.Y., Xiao, J., Wang, S.P., Fang, J.Y., 2022. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science376, 865–868.

[11]

Fujii, S., Berg, M. P., Cornelissen, J. H. C. 2020. Living Litter: Dynamic Trait Spectra Predict Fauna Composition. Trends in Ecology & Evolution35, 886–896.

[12]

Hong, P.B., Schmid, B., De Laender, F., Eisenhauer, N., Zhang, X.W., Chen, H.Z., Craven, D., De Boeck, H.J., Hautier, Y., Petchey, O.L., Reich, P.B., Steudel, B., Striebel, M., Thakur, M.P., Wang, S.P., 2022. Biodiversity promotes ecosystem functioning despite environmental change. Ecology Letters25, 555–569.

[13]

Hothorn, T., Bretz, F., Westfall, P., 2008. Simultaneous inference in general parametric models. Biometrical Journal50, 346–363.

[14]

Hua, F.Y., Bruijnzeel, L.A., Meli, P., Martin, P.A., Zhang, J., Nakagawa, S., Miao, X.R., Wang, W.Y., McEvoy, C., Peña-Arancibia, J.L., Brancalion, P.H.S., Smith, P., Edwards, D.P., Balmford, A., 2022. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science376, 839–844.

[15]

Hua, F.Y., Wang, X.Y., Zheng, X.L., Fisher, B., Wang, L., Zhu, J.G., Tang, Y., Yu, D.W., Wilcove, D.S., 2016. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nature Communications7, 12717.

[16]

Jochum, M., Barnes, A. D., Brose, U., Gauzens, B., Suennemann, M., Amyntas, A., Eisenhauer, N. 2021. For flux’s sake: General considerations for energy-flux calculations in ecological communities. Ecology and Evolution11, 12948–12969.

[17]

Korboulewsky, N., Perez, G., Chauvat, M., 2016. How tree diversity affects soil fauna diversity: a review. Soil Biology and Biochemistry94, 94–106.

[18]

Lefcheck, J.S., 2016. piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution7, 573–579.

[19]

Li, J.N., Zhao, J., Liao, X.H., Wang, W.Y., Long, X.W., Liu, Y.X., Xiao, J., Zhang, W., Wang, K.L., 2025. Nitrogen deposition exhibits limited influence on soil nematode energy fluxes and soil carbon and nitrogen mineralization in a typical karst ecosystem. Soil Ecology Letters7, 250298.

[20]

Li, Q., Bai, H.H., Liang, W.J., Xia, J.Y., Wan, S.Q., Van Der Putten, W.H., 2013. Nitrogen addition and warming independently influence the belowground micro-food web in a temperate steppe. PLoS One8, e60441.

[21]

Liu, J., Wu, N.N., Wang, H., Sun, J.F., Peng, B., Jiang, P., Bai, E., 2016. Nitrogen addition affects chemical compositions of plant tissues, litter and soil organic matter. Ecology97, 1796–1806.

[22]

Liu, S.J., Behm, J.E., Meng, Y.Y., Zhang, W., Xia, S.W., Yang, X.D., Fu, S.L., 2022. Nitrogen addition enhances the bottom-up effects in the detrital food web. Global Ecology and Conservation39, e02299.

[23]

Meunier, C.L., Gundale, M.J., Sánchez, I.S., Liess, A., 2016. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments. Global Change Biology22, 164–179.

[24]

Mulder, C., Elser, J.J., 2009. Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Global Change Biology15, 2730–2738.

[25]

Nessel, M.P., Konnovitch, T., Romero, G.Q., González, A.L., 2021. Nitrogen and phosphorus enrichment cause declines in invertebrate populations: a global meta-analysis. Biological Reviews96, 2617–2637.

[26]

Nie, S.P., Zheng, J.J., Luo, M.Y., Loreau, M., Gravel, D., Wang, S.P., 2023. Will a large complex system be productive. Ecology Letters26, 1325–1335.

[27]

Ning, S.J., He, X.R., Ma, T., Yan, T., 2024. Attenuated asymmetry of above- versus belowground stoichiometry to a decadal nitrogen addition during stand development. Ecology105, e4458.

[28]

Ochoa-Hueso, R., Rocha, I., Stevens, C.J., Manrique, E., Luciañez, M.J., 2014. Simulated nitrogen deposition affects soil fauna from a semiarid Mediterranean ecosystem in central Spain. Biology and Fertility of Soils50, 191–196.

[29]

Paquette, A., Hector, A., Castagneyrol, B., Vanhellemont, M., Koricheva, J., Scherer-Lorenzen, M., Verheyen, K., 2018. A million and more trees for science. Nature Ecology & Evolution2, 763–766.

[30]

Pichon, N.A., Cappelli, S.L., Soliveres, S., Hölzel, N., Klaus, V.H., Kleinebecker, T., Allan, E., 2020. Decomposition disentangled: a test of the multiple mechanisms by which nitrogen enrichment alters litter decomposition. Functional Ecology34, 1485–1496.

[31]

Potapov, A.M., Beaulieu, F., Birkhofer, K., Bluhm, S.L., Degtyarev, M.I., Devetter, M., Goncharov, A.A., Gongalsky, K.B., Klarner, B., Korobushkin, D.I., Liebke, D.F., Maraun, M., Mc Donnell, R.J., Pollierer, M.M., Schaefer, I., Shrubovych, J., Semenyuk, I.I., Sendra, A., Tuma, J., Tůmová, M., Vassilieva, A.B., Chen, T.W., Geisen, S., Schmidt, O., Tiunov, A.V., Scheu, S., 2022. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biological Reviews97, 1057–1117.

[32]

Potapov, A.M., Drescher, J., Darras, K., Wenzel, A., Janotta, N., Nazarreta, R., Kasmiatun, Laurent, V., Mawan, A., Utari, E.H., Pollierer, M.M., Rembold, K., Widyastuti, R., Buchori, D., Hidayat, P., Turner, E., Grass, I., Westphal, C., Tscharntke, T., Scheu, S., 2024. Rainforest transformation reallocates energy from green to brown food webs. Nature627, 116–122.

[33]

Potapov, A.M., Klarner, B., Sandmann, D., Widyastuti, R., Scheu, S., 2019a. Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. Journal of Animal Ecology88, 1845–1859.

[34]

Potapov, A.M., Rozanova, O.L., Semenina, E.E., Leonov, V.D., Belyakova, O.I., Bogatyreva, V.Y., Degtyarev, M.I., Esaulov, A.S., Korotkevich, A.Y., Kudrin, A.A., Malysheva, E.A., Mazei, Y.A., Tsurikov, S.M., Zuev, A.G., Tiunov, A.V., 2021. Size compartmentalization of energy channeling in terrestrial belowground food webs. Ecology102, e03421.

[35]

Potapov, A.M., Tiunov, A.V., Scheu, S., 2019b. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biological Reviews94, 37–59.

[36]

Rip, J.M.K., McCann, K.S., 2011. Cross-ecosystem differences in stability and the principle of energy flux. Ecology Letters14, 733–740.

[37]

Salmon, S., Artuso, N., Frizzera, L., Zampedri, R., 2008. Relationships between soil fauna communities and humus forms: response to forest dynamics and solar radiation. Soil Biology and Biochemistry40, 1707–1715.

[38]

Schulte-Uebbing, L., de Vries, W., 2018. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: a meta-analysis. Global Change Biology24, e416–e431.

[39]

Schneider, F. D., Brose, U., Rall, B. C., Guill, C. 2016. Animal diversity and ecosystem functioning in dynamic food webs. Nature Communications7, 12718.

[40]

Schwarzmüller, F., Eisenhauer, N., Brose, U., 2015. ‘Trophic whales’ as biotic buffers: weak interactions stabilize ecosystems against nutrient enrichment. Journal of Animal Ecology84, 680–691.

[41]

Sun, X., Marian, F., Bluhm, C., Maraun, M., Scheu, S., 2020. Response of Collembola to the addition of nutrients along an altitudinal gradient of tropical montane rainforests. Applied Soil Ecology147, 103382.

[42]

Sun, Z.Z., Liu, L.L., Peng, S.S., Peñuelas, J., Zeng, H., Piao, S., 2016. Age-related modulation of the nitrogen resorption efficiency response to growth requirements and soil nitrogen availability in a temperate pine plantation. Ecosystems19, 698–709.

[43]

Tylianakis, J.M., Didham, R.K., Bascompte, J., Wardle, D.A., 2008. Global change and species interactions in terrestrial ecosystems. Ecology Letters11, 1351–1363.

[44]

Wall, D.H., Bradford, M.A., St. John, M.G., Trofymow, J.A., Behan-Pelletier, V., Bignell, D.E., Dangerfield, J.M., Parton, W.J., Rusek, J., Voigt, W., Wolters, V., Gardel, H.Z., Ayuke, F.O., Bashford, R., Beljakova, O.I., Bohlen, P.J., Brauman, A., Flemming, S., Henschel, J.R., Johnson, D.L., Jones, T.H., Kovarova, M., Kranabetter, J.M., Kutny, L., Lin, K.C., Maryati, M., Masse, D., Pokarzhevskii, A., Rahman, H., Sabará, M.G., Salamon, J.A., Swift, M.J., Varela, A., Vasconcelos, H.L., White, D., Zou, X.M., 2008. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Global Change Biology14, 2661–2677.

[45]

Wang, C., Liu, D.W., Bai, E., 2018. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry120, 126–133.

[46]

Wang, C., Zhang, W.W., Li, X.N., Wu, J.Y., 2022. A global meta-analysis of the impacts of tree plantations on biodiversity. Global Ecology and Biogeography31, 576–587.

[47]

Wang, M.Q., Gao, D.D., Liu, S.G., Yan, W.D., Zhao, J., 2024. Forest restoration increases energy flow through the fungal channel and decreases energy flow through the herbivorous channel in soil micro-food webs. Soil Biology and Biochemistry198, 109561.

[48]

Wang, S.J., Chen, H.Y.H., Tan, Y., Fan, H., Ruan, H.H., 2016. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal eastern China. Scientific Reports,6, 20816.

[49]

Wang, S.J., Tan, Y., Fan, H., Ruan, H.H., Zheng, A.B., 2015. Responses of soil microarthropods to inorganic and organic fertilizers in a poplar plantation in a coastal area of eastern China. Applied Soil Ecology89, 69–75.

[50]

Wang, S.P., Brose, U., 2018. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecology Letters21, 9–20.

[51]

Wang, S.P., Brose, U., Gravel, D., 2019. Intraguild predation enhances biodiversity and functioning in complex food webs. Ecology100, e02616.

[52]

Xia, J.Y., Wan, S.Q., 2008. Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist179, 428–439.

[53]

Xu, G.L., Mo, J.M., Fu, S.L., Per, G., Zhou, G.Y., Xue, J.H., 2007. Response of soil fauna to simulated nitrogen deposition: a nursery experiment in subtropical China. Journal of Environmental Sciences19, 603–609.

[54]

Xu, G.L., Schleppi, P., Li, M.H., Fu, S.L., 2009. Negative responses of Collembola in a forest soil (Alptal, Switzerland) under experimentally increased N deposition. Environmental Pollution157, 2030–2036.

[55]

Xu, G.R., Zhang, S., Lin, Y.H., Ma, K.M., 2015. Context dependency of the density-body mass relationship in litter invertebrates along an elevational gradient. Soil Biology and Biochemistry88, 323–332.

[56]

Yan, T., Fang, Y.T., Wang, J.S., Song, H.H., Zhong, T.Y., Wang, P.L., 2024. Effects of long-term nitrogen addition on the shift of nitrogen cycle from open to closed along an age gradient of larch plantations in North China. Soil Biology and Biochemistry191, 109295.

[57]

Yan, T., Qu, T.T., Song, H.H., Ciais, P., Piao, S., Sun, Z.Z., Zeng, H., 2018a. Contrasting effects of N addition on the N and P status of understory vegetation in plantations of sapling and mature Larix principis-rupprechtii. Journal of Plant Ecology11, 843–852.

[58]

Yan, T., Qu, T.T., Sun, Z.Z., Dybzinski, R., Chen, A.P., Yao, X.C., Zeng, H., Piao, S., 2018b. Negative effect of nitrogen addition on soil respiration dependent on stand age: Evidence from a 7-year field study of larch plantations in northern China. Agricultural and Forest Meteorology262, 24–33.

[59]

Yan, T., Wang, L.Y., Zhong, T.Y., Fu, C., 2022. Decadal nitrogen addition increases divergence in intrinsic water-use efficiency between sapling and mature larch plantations. Forest Ecology and Management523, 120494.

[60]

Yang, X.D., Chen, J., 2009. Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biology and Biochemistry41, 910–918.

[61]

Yin, R., Liu, Q., Tian, S.Y., Potapov, A., Zhu, B., Yang, K.J., Li, Z.J., Zhuang, L.Y., Tan, B., Zhang, L., Xu, Z.F., Kardol, P., Schädler, M., Eisenhauer, N., 2022. Nitrogen deposition stimulates decomposition via changes in the structure and function of litter food webs. Soil Biology and Biochemistry166, 108522.

[62]

Zhao, J., Wan, S.Z., Fu, S.L., Wang, X.L., Wang, M., Liang, C.F., Chen, Y.Q., Zhu, X.L., 2013. Effects of understory removal and nitrogen fertilization on soil microbial communities in Eucalyptus plantations. Forest Ecology and Management,310, 80–86.

[63]

Zheng, L.L., Zhao, Q., Lin, G.G., Hong, X., Zeng, D.H., 2023. Nitrogen addition impacts on soil phosphorus transformations depending upon its influences on soil organic carbon and microbial biomass in temperate larch forests across northern China. CATENA230, 107252.

[64]

Zhu, J.J., Sun, Y.R., Zheng, X., Yang, K., Wang, G.G., Xia, C.Z., Sun, T., Zhang, J.X., 2023. A large carbon sink induced by the implementation of the largest afforestation program on Earth. Ecological Processes12, 44.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2441KB)

Supplementary files

Supplementary Information

460

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/