Contrasting patterns of protists on accumulation of fungal and bacterial necromass in arable soil: Result of a long-term field experiment

Yuncai Miao , Guiping Ye , Tiehu He , Junji Yuan , Deyan Liu , Weixin Ding

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250336

PDF (4467KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250336 DOI: 10.1007/s42832-025-0336-9
RESEARCH ARTICLE

Contrasting patterns of protists on accumulation of fungal and bacterial necromass in arable soil: Result of a long-term field experiment

Author information +
History +
PDF (4467KB)

Abstract

Microbial necromass plays a crucial role in soil organic carbon (SOC) formation. However, underlying abiotic and biotic factors on necromass accumulation remain poorly understood. Here, based on a 27-year field fertilization experiment in upland Ultisols, we investigated how changes in fungal and bacterial necromass relate to the abundance, diversity, community structure, and trophic co-occurrence networks of microbial communities, including fungi, bacteria, and protists. Fungal necromass contributed an average of 32.4% to SOC, a greater contribution than the 14.6% from bacterial necromass, regardless of fertilization regimes. Modularity analysis of the protistan-fungal network indicated that Ascomycota fungi were the primary contributors to fungal necromass accumulation in arable soil. The protistan community structure had a significantly negative effect on fungal necromass by directly decomposing fungal residues, rather than altering the fungal community structure. In contrast, soil total nitrogen positively influenced the persistence of bacterial necromass. Bacterial abundance was positively correlated with bacterial necromass. Protists increased bacterial abundance, thereby increasing bacterial necromass in the soil. Overall, protists regulated microbial necromass storage in arable soils either by decomposing fungal necromass or by increasing bacterial abundance.

Graphical abstract

Keywords

microbial necromass / fungi / bacteria / protists / trophic interactions

Highlight

● The Ascomycota played a major role in fungal necromass formation in soil.

● Protists reduced fungal necromass while promoting bacterial ncromass accumulation.

● Soil total nitrogen substantially decided the persistence of bacterial necromass in soil.

Cite this article

Download citation ▾
Yuncai Miao, Guiping Ye, Tiehu He, Junji Yuan, Deyan Liu, Weixin Ding. Contrasting patterns of protists on accumulation of fungal and bacterial necromass in arable soil: Result of a long-term field experiment. Soil Ecology Letters, 2025, 7(4): 250336 DOI:10.1007/s42832-025-0336-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barberán, A., Bates, S.T., Casamayor, E.O., Fierer, N., 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal6, 343–351.

[2]

Bates, S.T., Clemente, J.C., Flores, G.E., Walters, W.A., Parfrey, L.W., Knight, R., Fierer, N., 2013. Global biogeography of highly diverse protistan communities in soil. The ISME Journal7, 652–659.

[3]

Bölscher, T., Wadsö, L., Börjesson, G., Herrmann, A.M., 2016. Differences in substrate use efficiency: impacts of microbial community composition, land use management, and substrate complexity. Biology and Fertility of Soils52, 547–559.

[4]

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J.R., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L.J., Kaehler, B.D., Bin Kang, K., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson II, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., vander Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y.H., Wang, M.X., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y.L., Zhu, Q.Y., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology37, 852–857.

[5]

Bonkowski, M., 2004. Protozoa and plant growth: the microbial loop in soil revisited. New Phytologist162, 617–631.

[6]

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.

[7]

Camenzind, T., Mason-Jones, K., Mansour, I., Rillig, M.C., Lehmann, J., 2023. Formation of necromass-derived soil organic carbon determined by microbial death pathways. Nature Geoscience16, 115–122.

[8]

Cao, Y.F., Ding, J.Z., Li, J., Xin, Z.M., Ren, S., Wang, T., 2023. Necromass-derived soil organic carbon and its drivers at the global scale. Soil Biology and Biochemistry181, 109025.

[9]

Certano, A.K., Fernandez, C.W., Heckman, K.A., Kennedy, P.G., 2018. The afterlife effects of fungal morphology: contrasting decomposition rates between diffuse and rhizomorphic necromass. Soil Biology and Biochemistry126, 76–81.

[10]

Chakraborty, S., Old, K.M., 1982. Mycophagous soil amoeba: interactions with three plant pathogenic fungi. Soil Biology and Biochemistry14, 247–255.

[11]

Chen, L.J., Jiang, Y.J., Liang, C., Luo, Y., Xu, Q.S., Han, C., Zhao, Q.G., Sun, B., 2019. Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome7, 77.

[12]

Coelho, R.R.R., Sacramento, D.R., Linhares, L.F., 1997. Amino sugars in fungal melanins and soil humic acids. European Journal of Soil Science48, 425–429.

[13]

Cui, J., Zhu, Z.K., Xu, X.L., Liu, S.L., Jones, D.L., Kuzyakov, Y., Shibistova, O., Wu, J.S., Ge, T.D., 2020. Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biology and Biochemistry142, 107720.

[14]

Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro, F.D., Bastida, F., Berhe, A.A., Cutler, N.A., Gallardo, A., García-Velázquez, L., Hart, S.C., Hayes, P.E., He, J.Z., Hseu, Z.Y., Hu, H.W., Kirchmair, M., Neuhauser, S., Pérez, C.A., Reed, S.C., Santos, F., Sullivan, B.W., Trivedi, P., Wang, J.T., Weber-Grullon, L., Williams, M.A., Singh, B.K., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution4, 210–220.

[15]

Ding, X.L., Chen, S.Y., Zhang, B., Liang, C., He, H.B., Horwath, W.R., 2019. Warming increases microbial residue contribution to soil organic carbon in an alpine meadow. Soil Biology and Biochemistry135, 13–19.

[16]

Ding, X.L., Han, X.Z., Zhang, X.D., 2013. Long-term impacts of manure, straw, and fertilizer on amino sugars in a silty clay loam soil under temperate conditions. Biology and Fertility of Soils49, 949–954.

[17]

Ding, X.L., Zhang, X.D., He, H.B., Xie, H.T., 2010. Dynamics of soil amino sugar pools during decomposition processes of corn residues as affected by inorganic N addition. Journal of Soils and Sediments10, 758–766.

[18]

Elliott, E.T., 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal50, 627–633.

[19]

Elser, J.J., Fagan, W.F., Denno, R.F., Dobberfuhl, D.R., Folarin, A., Huberty, A., Interlandi, S., Kilham, S.S., McCauley, E., Schulz, K.L., Siemann, E.H., Sterner, R.W., 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature408, 578–580.

[20]

Erktan, A., Or, D., Scheu, S., 2020. The physical structure of soil: determinant and consequence of trophic interactions. Soil Biology and Biochemistry148, 107876.

[21]

Gao, Z.L., Karlsson, I., Geisen, S., Kowalchuk, G., Jousset, A., 2019. Protists: puppet masters of the rhizosphere microbiome. Trends in Plant Science24, 165–176.

[22]

Geisen, S., Mitchell, E.A.D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., Fernández, L.D., Jousset, A., Krashevska, V., Singer, D., Spiegel, F.W., Walochnik, J., Lara, E., 2018. Soil protists: a fertile frontier in soil biology research. FEMS Microbiology Reviews42, 293–323.

[23]

Geisen, S., Mitchell, E.A.D., Wilkinson, D.M., Adl, S., Bonkowski, M., Brown, M.W., Fiore-Donno, A.M., Heger, T.J., Jassey, V.E.J., Krashevska, V., Lahr, D.J.G., Marcisz, K., Mulot, M., Payne, R., Singer, D., Anderson, O.R., Charman, D.J., Ekelund, F., Griffiths, B.S., Rønn, R., Smirnov, A., Bass, D., Belbahri, L., Berney, C., Blandenier, Q., Chatzinotas, A., Clarholm, M., Dunthorn, M., Feest, A., Fernández, L.D., Foissner, W., Fournier, B., Gentekaki, E., Hájek, M., Helder, J., Jousset, A., Koller, R., Kumar, S., La Terza, A., Lamentowicz, M., Mazei, Y., Santos, S.S., Seppey, C.V.W., Spiegel, F.W., Walochnik, J., Winding, A., Lara, E., 2017. Soil protistology rebooted: 30 fundamental questions to start with. Soil Biology and Biochemistry111, 94–103.

[24]

Geisen, S., Tveit, A.T., Clark, I.M., Richter, A., Svenning, M.M., Bonkowski, M., Urich, T., 2015. Metatranscriptomic census of active protists in soils. The ISME Journal9, 2178–2190.

[25]

Gessner, M.O., Swan, C.M., Dang, C.K., McKie, B.G., Bardgett, R.D., Wall, D.H., Hättenschwiler, S., 2010. Diversity meets decomposition. Trends in Ecology & Evolution25, 372–380.

[26]

Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., de Vargas, C., Decelle, J., Del Campo, J., Dolan, J.R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W.H.C.F., Lara, E., Le Bescot, N., Logares, R., Mahé, F., Massana, R., Montresor, M., Morard, R., Not, F., Pawlowski, J., Probert, I., Sauvadet, A.L., Siano, R., Stoeck, T., Vaulot, D., Zimmermann, P., Christen, R., 2012. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Research41, D597–D604.

[27]

Hahn, M.W., Höfle, M.G., 2001. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiology Ecology35, 113–121.

[28]

Hannula, S.E., Boschker, H.T.S., de Boer, W., van Veen, J.A., 2012. 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline. New Phytologist194, 784–799.

[29]

Hassink, J., Bouwman, L.A., Zwart, K.B., Brussaard, L., 1993. Relationships between habitable pore space, soil biota and mineralization rates in grassland soils. Soil Biology and Biochemistry25, 47–55.

[30]

Herrmann, A.M., Coucheney, E., Nunan, N., 2014. Isothermal microcalorimetry provides new insight into terrestrial carbon cycling. Environmental Science & Technology48, 4344–4352.

[31]

Hoorman, J.J., 2012. Role of Soil Fungus. Columbus: Ohio State University.

[32]

Huang, W.G., Kuzyakov, Y., Niu, S.L., Luo, Y., Sun, B., Zhang, J.B., Liang, Y.T., 2023. Drivers of microbially and plant-derived carbon in topsoil and subsoil. Global Change Biology29, 6188–6200.

[33]

Jassey, V.E.J., Signarbieux, C., Hättenschwiler, S., Bragazza, L., Buttler, A., Delarue, F., Fournier, B., Gilbert, D., Laggoun-Défarge, F., Lara, E., Mills, R.T.E., Mitchell, E.A.D., Payne, R.J., Robroek, B.J.M., 2015. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming. Scientific Reports5, 16931.

[34]

Jiang, Y.J., Sun, B., Jin, C., Wang, F., 2013. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil. Soil Biology and Biochemistry60, 1–9.

[35]

Jiao, S., Xu, Y.Q., Zhang, J., Hao, X., Lu, Y.H., 2019. Core microbiota in agricultural soils and their potential associations with nutrient cycling. mSystems4, e00313–18.

[36]

Joergensen, R.G., 2018. Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils54, 559–568.

[37]

Kramer, S., Dibbern, D., Moll, J., Huenninghaus, M., Koller, R., Krueger, D., Marhan, S., Urich, T., Wubet, T., Bonkowski, M., Buscot, F., Lueders, T., Kandeler, E., 2016. Resource partitioning between bacteria, fungi, and protists in the detritusphere of an agricultural soil. Frontiers in Microbiology7, 1524.

[38]

Kuikman, P.J., Jansen, A.G., Vanveen, J.A., Zehnder, A.J.B., 1990. Protozoan predation and the turnover of soil organic carbon and nitrogen in the presence of plants. Biology and Fertility of Soils10, 22–28.

[39]

Laliberté, E., Zemunik, G., Turner, B.L., 2014. Environmental filtering explains variation in plant diversity along resource gradients. Science345, 1602–1605.

[40]

Langfelder, P., Horvath, S., 2012. Fast R functions for robust correlations and hierarchical clustering. Journal of Statistical Software46, 1–17.

[41]

Li, Z., Wei, X.M., Zhu, Z.K., Fang, Y.Y., Yuan, H.Z., Li, Y.H., Zhu, Q.H., Guo, X.B., Wu, J.S., Kuzyakov, Y., Ge, T.D., 2024. Organic fertilizers incorporation increased microbial necromass accumulation more than mineral fertilization in paddy soil via altering microbial traits. Applied Soil Ecology193, 105137.

[42]

Liang, C., Amelung, W., Lehmann, J., Kästner, M., 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology25, 3578–3590.

[43]

Liao, H., Hao, X.L., Li, Y.T., Ma, S.L., Gao, S.H., Cai, P., Chen, W.L., Huang, Q.Y., 2024. Protists regulate microbially mediated organic carbon turnover in soil aggregates. Global Change Biology30, e17102.

[44]

Lin, Y.X., Ye, G.P., Kuzyakov, Y., Liu, D.Y., Fan, J.B., Ding, W.X., 2019. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biology and Biochemistry134, 187–196.

[45]

Liu, Y., Li, D., Qi, J.J., Peng, Z.H., Chen, W.M., Wei, G.H., Jiao, S., 2021. Stochastic processes shape the biogeographic variations in core bacterial communities between aerial and belowground compartments of common bean. Environmental Microbiology23, 949–964.

[46]

Loladze, I., Elser, J.J., 2011. The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecology Letters14, 244–250.

[47]

Ma, S.H., Chen, G.P., Tian, D., Du, E.Z., Xiao, W., Jiang, L., Zhou, Z., Zhu, J.L., He, H.B., Zhu, B., Fang, J.Y., 2020. Effects of seven-year nitrogen and phosphorus additions on soil microbial community structures and residues in a tropical forest in Hainan Island, China. Geoderma361, 114034.

[48]

Magoč, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics27, 2957–2963.

[49]

Malik, A.A., Chowdhury, S., Schlager, V., Oliver, A., Puissant, J., Vazquez, P.G.M., Jehmlich, N., von Bergen, M., Griffiths, R.I., Gleixner, G., 2016. Soil fungal: bacterial ratios are linked to altered carbon cycling. Frontiers in Microbiology7, 1247.

[50]

Matz, C., Jürgens, K., 2003. Interaction of nutrient limitation and protozoan grazing determines the phenotypic structure of a bacterial community. Microbial Ecology45, 384–398.

[51]

Meng, X.T., Zhang, X.C., Li, Y.N., Jiao, Y.P., Fan, L.C., Jiang, Y.J., Qu, C.Y., Filimonenko, E., Jiang, Y.H., Tian, X.H., Shi, J.L., Kuzyakov, Y., 2024. Nitrogen fertilizer builds soil organic carbon under straw return mainly via microbial necromass formation. Soil Biology and Biochemistry188, 109223.

[52]

Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F.O., Tedersoo, L., Saar, I., Kõljalg, U., Abarenkov, K., 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research47, D259–D264.

[53]

Oliverio, A.M., Geisen, S., Delgado-Baquerizo, M., Maestre, F.T., Turner, B.L., Fierer, N., 2020. The global-scale distributions of soil protists and their contributions to belowground systems. Science Advances6, eaax8787.

[54]

Pernthaler, J., 2005. Predation on prokaryotes in the water column and its ecological implications. Nature Reviews Microbiology3, 537–546.

[55]

Petz, W., Foissner, W., Adam, H., 1985. Culture, food selection and growth rate in the mycophagous ciliate Grossglockneria acuta Foissner, 1980: first evidence of autochthonous soil ciliates. Soil Biology and Biochemistry17, 871–875.

[56]

Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., Glockner, F.O., 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research35, 7188–7196.

[57]

Roller, B.R.K., Schmidt, T.M., 2015. The physiology and ecological implications of efficient growth. The ISME Journal9, 1481–1487.

[58]

Rüger, L., Feng, K., Dumack, K., Freudenthal, J., Chen, Y., Sun, R.B., Wilson, M., Yu, P., Sun, B., Deng, Y., Hochholdinger, F., Vetterlein, D., Bonkowski, M., 2021. Assembly patterns of the rhizosphere microbiome along the longitudinal root axis of Maize (Zea mays L.). Frontiers in Microbiology12, 614501.

[59]

Schulz-Bohm, K., Geisen, S., Wubs, E.R.J., Song, C.X., de Boer, W., Garbeva, P., 2017. The prey's scent-volatile organic compound mediated interactions between soil bacteria and their protist predators. The ISME Journal11, 817–820.

[60]

Schweigert, M., Herrmann, S., Miltner, A., Fester, T., Kästner, M., 2015. Fate of ectomycorrhizal fungal biomass in a soil bioreactor system and its contribution to soil organic matter formation. Soil Biology and Biochemistry88, 120–127.

[61]

Sherr, B.F., Sherr, E.B., Berman, T., 1983. Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Applied and Environmental Microbiology45, 1196–1201.

[62]

Sokol, N.W., Sanderman, J., Bradford, M.A., 2019. Pathways of mineral-associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry. Global Change Biology25, 12–24.

[63]

Sradnick, A., Oltmanns, M., Raupp, J., Joergensen, R.G., 2014. Microbial residue indices down the soil profile after long-term addition of farmyard manure and mineral fertilizer to a sandy soil. Geoderma226−227, 79–84.

[64]

Stoeck, T., Bass, D., Nebel, M., Christen, R., Jones, M.D.M., Breiner, H.W., Richards, T.A., 2010. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Molecular Ecology19, 21–31.

[65]

Uroz, S., Courty, P.E., Oger, P., 2019. Plant symbionts are engineers of the plant-associated microbiome. Trends in Plant Science24, 905–916.

[66]

USDA, 2010. Keys to Soil Taxonomy. Washington: USDA197–240.

[67]

Wang, B.R., An, S.S., Liang, C., Liu, Y., Kuzyakov, Y., 2021a. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology and Biochemistry162, 108422.

[68]

Wang, S., Adhikari, K., Zhuang, Q.L., Gu, H.L., Jin, X.X., 2020. Impacts of urbanization on soil organic carbon stocks in the northeast coastal agricultural areas of China. Science of the Total Environment721, 137814.

[69]

Wang, X.X., Zhang, W., Liu, Y., Jia, Z.J., Li, H., Yang, Y.F., Wang, D.M., He, H.B., Zhang, X.D., 2021b. Identification of microbial strategies for labile substrate utilization at phylogenetic classification using a microcosm approach. Soil Biology and Biochemistry153, 107970.

[70]

Wang, Y., Yang, X.M., Harkes, P., Van Steenbrugge, J.J.M., Xu, M.G., Geissen, V., 2024. Soil microeukaryotic communities and phosphorus-cycling microorganisms respond to chloropicrin fumigation and azoxystrobin application. Science of the Total Environment933, 172871.

[71]

Warren, C., 2021. What are the products of enzymatic cleavage of organic N. Soil Biology and Biochemistry154, 108152.

[72]

Ye, G.P., Lin, Y.X., Kuzyakov, Y., Liu, D.Y., Luo, J.F., Lindsey, S., Wang, W.J., Fan, J.B., Ding, W.X., 2019a. Manure over crop residues increases soil organic matter but decreases microbial necromass relative contribution in upland Ultisols: results of a 27-year field experiment. Soil Biology and Biochemistry134, 15–24.

[73]

Ye, G.P., Lin, Y.X., Liu, D.Y., Chen, Z.M., Luo, J.F., Bolan, N., Fan, J.B., Ding, W.X., 2019b. Long-term application of manure over plant residues mitigates acidification, builds soil organic carbon and shifts prokaryotic diversity in acidic Ultisols. Applied Soil Ecology133, 24–33.

[74]

Ye, G.P., Lin, Y.X., Luo, J.F., Di, H.J., Lindsey, S., Liu, D.Y., Fan, J.B., Ding, W.X., 2020. Responses of soil fungal diversity and community composition to long-term fertilization: field experiment in an acidic Ultisol and literature synthesis. Applied Soil Ecology145, 103305.

[75]

Yu, Z., Chen, L., Pan, S., Li, Y., Kuzyakov, Y., Xu, J., Brookes, P.C., Luo, Y., 2018. Feedstock determines biochar-induced soil priming effects by stimulating the activity of specific microorganisms. European Journal of Soil Science69, 521–534.

[76]

Zhang, W., Cui, Y.H., Lu, X.K., Bai, E., He, H.B., Xie, H.T., Liang, C., Zhang, X.D., 2016. High nitrogen deposition decreases the contribution of fungal residues to soil carbon pools in a tropical forest ecosystem. Soil Biology and Biochemistry97, 211–214.

[77]

Zhao, Z.B., He, J.Z., Geisen, S., Han, L.L., Wang, J.T., Shen, J.P., Wei, W.X., Fang, Y.T., Li, P.P., Zhang, L.M., 2019. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome7, 33.

[78]

Zhou, J., Jiang, X., Zhou, B.K., Zhao, B.S., Ma, M.C., Guan, D.W., Li, J., Chen, S.F., Cao, F.M., Shen, D.L., Qin, J., 2016. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China. Soil Biology and Biochemistry95, 135–143.

[79]

Zhou, R.R., Liu, Y., Dungait, J.A.J., Kumar, A., Wang, J.S., Tiemann, L.K., Zhang, F.S., Kuzyakov, Y., Tian, J., 2023. Microbial necromass in cropland soils: a global meta-analysis of management effects. Global Change Biology29, 1998–2014.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4467KB)

Supplementary files

SEL-00336-OF-MYC_suppl_1

493

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/