Regulation of soil multifunctionality resistance by soil biodiversity on subtropical land-bridge islands

Ying Lei , Xinxin Zhang , Hongying Luo , Huiling Zhang , Bing Wang , Dima Chen

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250334

PDF (3477KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (4) : 250334 DOI: 10.1007/s42832-025-0334-y
RESEARCH ARTICLE

Regulation of soil multifunctionality resistance by soil biodiversity on subtropical land-bridge islands

Author information +
History +
PDF (3477KB)

Abstract

Habitat fragmentation poses significant threats to soil biodiversity and ecosystem stability, yet its impacts on multifunctionality resistance under global change remain unclear. Here, we investigated 61 islands in China’s subtropical Zhelin Lake Reservoir, through experiments simulating multiple stressors, to assess how changes in soil biodiversity induced by habitat fragmentation affect the multifunctionality resistance to nitrogen enrichment, warming, and wetting-drying cycles disturbances. Our results revealed that soil moisture, nematode/protist α-diversity, and multifunctionality resistance (quantified through nutrient cycling stability) declined with fragmentation intensity (from the large to small islands). Nematode α-diversity, particularly bacterivorous taxa, emerged as a keystone mediator, directly enhancing resistance to global change stressors via microbial regulation and nutrient cycling. Conversely, protist β-diversity reduced warming resistance through community destabilization. Structural equation modeling demonstrated dual fragmentation effects: direct moisture-driven functional decline versus indirect biodiversity-mediated stabilization. Stressor-specific mechanisms diverged fungal-nematode synergies buffered nitrogen enrichment impacts, while protist community turnover exacerbated thermal vulnerability. These findings challenge microbial-centric paradigms, highlighting the predominate role of microfauna in regulating soil multifunctionality resistance to global change. Our study highlights that conservation strategies should prioritize preserving larger fragments and soil micro-faunal diversity to sustain multifunctionality under global change, emphasizing the conservation of soil microorganisms such as nematodes and protists in fragmented landscapes.

Graphical abstract

Keywords

biodiversity-ecosystem stability / habitat fragmentation / nematode functional guilds / multitrophic interactions / multifunctionality resistance

Highlight

● Habitat fragmentation decreased α-diversity of nematodes and protozoa, but had little effect on β-diversity.

● Soil multifunctionality resistance declined with fragmentation intensity (from the large to small islands).

● Nematode α-diversity, particularly bacterivorous taxa, directly enhanced multifunctionality resistance.

● Protist β-diversity explained multifunctionality resistance to warming.

Cite this article

Download citation ▾
Ying Lei, Xinxin Zhang, Hongying Luo, Huiling Zhang, Bing Wang, Dima Chen. Regulation of soil multifunctionality resistance by soil biodiversity on subtropical land-bridge islands. Soil Ecology Letters, 2025, 7(4): 250334 DOI:10.1007/s42832-025-0334-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allison, S.D., Hanson, C.A., Treseder, K.K., 2007. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biology and Biochemistry39, 1878–1887.

[2]

Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature515, 505–511.

[3]

Bell, C.W., Fricks, B.E., Rocca, J.D., Steinweg, J.M., McMahon, S.K., Wallenstein, M.D., 2013. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. Journal of Visualized Experimentse50961, .

[4]

Bowker, M.A., Rengifo-Faiffer, M.C., Antoninka, A.J., Grover, H.S., Coe, K.K., Fisher, K., Mishler, B.D., Oliver, M., Stark, L.R., 2021. Community composition influences ecosystem resistance and production more than species richness or intraspecific diversity. Oikos130, 1399–1410.

[5]

Brookes, P.C., Powlson, D.S., Jenkinson, D.S., 1982. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry14, 319–329.

[6]

Collins, C.D., Banks-Leite, C., Brudvig, L.A., Foster, B.L., Cook, W.M., Damschen, E.I., Andrade, A., Austin, M., Camargo, J.L., Driscoll, D.A., Holt, R.D., Laurance, W.F., Nicholls, A.O., Orrock, J.L., 2017. Fragmentation affects plant community composition over time. Ecography40, 119–130.

[7]

Cosentino, D., Chenu, C., Le Bissonnais, Y., 2006. Aggregate stability and microbial community dynamics under drying–wetting cycles in a silt loam soil. Soil Biology and Biochemistry38, 2053–2062.

[8]

Crooks, K.R., 2002. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conservation Biology16, 488–502.

[9]

Crowther, T.W., Van den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L., Averill, C., Maynard, D.S., 2019. The global soil community and its influence on biogeochemistry. Science365, eaav0550.

[10]

De Vries, F.T., Liiri, M.E., Bjørnlund, L., Bowker, M.A., Christensen, S., Setälä, H.M., Bardgett, R.D., 2012. Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change2, 276–280.

[11]

Delgado-Baquerizo, M., Eldridge, D.J., Ochoa, V., Gozalo, B., Singh, B.K., Maestre, F.T., 2017. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters20, 1295–1305.

[12]

Delgado-Baquerizo, M., Maestre, F.T., Gallardo, A., Bowker, M.A., Wallenstein, M.D., Quero, J.L., Ochoa, V., Gozalo, B., García-Gómez, M., Soliveres, S., García-Palacios, P., Berdugo, M., Valencia, E., Escolar, C., Arredondo, T., Barraza-Zepeda, C., Bran, D., Carreira, J.A., Chaieb, M., Conceição, A.A., Derak, M., Eldridge, D.J., Escudero, A., Espinosa, C.I., Gaitán, J., Gatica, M.G., Gómez-González, S., Guzman, E., Gutiérrez, J.R., Florentino, A., Hepper, E., Hernández, R.M., Huber-Sannwald, E., Jankju, M., Liu, J.S., Mau, R.L., Miriti, M., Monerris, J., Naseri, K., Noumi, Z., Polo, V., Prina, A., Pucheta, E., Ramírez, E., Ramírez-Collantes, D.A., Romão, R., Tighe, M., Torres, D., Torres-Díaz, C., Ungar, E.D., Val, J., Wamiti, W., Wang, D.L., Zaady, E., 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature502, 672–676.

[13]

Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., Singh, B.K., 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications7, 10541.

[14]

Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro, F.D., Bastida, F., Berhe, A.A., Cutler, N.A., Gallardo, A., García-Velázquez, L, Hart, S.C., Hayes, P.E., He, J.Z., H seu Z.Y., Hu, H.W., Kirchmair, M., Neuhauser, S, Pérez, C.A., Reed, S.C., Santos, F., Sullivan, B.W., Trivedi, P., Wang, J.T., Weber-Grullon, L., Williams, M.A., Singh, B.K., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution4, 210–220.

[15]

Diamond, J., 2001. Dammed experiments. Science294, 1847–1848.

[16]

Dı́az, S., Cabido, M., 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution16, 646–655.

[17]

Donat, M.G., Lowry, A.L., Alexander, L.V., O’Gorman, P.A., Maher, N., 2016. More extreme precipitation in the world’s dry and wet regions. Nature Climate Change6, 508–513.

[18]

Downing, A.L., Leibold, M.A., 2010. Species richness facilitates ecosystem resilience in aquatic food webs. Freshwater Biology55, 2123–2137.

[19]

Durán, J., Morse, J.L., Rodríguez, A., Campbell, J.L., Christenson, L.M., Driscoll, C.T., Fahey, T.J., Fisk, M.C., Mitchell, M.J., Templer, P.H., Groffman, P.M., 2017. Differential sensitivity to climate change of C and N cycling processes across soil horizons in a northern hardwood forest. Soil Biology and Biochemistry107, 77–84.

[20]

Epp Schmidt, D.J., Pouyat, R., Szlavecz, K., Setälä, H., Kotze, D.J., Yesilonis, I., Cilliers, S., Hornung, E., Dombos, M., Yarwood, S.A., 2017. Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nature Ecology & Evolution1, 0123.

[21]

Evans, R.D., Rimer, R., Sperry, L., Belnap, J., 2001. Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecological Applications11, 1301–1310.

[22]

Fahrig, L., 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics34, 487–515.

[23]

Fanin, N., Kardol, P., Farrell, M., Kempel, A., Ciobanu, M., Nilsson, M.C., Gundale, M.J., Wardle, D.A., 2019. Effects of plant functional group removal on structure and function of soil communities across contrasting ecosystems. Ecology Letters22, 1095–1103.

[24]

Fu, S.L., Liu, M.Q., Zhang, W.X., Shao, Y.H., 2022. A review of recent advances in the study of geographical distribution and ecological functions of soil fauna diversity. Biodiversity Science30, 22435.

[25]

García-Palacios, P., Crowther, T.W., Dacal, M., Hartley, I.P., Reinsch, S., Rinnan, R., Rousk, J., van den Hoogen, J., Ye, J.S., Bradford, M.A., 2021. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nature Reviews Earth & Environment2, 507–517.

[26]

Geisen, S., Mitchell, E.A.D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., Fernández, L.D., Jousset, A., Krashevska, V., Singer, D., Spiegel, F.W., Walochnik, J., Lara, E., 2018. Soil protists: a fertile frontier in soil biology research. FEMS Microbiology Reviews42, 293–323.

[27]

Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., Lovejoy, T.E., Sexton, J.O., Austin, M.P., Collins, C.D., Cook, W.M., Damschen, E.I., Ewers, R.M., Foster, B.L., Jenkins, C.N., King, A.J., Laurance, W.F., Levey, D.J., Margules, C.R., Melbourne, B.A., Nicholls, A.O., Orrock, J.L., Song, D.X., Townshend, J.R., 2015. Habitat fragmentation and its lasting impact on earth’s ecosystems. Science Advances1, e1500052.

[28]

Hautier, Y., Isbell, F., Borer, E.T., Seabloom, E.W., Harpole, W.S., Lind, E.M., MacDougall, A.S., Stevens, C.J., Adler, P.B., Alberti, J., Bakker, J.D., Brudvig, L.A., Buckley, Y.M., Cadotte, M., Caldeira, M.C., Chaneton, E.J., Chu, C.J., Daleo, P., Dickman, C.R., Dwyer, J.M., Eskelinen, A., Fay, P.A., Firn, J., Hagenah, N., Hillebrand, H., Iribarne, O., Kirkman, K.P., Knops, J.M.H., La Pierre, K.J., McCulley, R.L., Morgan, J.W., Pärtel, M., Pascual, J., Price, J.N., Prober, S.M., Risch, A.C., Sankaran, M., Schuetz, M., Standish, R.J., Virtanen, R., Wardle, G.M., Yahdjian, L., Hector, A., 2018. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology & Evolution2, 50–56.

[29]

Hector, A., Bagchi, R., 2007. Biodiversity and ecosystem multifunctionality. Nature448, 188–190.

[30]

Hooper, D.U., Chapin III, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J., Wardle, D.A., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs75, 3–35.

[31]

Ingham, R.E., Trofymow, J.A., Ingham, E.R., Coleman, D.C., 1985. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecological Monographs55, 119–140.

[32]

IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC.

[33]

IPCC, 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC.

[34]

Jansson, J.K., Hofmockel, K.S., 2020. Soil microbiomes and climate change. Nature Reviews Microbiology18, 35–46.

[35]

Jiang, Y.J., Qian, H.Y., Wang, X.Y., Chen, L.J., Liu, M.Q., Li, H.X., Sun, B., 2018. Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates. Soil Biology and Biochemistry119, 22–31.

[36]

Jokimäki, J., Huhta, E., Itämies, J., Rahko, P., 1998. Distribution of arthropods in relation to forest patch size, edge, and stand characteristics. Canadian Journal of Forest Research28, 1068–1072.

[37]

Lagerström, A., Nilsson, M.C., Zackrisson, O., Wardle, D.A., 2007. Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression. Functional Ecology21, 1027–1033.

[38]

Laurance, W.F., Camargo, J.L.C., Fearnside, P.M., Lovejoy, T.E., Williamson, G.B., Mesquita, R.C.G., Meyer, C.F.J., Bobrowiec, P.E.D., Laurance, S.G.W., 2018. An Amazonian rainforest and its fragments as a laboratory of global change. Biological Reviews93, 223–247.

[39]

Lennon, J.T., Jones, S.E., 2011. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Reviews Microbiology9, 119–130.

[40]

Li, J.N., Peng, P.Q., Zhao, J., 2020a. Assessment of soil nematode diversity based on different taxonomic levels and functional groups. Soil Ecology Letters2, 33–39.

[41]

Li, Q., Liang, W.J., Jiang, Y., 2007. Present situation and prospect of soil nematode diversity in farmland ecosystems. Biodiversity Science15, 134–141.

[42]

Li, S.P., Wang, P.D., Chen, Y.J., Wilson, M.C., Yang, X., Ma, C., Lu, J.B., Chen, X.Y., Wu, J.G., Shu, W.S., Jiang, L., 2020b. Island biogeography of soil bacteria and fungi: similar patterns, but different mechanisms. The ISME Journal14, 1886–1896.

[43]

Li, Z.P., Wei, Z.F., Yang, X.D., 2016. Seasonal variations of soil nematode community at different secondary succession stages of evergreen broad-leaved forests in Ailao Mountain. Chinese Journal of Ecology35, 3023–3031.

[44]

Lindenmayer, D.B., Fischer, J 2013. Habitat Fragmentation and Landscape Change: An Ecological and Conservation Synthesis. Washington: Island Press.

[45]

Liu, J.L., Matthews, T.J., Zhong, L., Liu, J.J., Wu, D.H., Yu, M.J., 2020. Environmental filtering underpins the island species-area relationship in a subtropical anthropogenic archipelago. Journal of Ecology108, 424–432.

[46]

Liu, L., Xu, W., Lu, X.K., Zhong, B.Q., Guo, Y.X., Lu, X., Zhao, Y.H., He, W., Wang, S.H., Zhang, X.Y., Liu, X.J., Vitousek, P., 2022. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proceedings of the National Academy of Sciences of the United States of America119, e2121998119.

[47]

MacArthur, R., 1955. Fluctuations of animal populations and a measure of community stability. Ecology36, 533–536.

[48]

Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., García-Gómez, M., Bowker, M.A., Soliveres, S., Escolar, C., García-Palacios, P., Berdugo, M., Valencia, E., Gozalo, B., Gallardo, A., Aguilera, L., Arredondo, T., Blones, J., Boeken, B., Bran, D., Conceição, A.A., Cabrera, O., Chaieb, M., Derak, M., Eldridge, D.J., Espinosa, C.I., Florentino, A., Gaitán, J., Gatica, M.G., Ghiloufi, W., Gómez-González, S., Gutiérrez, J.R., Hernández, R.M., Huang, X.W., Huber-Sannwald, E., Jankju, M., Miriti, M., Monerris, J., Mau, R.L., Morici, E., Naseri, K., Ospina, A., Polo, V., Prina, A., Pucheta, E., Ramírez-Collantes, D.A., Romão, R., Tighe, M., Torres-Díaz, C., Val, J., Veiga, J.P., Wang, D.L., Zaady, E., 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science335, 214–218.

[49]

Melillo, J.M., Frey, S.D., DeAngelis, K.M., Werner, W.J., Bernard, M.J., Bowles, F.P., Pold, G., Knorr, M.A., Grandy, A.S., 2017. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science358, 101–105.

[50]

Mikha, M.M., Rice, C.W., Milliken, G.A., 2005. Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biology and Biochemistry37, 339–347.

[51]

Mouquet, N., Loreau, M., 2002. Coexistence in metacommunities: the regional similarity hypothesis. The American Naturalist159, 420–426.

[52]

Mulder, C., De Zwart, D., Van Wijnen, H.J., Schouten, A.J., Breure, A.M., 2003. Observational and simulated evidence of ecological shifts within the soil nematode community of agroecosystems under conventional and organic farming. Functional Ecology17, 516–525.

[53]

Oliver, T.H., Isaac, N.J.B., August, T.A., Woodcock, B.A., Roy, D.B., Bullock, J.M., 2015. Declining resilience of ecosystem functions under biodiversity loss. Nature Communications6, 10122.

[54]

Orwin, K.H., Wardle, D.A., 2004. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biology and Biochemistry36, 1907–1912.

[55]

Riutta, T., Slade, E.M., Bebber, D.P., Taylor, M.E., Malhi, Y., Riordan, P., Macdonald, D.W., Morecroft, M.D., 2012. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biology and Biochemistry49, 124–131.

[56]

Shan, W.J., Wang, Q.G., Yan, G.Y., Xing, Y.J., 2016. Interaction effects of soil microbial carbon and nitrogen: a review. Chinese Agricultural Science Bulletin32, 65–71.

[57]

Tilman, D., Downing, J.A., 1994. Biodiversity and stability in grasslands. Nature367, 363–365.

[58]

Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., Siemann, E., 1997. The influence of functional diversity and composition on ecosystem processes. Science277, 1300–1302.

[59]

Valencia, E., Gross, N., Quero, J.L., Carmona, C.P., Ochoa, V., Gozalo, B., Delgado-Baquerizo, M., Dumack, K., Hamonts, K., Singh, B.K., Bonkowski, M., Maestre, F.T., 2018. Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality. Global Change Biology24, 5642–5654.

[60]

Wagg, C., Bender, S.F., Widmer, F., Van Der Heijden, M.G.A., 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America111, 5266–5270.

[61]

Wang, B., Wu, L.J., Chen, D.M., Wu, Y., Hu, S.J., Li, L.H., Bai, Y.F., 2020. Grazing simplifies soil micro-food webs and decouples their relationships with ecosystem functions in grasslands. Global Change Biology26, 960–970.

[62]

Wilken, S., Huisman, J., Naus-Wiezer, S., Donk, E.V., 2013. Mixotrophic organisms become more heterotrophic with rising temperature. Ecology Letters16, 225–233.

[63]

Wilschut, R.A., Geisen, S., Martens, H., Kostenko, O., de Hollander, M., Ten Hooven, F.C., Weser, C., Snoek, L.B., Bloem, J., Caković, D., Čelik, T., Koorem, K., Krigas, N., Manrubia, M., Ramirez, K.S., Tsiafouli, M.A., Vreš, B., van der Putten, W.H., 2019. Latitudinal variation in soil nematode communities under climate warming-related range-expanding and native plants. Global Change Biology25, 2714–2726.

[64]

Wilson, M.C., Chen, X.Y., Corlett, R.T., Didham, R.K., Ding, P., Holt, R.D., Holyoak, M., Hu, G., Hughes, A.C., Jiang, L., Laurance, W.F., Liu, J.J., Pimm, S.L., Robinson, S.K., Russo, S.E., Si, X.F., Wilcove, D.S., Wu, J.G., Yu, M.J., 2016. Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landscape Ecology31, 219–227.

[65]

Wu, J.G., Huang, J.H., Han, X.G., Xie, Z.Q., Gao, X.M., 2003. Three-Gorges dam--experiment in habitat fragmentation. Science300, 1239–1240.

[66]

Wu, Y., Wang, B., Wu, L.J., Liu, S.G., Yue, L.Y., Wu, J.P., Chen, D.M., 2022. Fifty-year habitat subdivision enhances soil microbial biomass and diversity across subtropical land-bridge islands. Frontiers in Microbiology13, 1063340.

[67]

Xiao, H.F., Griffiths, B., Chen, X.Y., Liu, M.Q., Jiao, J.G., Hu, F., Li, H.X., 2010. Influence of bacterial-feeding nematodes on nitrification and the ammonia oxidizing bacteria (AOB) community composition. Applied Soil Ecology45, 131–137.

[68]

Xie, Y., Zhang, J.B., Meng, L., Müller, C., Cai, Z.C., 2015. Variations of soil N transformation and N2O emissions in tropical secondary forests along an aridity gradient. Journal of Soils and Sediments15, 1538–1548.

[69]

Xu, Q.N., Yang, X., Song, J., Ru, J.Y., Xia, J.Y., Wang, S.P., Wan, S.Q., Jiang, L., 2022. Nitrogen enrichment alters multiple dimensions of grassland functional stability via changing compositional stability. Ecology Letters25, 2713–2725.

[70]

Yan, G.Y., Xing, Y.J., Wang, J.Y., Li, Z.H., Wang, L.G., Wang, Q.G., Xu, L.J., Zhang, Z., Zhang, J.H., Dong, X.D., Shan, W.J., Guo, L., Han, S.J., 2018. Sequestration of atmospheric CO2 in boreal forest carbon pools in northeastern China: effects of nitrogen deposition. Agricultural and Forest Meteorology248, 70–81.

[71]

Yan, Y.Z., Qi, Z.M., Zhang, Q., 2025. Cross-scale effects of habitat fragmentation on local biodiversity and ecosystem multifunctionality in a fragmented grassland landscape. Journal of Ecology113, 1573–1584.

[72]

Yu, M.J., Hu, G., Feeley, K.J., Wu, J.G., Ding, P., 2012. Richness and composition of plants and birds on land-bridge islands: effects of island attributes and differential responses of species groups. Journal of Biogeography39, 1124–1133.

[73]

Zhang, S.X., Li, Q., Lü, Y., Zhang, X.P., Liang, W.J., 2013. Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems. Soil Biology and Biochemistry62, 147–156.

[74]

Zhang, T.L., Zhang, S.Y., Wang, L., Lin, D., Ni, B., Cai, T.G., Du, S., Zhu, D., 2025. Land-use types impact soil ecosystem functions by altering the soil multitrophic biodiversity and interactions. Soil Ecology Letters7, 250301.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3477KB)

Supplementary files

SEL-00334-OF-CDM_suppl_1

610

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/