Divergent effects of root and leaf litter on soil microbial diversity decouple soil C-N release

Xinxin Zhang , Hongying Luo , Xu Yang , Ying Lei , Bing Wang , Huiling Zhang , Dima Chen

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250332

PDF (5536KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250332 DOI: 10.1007/s42832-025-0332-0
RESEARCH ARTICLE

Divergent effects of root and leaf litter on soil microbial diversity decouple soil C-N release

Author information +
History +
PDF (5536KB)

Abstract

Litter decomposition drives grassland biogeochemical cycles, yet the distinct roles of leaf and root litter identity, richness, and functional traits in regulating soil microbial diversity and decomposition remain poorly resolved. Using a 120-day mesocosm experiment with leaf and root litter of the dominant species in Inner Mongolia grassland, we assessed how litter type (leaf vs. root), richness (1, 2, 4 species), and identity (root or leaf litter of 4 dominant species) modulate microbial diversity and soil carbon (C) and nitrogen (N) release. We found that litter type and identity more strongly influenced microbial biomass than species richness, and root litter supported higher bacterial alpha diversity but lower microbial biomass and fungal beta diversity compared to leaf litter. Root litter identity primarily affected the overall beta diversity patterns of both bacterial and fungal communities, while greater leaf litter richness significantly suppressed soil C release. Mechanistically, root litter identity associated with the resource-conservative strategy directly controlled soil C release and indirectly regulated N retention via bacterial beta diversity. Conversely, leaf litter type characterized by the resource-acquisitive strategy primarily affected soil C release by altering microbial alpha diversity, and could also enhance N release by directly increasing soil microbial biomass. Our results underscore the significant influence of litter type, identity, and richness on soil microbial diversity and C and N release, supporting the strategic use of litter identity to modulate C and N release and the enhancement of C sequestration through increased leaf litter richness in grassland restoration efforts.

Graphical abstract

Keywords

litter trait / species identity / species richness / SOM release / litter functional traits / C-N decoupling

Highlight

● Root litter boosts bacterial diversity but reduces microbial biomass vs. leaf litter.

● Litter identity outweighs richness in shaping microbial communities and C-N release.

● Leaf litter richness suppresses CO2 emissions, while root traits control N retention.

● Root recalcitrance sustains fungal beta diversity, whereas leaf chemistry drives bacterial convergence.

● Integrated leaf-root management balances grassland C sequestration and nutrient cycling.

Cite this article

Download citation ▾
Xinxin Zhang, Hongying Luo, Xu Yang, Ying Lei, Bing Wang, Huiling Zhang, Dima Chen. Divergent effects of root and leaf litter on soil microbial diversity decouple soil C-N release. Soil Ecology Letters, 2025, 7(3): 250332 DOI:10.1007/s42832-025-0332-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Austin, A.T., Vivanco, L., 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature442, 555–558.

[2]

Bardgett, R.D., Shine, A., 1999. Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biology and Biochemistry31, 317–321.

[3]

Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature515, 505–511.

[4]

Bastida, F., Eldridge, D.J., García, C., Kenny Png, G., Bardgett, R.D., Delgado-Baquerizo, M., 2021. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. The ISME Journal15, 2081–2091.

[5]

Bengtson, P., Bengtsson, G., 2007. Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures. Ecology Letters10, 783–790.

[6]

Berg, B., McClaugherty, C., 2003. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. New York: Springer Verlag.

[7]

Chapman, S.K., Newman, G.S., 2010. Biodiversity at the plant–soil interface: microbial abundance and community structure respond to litter mixing. Oecologia162, 763–769.

[8]

Chen, H.M., Oram, N.J., Barry, K.E., Mommer, L., van Ruijven, J., de Kroon, H., Ebeling, N., Eisenhauer, C., Fischer, G., Gleixner, G., Gessler, A., González Macé, O.G., Hacker, N., Hildebrandt, A., Lange, M., Scherer-Lorenzen, M., Scheu, Y., Oelmann, Y., Wagg, C., Wilcke, W., Wirth, C., Weigelt, A., 2017a. Root chemistry and soil fauna, but not soil abiotic conditions explain the effects of plant diversity on root decomposition. Oecologia185, 499–511.

[9]

Chen, X.L., Chen, H.Y.H., 2021. Plant mixture balances terrestrial ecosystem C:N:P stoichiometry. Nature Communications12, 4562.

[10]

Chen, Y.C., Ma, S.Q., Sun, J., Wang, X.D., Cheng, G.W., Lu, X.Y., 2017b. Chemical diversity and incubation time affect non-additive responses of soil carbon and nitrogen cycling to litter mixtures from an alpine steppe soil. Soil Biology and Biochemistry109, 124–134.

[11]

Cline, L.C., Hobbie, S.E., Madritch, M.D., Buyarski, C.R., Tilman, D., Cavender‐Bares, J.M., 2018. Resource availability underlies the plant-fungal diversity relationship in a grassland ecosystem. Ecology99, 204–216.

[12]

Cong, W.F., van Ruijven, J., van der Werf, W., De Deyn, G.B., Mommer, L., Berendse, F., Hoffland, E., 2015. Plant species richness leaves a legacy of enhanced root litter-induced decomposition in soil. Soil Biology and Biochemistry80, 341–348.

[13]

Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K., Paul, E., 2013. The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology 19, 988–995.

[14]

Dal Bello, M., Lee, H., Goyal, A., Gore, J., 2021. Resource–diversity relationships in bacterial communities reflect the network structure of microbial metabolism. Nature Ecology & Evolution5, 1424–1434.

[15]

Delgado-Baquerizo, M., Fry, E.L., Eldridge, D.J., de Vries, F.T., Manning, P., Hamonts, K., Kattge, J., Boenisch, G., Singh, B.K., Bardgett, R.D., 2018. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytologist219, 574–587.

[16]

Domeignoz-Horta, L.A., Pold, G., Liu, X.J.A., Frey, S.D., Melillo, J.M., DeAngelis, K.M., 2020. Microbial diversity drives carbon use efficiency in a model soil. Nature Communications11, 3684.

[17]

Eisenhauer, N., Beßler, H., Engels, C., Gleixner, G., Habekost, M., Milcu, A., Partsch, S., Sabais, A.C.W., Scherber, C., Steinbeiss, S., Weigelt, A., Weisser, W.W., Scheu, S., 2010. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology91, 485–496.

[18]

Fanin, N., Bertrand, I., 2016. Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient. Soil Biology and Biochemistry94, 48–60.

[19]

Feng, J.G., He, K.Y., Zhang, Q.F., Han, M.G., Zhu, B., 2022. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Global Change Biology28, 3426–3440.

[20]

Fernandez, C.W., Kennedy, P.G., 2018. Melanization of mycorrhizal fungal necromass structures microbial decomposer communities. Journal of Ecology106, 468–479.

[21]

Freschet, G.T., Cornwell, W.K., Wardle, D.A., Elumeeva, T.G., Liu, W.D., Jackson, B.G., Onipchenko, V.G., Soudzilovskaia, N.A., Tao, J.P., Cornelissen, J.H.C., 2013. Linking litter decomposition of above-and below-ground organs to plant-soil feedbacks worldwide. Journal of Ecology101, 943–952.

[22]

Frostegård, Å., Tunlid, A., Bååth, E., 2011. Use and misuse of PLFA measurements in soils. Soil Biology and Biochemistry43, 1621–1625.

[23]

Gao, J., Kang, F.F., Li, T.Y., Song, X.S., Zhao, W.H., Yu, X.W., Han, H.R., 2015. Assessing the effect of leaf litter diversity on the decomposition and associated diversity of fungal assemblages. Forests6, 2371–2386.

[24]

García-Palacios, P., McKie, B.G., Handa, I.T., Frainer, A., Hättenschwiler, S., 2016a. The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes. Functional Ecology30, 819–829.

[25]

García-Palacios, P., Shaw, E.A., Wall, D.H., Hättenschwiler, S., 2016b. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecology Letters19, 554–563.

[26]

Gessner, M.O., Swan, C.M., Dang, C.K., McKie, B.G., Bardgett, R.D., Wall, D.H., Hättenschwiler, S., 2010. Diversity meets decomposition. Trends in Ecology & Evolution25, 372–380.

[27]

Grinhut, T., Hadar, Y., Chen, Y., 2007. Degradation and transformation of humic substances by saprotrophic fungi: processes and mechanisms. Fungal Biology Reviews21, 179–189.

[28]

Guiz, J., Hillebrand, H., Borer, E.T., Abbas, M., Ebeling, A., Weigelt, A., Oelmann, Y., Fornara, D., Wilcke, W., Temperton, V.M., Weisser, W.W., 2016. Long-term effects of plant diversity and composition on plant stoichiometry. Oikos125, 613–621.

[29]

Hättenschwiler, S., Tiunov, A.V., Scheu, S., 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics36, 191–218.

[30]

Hobbie, S.E., 2015. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends in Ecology & Evolution30, 357–363.

[31]

Hu, X.K., Liu, L.L., Zhu, B., Du, E.Z., Hu, X.Y., Li, P., Zhou, Z., Ji, C.J., Zhu, J.L., Shen, H.H., Fang, J.Y., 2016. Asynchronous responses of soil carbon dioxide, nitrous oxide emissions and net nitrogen mineralization to enhanced fine root input. Soil Biology and Biochemistry92, 67–78.

[32]

Iversen, C.M., Sloan, V.L., Sullivan, P.F., Euskirchen, E.S., McGuire, A.D., Norby, R.J., Walker, A.P., Warren, J.M., Wullschleger, S.D., 2015. The unseen iceberg: plant roots in arctic tundra. New Phytologist205, 34–58.

[33]

Jackson, R.B., Canadell, J., Ehleringer, J.R., Mooney, H.A., Sala, O.E., Schulze, E.D., 1996. A global analysis of root distributions for terrestrial biomes. Oecologia108, 389–411.

[34]

Jewell, M.D., Shipley, B., Low-Décarie, E., Tobner, C.M., Paquette, A., Messier, C., Reich, P.B., 2017. Partitioning the effect of composition and diversity of tree communities on leaf litter decomposition and soil respiration. Oikos126, 959–971.

[35]

Jiang, Y.L., Liang, X., Liu, J.H., Chen, Y., Deng, X.P., Duan, P.P., Yang, X.Y., Li, J., 2024. Responses of soil nitrogen and carbon mineralization rates to fertilization and crop rotation. Journal of Soils and Sediments24, 1289–1301.

[36]

Keiluweit, M., Nico, P., Harmon, M.E., Mao, J.D., Pett-Ridge, J., Kleber, M., 2015. Long-term litter decomposition controlled by manganese redox cycling. Proceedings of the National Academy of Sciences of the United States of America112, E5253–E5260.

[37]

Keller, A.B., Brzostek, E.R., Craig, M.E., Fisher, J.B., Phillips, R.P., 2021. Root‐derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type. Ecology Letters24, 626–635.

[38]

Kubartová, A., Ranger, J., Berthelin, J., Beguiristain, T., 2009. Diversity and decomposing ability of saprophytic fungi from temperate forest litter. Microbial Ecology58, 98–107.

[39]

Lavelle, P., Rodríguez, N., Arguello, O., Bernal, J., Botero, C., Chaparro, P., Gómez, Y., Gutiérrez, A., Hurtado, M.D.P., Loaiza, S., Pullido, S.X., Rodríguez, E., Sanabria, C., Velásquez, E., Fonte, S.J., 2014. Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agriculture, Ecosystems & Environment185, 106–117.

[40]

Leff, J.W., Bardgett, R.D., Wilkinson, A., Jackson, B.G., Pritchard, W.J., De Long, J.R., Oakley, S., Mason, K.E., Ostle, N.J., Johnson, D., Baggs, E.M., Fierer, N., 2018. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. The ISME Journal12, 1794–1805.

[41]

Leimer, S., Oelmann, Y., Wirth, C., Wilcke, W., 2015. Time matters for plant diversity effects on nitrate leaching from temperate grassland. Agriculture, Ecosystems & Environment211, 155–163.

[42]

Li, C., Chen, X.L., Jia, Z.H., Zhai, L., Zhang, B., Grüters, U., Ma, S.L., Qian, J., Liu, X., Zhang, J.C., Müller, C., 2024. Meta-analysis reveals the effects of microbial inoculants on the biomass and diversity of soil microbial communities. Nature Ecology & Evolution8, 1270–1284.

[43]

Liang, C., Schimel, J.P., Jastrow, J.D., 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology2, 17105.

[44]

Liu, C.C., Liu, Y.G., Guo, K., Zhao, H.W., Qiao, X.G., Wang, S.J., Zhang, L., Cai, X.L., 2016. Mixing litter from deciduous and evergreen trees enhances decomposition in a subtropical karst forest in southwestern China. Soil Biology and Biochemistry101, 44–54.

[45]

Liu, S.G., Plaza, C., Ochoa‐Hueso, R., Trivedi, C., Wang, J.T., Trivedi, P., Zhou, G.Y., Piñeiro, J., Martins, C.S.C., Singh, B.K., Delgado‐Baquerizo, M., 2023. Litter and soil biodiversity jointly drive ecosystem functions. Global Change Biology29, 6276–6285.

[46]

Ma, C.G., Xiong, Y.M., Li, L., Guo, D.L., 2016. Root and leaf decomposition become decoupled over time: implications for below-and above-ground relationships. Functional Ecology30, 1239–1246.

[47]

Man, J., Tang, B., Xing, W., Wang, Y., Zhao, X.Z., Bai, Y.F., 2020. Root litter diversity and functional identity regulate soil carbon and nitrogen cycling in a typical steppe. Soil Biology and Biochemistry141, 107688.

[48]

McTiernan, K.B., Ineson, P., Coward, P.A., 1997. Respiration and nutrient release from tree leaf litter mixtures. Oikos78, 527–538.

[49]

Meier, C.L., Bowman, W.D., 2008. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proceedings of the National Academy of Sciences of the United States of America105, 19780–19785.

[50]

Meier, C.L., Bowman, W.D., 2010. Chemical composition and diversity influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling: implications for plant species loss. Soil Biology and Biochemistry42, 1447–1454.

[51]

Mooshammer, M., Wanek, W., Hämmerle, I., Fuchslueger, L., Hofhansl, F., Knoltsch, A., Schnecker, J., Takriti, M., Watzka, M., Wild, B., Keiblinger, K.M., Zechmeister-Boltenstern, S., Richter, A., 2014. Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling. Nature Communications5, 3694.

[52]

Mori, A.S., Cornelissen, J.H.C., Fujii, S., Okada, K.I., Isbell, F., 2020. A meta-analysis on decomposition quantifies afterlife effects of plant diversity as a global change driver. Nature Communications11, 4547.

[53]

Orwin, K.H., Wardle, D.A., Greenfield, L.G., 2006. Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology87, 580–593.

[54]

Parton, W., Silver, W.L., Burke, I.C., Grassens, L., Harmon, M.E., Currie, W.S., King, J.Y., Adair, E.C., Brandt, L.A., Hart, S.C., Fasth, B., 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science315, 361–364.

[55]

Pereira, S., Burešová, A., Kopecky, J., Mádrová, P., Aupic-Samain, A., Fernandez, C., Baldy, V., Sagova-Mareckova, M., 2019. Litter traits and rainfall reduction alter microbial litter decomposers: the evidence from three Mediterranean forests. FEMS Microbiology Ecology95, fiz168.

[56]

Philippot, L., Spor, A., Hénault, C., Bru, D., Bizouard, F., Jones, C.M., Sarr, A., Maron, P.A., 2013. Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal7, 1609–1619.

[57]

Prescott, C.E., Grayston, S.J., 2013. Tree species influence on microbial communities in litter and soil: current knowledge and research needs. Forest Ecology and Management309, 19–27.

[58]

Riley, R., Salamov, A.A., Brown, D.W., Nagy, L.G., Floudas, D., Held, B.W., Levasseur, A., Lombard, V., Morin, E., Otillar, R., Lindquist, E.A., Sun, H., LaButti, K.M., Schmutz, J., Jabbour, D., Luo, H., Baker, S.E., Pisabarro, A.G., Walton, J.D., Blanchette, R.A., Henrissat, B., Martin, F., Cullen, D., Hibbett, D.S., Grigoriev, I.V., 2014. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proceedings of the National Academy of Sciences of the United States of America111, 9923–9928.

[59]

Santonja, M., Foucault, Q., Rancon, A., Gauquelin, T., Fernandez, C., Baldy, V., Mirleau, P., 2018. Contrasting responses of bacterial and fungal communities to plant litter diversity in a Mediterranean oak forest. Soil Biology and Biochemistry125, 27–36.

[60]

Santonja, M., Rancon, A., Fromin, N., Baldy, V., Hättenschwiler, S., Fernandez, C., Montès, N., Mirleau, P., 2017. Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a Mediterranean shrubland. Soil Biology and Biochemistry111, 124–134.

[61]

Shi, C.P., Urbina‐Malo, C., Tian, Y., Heinzle, J., Kwatcho Kengdo, S., Inselsbacher, E., Borken, W., Schindlbacher, A., Wanek, W., 2023. Does long-term soil warming affect microbial element limitation? A test by short-term assays of microbial growth responses to labile C, N and P additions. Global Change Biology29, 2188–2202.

[62]

Sinsabaugh, R.L., Turner, B.L., Talbot, J.M., Waring, B.G., Powers, J.S., Kuske, C.R., Moorhead, D.L., Follstad Shah, J.J., 2016. Stoichiometry of microbial carbon use efficiency in soils. Ecological Monographs86, 172–189.

[63]

Sokol, N.W., Bradford, M.A., 2019. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience12, 46–53.

[64]

Sokol, N.W., Sanderman, J., Bradford, M.A., 2019. Pathways of mineral‐associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Global Change Biology25, 12–24.

[65]

Song, X.X., Wang, Z.K., Tang, X.L., Xu, D.L., Liu, B.T., Mei, J.H., Huang, S.L., Huang, G., 2020. The contributions of soil mesofauna to leaf and root litter decomposition of dominant plant species in grassland. Applied Soil Ecology155, 103651.

[66]

Spohn, M., 2016. Element cycling as driven by stoichiometric homeostasis of soil microorganisms. Basic and Applied Ecology17, 471–478.

[67]

Sun, T., Hobbie, S.E., Berg, B., Zhang, H.G., Wang, Q.K., Wang, Z.W., Hättenschwiler, S., 2018. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proceedings of the National Academy of Sciences of the United States of America115, 10392–10397.

[68]

Talbot, J.M., Treseder, K.K., 2012. Interactions among lignin, cellulose, and nitrogen drive litter chemistry—decay relationships. Ecology93, 345–354.

[69]

Thakur, M.P., van der Putten, W.H., Wilschut, R.A., Veen, G.C., Kardol, P., van Ruijven, J., Allan, E., Roscher, C., van Kleunen, M., Bezemer, T.M., 2021. Plant–soil feedbacks and temporal dynamics of plant diversity–productivity relationships. Trends in Ecology & Evolution36, 651–661.

[70]

Urbanová, M., Šnajdr, J., Baldrian, P., 2015. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology and Biochemistry84, 53–64.

[71]

Waldrop, M.P., Zak, D.R., Blackwood, C.B., Curtis, C.D., Tilman, D., 2006. Resource availability controls fungal diversity across a plant diversity gradient. Ecology Letters9, 1127–1135.

[72]

Wang, B., Wu, L.J., Chen, D.M., Wu, Y., Hu, S.J., Li, L.H., Bai, Y.F., 2020. Grazing simplifies soil micro-food webs and decouples their relationships with ecosystem functions in grasslands. Global Change Biology26, 960–970.

[73]

Waring, B., Gee, A., Liang, G.P., Adkins, S., 2022. A quantitative analysis of microbial community structure-function relationships in plant litter decay. iScience25, 104523.

[74]

Wu, L.J., Chen, H.S., Chen, D.M., Wang, S.P., Wu, Y., Wang, B., Liu, S.E., Yue, L.Y., Yu, J., Bai, Y.F., 2023. Soil biota diversity and plant diversity both contributed to ecosystem stability in grasslands. Ecology Letters26, 858–868.

[75]

Wu, Y., Wu, J.P., Saleem, M., Wang, B., Hu, S.J., Bai, Y.F., Pan, Q.M., Chen, D.M., 2020. Ecological clusters based on responses of soil microbial phylotypes to precipitation explain ecosystem functions. Soil Biology and Biochemistry142, 107717.

[76]

Xia, M.X., Talhelm, A.F., Pregitzer, K.S., 2015. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests. New Phytologist208, 715–726.

[77]

Xing, W., Lu, X.M., Xu, F.W., Ying, J.Y., Chen, D.M., Bai, Y.F., 2019. Linking microbial community structure to carbon substrate chemistry in soils following aboveground and belowground litter additions. Applied Soil Ecology141, 18–25.

[78]

Zhang, S., Wang, Y.P., Fang, X., Chen, J.L., Cao, N.N., Xu, P.P., Yu, M.X., Xiong, X., Tan, X.P., Deng, Q., Yan, J.H., 2023. Plant above-ground biomass and litter quality drive soil microbial metabolic limitations during vegetation restoration of subtropical forests. Soil Ecology Letters5, 220154.

[79]

Zhao, L.N., Yu, B.B., Wang, M.M., Zhang, J., Shen, Z.F., Cui, Y., Li, J.Y., Ye, J., Zu, W.Z., Liu, X.J., Fan, Z.J., Fu, S.L., Shao, Y.H., 2021. The effects of plant resource inputs on the energy flux of soil nematodes are affected by climate and plant resource type. Soil Ecology Letters3, 134–144.

[80]

Zheng, J.J., Freschet, G.T., Tedersoo, L., Li, S.G., Yan, H., Jiang, L., Wang, H.M., Ma, N., Dai, X.Q., Fu, X.L., Kou, L., 2024. A trait-based root acquisition-defence-decomposition framework in angiosperm tree species. Nature Communications15, 5311.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5536KB)

Supplementary files

SEL-00332-OF-DMC_suppl_1

775

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/