Host genotype-driven assembly of bacterial communities in the rice root microdomains

Yi Wan , Zhi Ma , Jiaping Lang , Xuebin Xu , Caihong Shao , Jianping Chen , Tida Ge , Haoqing Zhang

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250330

PDF (3978KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250330 DOI: 10.1007/s42832-025-0330-2
RESEARCH ARTICLE

Host genotype-driven assembly of bacterial communities in the rice root microdomains

Author information +
History +
PDF (3978KB)

Abstract

The root microdomain represents a “hot spot” where microorganisms play a pivotal role in driving ecological processes and interact intimately with the host plants. In this study, we investigated 11 indica and 4 japonica rice varieties as test crops and analyzed the structural and functional characteristics of the microbial communities in the rhizosphere, rhizoplane and root endosphere ofindica and japonica rice using high-throughput sequencing technology. Our findings reveal that, during the assembly process within the root microdomain, community diversity gradually decreases, while the filtering effect of the rice root intensifies from the rhizosphere to the root endosphere. Gammaproteobacteria tended to be recruited by both indica and japonica rice, while Clostridia and Betaproteobacteria were specifically recruited by japonica rice to colonize the rhizoplane and root endosphere. In contrast, Bacteroidia were depleted in the root microdomain of both indica and japonica rice, whereas Deltaproteobacteria and Nitrospira were specifically depleted in the root microdomain of indica rice. Compared to japonica rice, the bacteria enriched in the root microdomain of indica rice were primarily affiliated with Bacillales, Pseudomonadales, and Nitrospirales. Moreover, the indica rice had a lower number of instances of co-occurrence (edge/node ratio), network density and degree, while displayed a higher number of modularity, among-module connectivities, average path length and closeness centrality compared with japonica rice. These findings provide detailed insights into the assembly process of the microbiome in the root microdomain of different rice cultivars, as well as host genotype-regulated changes in microbial communities.

Graphical abstract

Keywords

rhizosphere / rhizoplane / root endosphere / microbial communities / microbial co-occurrence patterns

Highlight

● Gammaproteobacteria were recruited and Bacteroidia were filtered by rice roots.

● Nutrients cycling and beneficial bacteria were enriched by indica compared to japonica .

Indica rice microbiomes prioritize modular organization, while japonica networks favor dense. interactions.

Cite this article

Download citation ▾
Yi Wan, Zhi Ma, Jiaping Lang, Xuebin Xu, Caihong Shao, Jianping Chen, Tida Ge, Haoqing Zhang. Host genotype-driven assembly of bacterial communities in the rice root microdomains. Soil Ecology Letters, 2025, 7(3): 250330 DOI:10.1007/s42832-025-0330-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aira, M., Gómez-Brandón, M., Lazcano, C., Bååth, E., Domínguez, J., 2010. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biology and Biochemistry42, 2276–2281.

[2]

Ashok Kumar, B. R. Maurya, R. Raghuwanshi, Vijay Singh Meena M. Tofazzal Islam. 2017. Co-inoculation with enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. Journal of Plant Growth Regulation 36, 608–617.

[3]

Bai, B., Liu, W.D., Qiu, X.Y., Zhang, J., Zhang, J.Y., Bai, Y., 2022. The root microbiome: community assembly and its contributions to plant fitness. Journal of Integrative Plant Biology64, 230–243.

[4]

Bier, R.L., Vass, M., Székely, A.J., Langenheder, S., 2022. Ecosystem size-induced environmental fluctuations affect the temporal dynamics of community assembly mechanisms. The ISME Journal16, 2635–2643.

[5]

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.

[6]

Chai, Y.N., Qi, Y.H., Goren, E., Chiniquy, D., Sheflin, A.M., Tringe, S.G., Prenni, J.E., Liu, P., Schachtman, D.P., 2024. Root-associated bacterial communities and root metabolite composition are linked to nitrogen use efficiency in sorghum. mSystems9, e0119023.

[7]

Chaudhary, S., Sindhu, S.S., Dhanker, R., Kumari, A., 2023. Microbes-mediated sulphur cycling in soil: impact on soil fertility, crop production and environmental sustainability. Microbiological Research271, 127340.

[8]

Chen, P., Cheng, Y., Wang, N., Yu, J.G., Zhao, Y., Xue, L.H., 2025. Roles of straw return in shaping denitrifying bacteria in rice rhizosphere soils through effects on root exudates and soil metabolites. Soil Ecology Letters7, 240261.

[9]

Dubey, A., Malla, M.A., Kumar, A., Dayanandan, S., Khan, M.L., 2020. Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture. Critical Reviews in Biotechnology40, 1210–1231.

[10]

Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A., Sundaresan, V., 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America112, E911–E920.

[11]

Fu, X.H., Huang, Y., Fu, Q., Qiu, Y.B., Zhao, J.Y., Li, J.X., Wu, X.C., Yang, Y.H., Liu, H., Yang, X., Chen, H.H., 2023. Critical transition of soil microbial diversity and composition triggered by plant rhizosphere effects. Frontiers in Plant Science14, 1252821.

[12]

Fukagawa, N.K., Ziska, L.H., 2019. Rice: importance for global nutrition. Journal of Nutritional Science and Vitaminology65, S2–S3.

[13]

Gao, C., Xu, L., Montoya, L., Madera, M., Hollingsworth, J., Chen, L., Purdom, E., Singan, V., Vogel, J., Hutmacher, R.B., Dahlberg, J.A., Coleman-Derr, D., Lemaux, P.G., Taylor, J.W., 2022. Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. Nature Communications13, 3867.

[14]

Goberna, M., Montesinos-Navarro, A., Valiente-Banuet, A., Colin, Y., Gómez-Fernández, A., Donat, S., Navarro-Cano, J.A., Verdú, M., 2019. Incorporating phylogenetic metrics to microbial co-occurrence networks based on amplicon sequences to discern community assembly processes. Molecular Ecology Resources19, 1552–1564.

[15]

Guo, D.J., Singh, R.K., Singh, P., Li, D.P., Sharma, A., Xing, Y.X., Song, X.P., Yang, L.T., Li, Y.R., 2020. Complete genome sequence of Enterobacter roggenkampii ED5, a nitrogen fixing plant growth promoting endophytic bacterium with biocontrol and stress tolerance properties, isolated from sugarcane root. Frontiers in Microbiology11, 580081.

[16]

Guo, S., Geisen, S., Mo, Y.N., Yan, X.Y., Huang, R.L., Liu, H.J., Gao, Z.L., Tao, C.Y., Deng, X.H., Xiong, W., Shen, Q.R., Kowalchuk, G.A., Li, R., 2024. Predatory protists impact plant performance by promoting plant growth-promoting rhizobacterial consortia. The ISME Journal18, wrae180.

[17]

Ha, J.W., Gao, Y., Zhang, R., Li, K., Zhang, Y.J., Niu, X.L., Chen, X., Luo, K., Chen, Y.H., 2021. Diversity of the bacterial microbiome associated with the endosphere and rhizosphere of different cassava (Manihot esculenta crantz) genotypes. Frontiers in Microbiology12, 729022.

[18]

Hu, L.F., Robert, C.A.M., Cadot, S., Zhang, X., Ye, M., Li, B.B., Manzo, D., Chervet, N., Steinger, T., Van Der Heijden, M.G.A., Schlaeppi, K., Erb, M., 2018. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications9, 2738.

[19]

Huang, X.H., Wang, B., Li, P.F., Chen, A.Q., Cui, J.X., Chen, Y.Q., Gao, W.S., 2025. Organic management promotes nitrogen transformation in tea plantations soil: a case study from southwestern China. Applied Soil Ecology206, 105878.

[20]

Jensen, S.I., Kühl, M., Priemé, A., 2007. Different bacterial communities associated with the roots and bulk sediment of the seagrass Zostera marina. FEMS Microbiology Ecology62, 108–117.

[21]

Jin, K., Wei, X., Wu, H. Chen, S., Du S., Wei, G. 2024. Reinvestigating the regulatory gate hypothesis for a better understanding of microbial redundancy in soil. Soil Ecology Letters 6, 240256.

[22]

Kang, Y.J., Wu, H.T., Guan, Q., Zhang, Z.S., Wang, W.F., 2024. Earthworms and warming alter methane uptake and methane-cycling microbial community in meadow soil. Soil Ecology Letters6, 240255.

[23]

Kwak, M.J., Kong, H.G., Choi, K., Kwon, S.K., Song, J.Y., Lee, J., Lee, P.A., Choi, S.Y., Seo, M., Lee, H.J., Jung, E.J., Park, H., Roy, N., Kim, H., Lee, M.M., Rubin, E.M., Lee, S.W., Kim, J.F., 2018. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology36, 1100–1109.

[24]

Lange, M., Azizi-Rad, M., Dittmann, G., Lange, D.F., Orme, A.M., Schroeter, S.A., Simon, C., Gleixner, G., 2024. Stability and carbon uptake of the soil microbial community is determined by differences between rhizosphere and bulk soil. Soil Biology and Biochemistry189, 109280.

[25]

Larsbrink, J., McKee, L.S., 2020. Bacteroidetes bacteria in the soil: glycan acquisition, enzyme secretion, and gliding motility. Advances in Applied Microbiology110, 63–98.

[26]

Li, H., Su, J.Q., Yang, X.R., Zhu, Y.G., 2019. Distinct rhizosphere effect on active and total bacterial communities in paddy soils. Science of the Total Environment649, 422–430.

[27]

Li, Q., Huang, Z.H., Deng, C.S., Lin, K.H., Hua, S.M., Chen, S.P., 2022. Endophytic Klebsiella sp. San01 promotes growth performance and induces salinity and drought tolerance in sweet potato (Ipomoea batatas L.). Journal of Plant Interactions 17, 608–619.

[28]

Ling, N., Wang, T.T., Kuzyakov, Y., 2022. Rhizosphere bacteriome structure and functions. Nature Communications13, 836.

[29]

Liu, H.W., Li, J.Y., Carvalhais, L.C., Percy, C.D., Prakash Verma, J., Schenk, P.M., Singh, B.K., 2021. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens. New Phytologist229, 2873–2885.

[30]

Liu, P.J., Pommerenke, B., Conrad, R., 2018. Identification of Syntrophobacteraceae as major acetate-degrading sulfate reducing bacteria in Italian paddy soil. Environmental Microbiology20, 337–354.

[31]

Liu, Y.P., Xu, Z.H., Chen, L., Xun, W.B., Shu, X., Chen, Y., Sun, X.L., Wang, Z.Q., Ren, Y., Shen, Q.R., Zhang, R.F., 2024. Root colonization by beneficial rhizobacteria. FEMS Microbiology Reviews48, fuad066.

[32]

Louca, S., Parfrey, L.W., Doebeli, M., 2016. Decoupling function and taxonomy in the global ocean microbiome. Science353, 1272–1277.

[33]

Madhaiyan, M., Poonguzhali, S., Lee, J. S., Saravanan, V. S., Lee, K. C., Santhanakrishnan, P. 2010. Enterobacter arachidis sp. nov., a plant-growth-promoting diazotrophic bacterium isolated from rhizosphere soil of groundnut. International Journal of Systematic and Evolutionary Microbiology 60(Pt 7), 1559–1564.

[34]

Masuda, Y., Shiratori, Y., Ohba, H., Ishida, T., Takano, R., Satoh, S., Shen, W.S., Gao, N., Itoh, H., Senoo, K., 2021. Enhancement of the nitrogen-fixing activity of paddy soils owing to iron application. Soil Science and Plant Nutrition67, 243–247.

[35]

McPherson, M.R., Wang, P., Marsh, E.L., Mitchell, R.B., Schachtman, D.P., 2018. Isolation and analysis of microbial communities in soil, rhizosphere, and roots in perennial grass experiments. Journal of Visualized Experiments 57932.

[36]

Minamisawa, K., Nishioka, K., Miyaki, T., Ye, B., Miyamoto, T., You, M., Saito, A., Saito, M., Barraquio, W.L., Teaumroong, N., Sein, T., Sato, T., 2004. Anaerobic nitrogen-fixing consortia consisting of clostridia isolated from gramineous plants. Applied and Environmental Microbiology70, 3096–3102.

[37]

Naylor, D., DeGraaf, S., Purdom, E., Coleman-Derr, D., 2017. Drought and host selection influence bacterial community dynamics in the grass root microbiome. The ISME Journal11, 2691–2704.

[38]

Pan, X.Y., Raaijmakers, J.M., Carrión, V.J., 2023. Importance of Bacteroidetes in host-microbe interactions and ecosystem functioning. Trends in Microbiology31, 959–971.

[39]

Pei, Z.F., Hong, M., 2024. Fungal residues were more sensitive to nitrogen addition than bacterial residues in a meadow grassland soil. Soil Ecology Letters6, 230216.

[40]

Singh, P., Singh, R.K., Zhou, Y., Wang, J., Jiang, Y., Shen, N.K., Wang, Y.B., Yang, L.F., Jiang, M.G., 2022. Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: a review. Journal of Plant Interactions17, 220–238.

[41]

Sun, X.L., Xu, Z.H., Xie, J.Y., Hesselberg-Thomsen, V., Tan, T.M., Zheng, D.Y., Strube, M.L., Dragoš, A., Shen, Q.R., Zhang, R.F., Kovács, Á.T., 2022. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. The ISME Journal16, 774–787.

[42]

Wagner, M.R., Lundberg, D.S., Del Rio, T.G., Tringe, S.G., Dangl, J.L., Mitchell-Olds, T., 2016. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nature Communications7, 12151.

[43]

Walitang, D.I., Kim, K., Madhaiyan, M., Kim, Y.K., Kang, Y., Sa, T., 2017. Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of rice. BMC Microbiology17, 209.

[44]

Wang, F.Y., Zhang, H.Q., Liu, H.W., Wu, C.F., Wan, Y., Zhu, L.F., Yang, J., Cai, P., Chen, J.P., Ge, T.D., 2024a. Combating wheat yellow mosaic virus through microbial interactions and hormone pathway modulations. Microbiome12, 200.

[45]

Wang, Q.T., Zhang, Z.L., Guo, W.J., Zhu, X.M., Xiao, J., Liu, Q., Yin, H.J., 2021. Absorptive and transport roots differ in terms of their impacts on rhizosphere soil carbon storage and stability in alpine forests. Soil Biology and Biochemistry161, 108379.

[46]

Wang, T.J., Sun, D.D., Xiong, W., Kuang, F.M., Xue, K., Shi, M.H., Xi, D.D., Zhu, D.Q., 2024b. Impact of root-stem coupling damage from mechanical transplanting on the growth of large rice seedlings. Plant Growth Regulation104, 1075–1086.

[47]

Wang, Z.C., Cui, D.Y., Liu, C., Zhao, J.B., Liu, J., Liu, N., Tang, D.Z., Hu, Y.X., 2019. TCP transcription factors interact with ZED1-related kinases as components of the temperature-regulated immunity. Plant, Cell & Environment42, 2045–2056.

[48]

Wen, T., Xie, P.H., Yang, S.D., Niu, G.Q., Liu, X.Y., Ding, Z.X., Xue, C., Liu, Y.X., Shen, Q.R., Yuan, J., 2022. ggClusterNet: an R package for microbiome network analysis and modularity-based multiple network layouts. iMeta1, e32.

[49]

Wippel, K., Tao, K., Niu, Y.L., Zgadzaj, R., Kiel, N., Guan, R., Dahms, E., Zhang, P.F., Jensen, D.B., Logemann, E., Radutoiu, S., Schulze-Lefert, P., Garrido-Oter, R., 2021. Host preference and invasiveness of commensal bacteria in the Lotus and Arabidopsis root microbiota. Nature Microbiology6, 1150–1162.

[50]

Wu, C.F., Mei, Z.C., Zhang, H.Q., Chen, J.P., Yang, J., Ge, T.D., Cai, P., 2024. Host genotype-specific rhizosphere protists associate soil-borne viral disease resistance in wheat. Plant and Soil 2024.

[51]

Wu, L.Q., Ma, K., Lu, Y.H., 2009. Prevalence of betaproteobacterial sequences in nifH gene pools associated with roots of modern rice cultivars. Microbial Ecology57, 58–68.

[52]

Xiao, R.X., Zhang, C., Guo, X.R., Li, H., Lu, H., 2021. MYB transcription factors and its regulation in secondary cell wall formation and lignin biosynthesis during xylem development. International Journal of Molecular Sciences22, 3560.

[53]

Xiao, Y.P., Zou, H.C., Li, J.J., Song, T.X., Lv, W.T., Wang, W., Wang, Z.Y., Tao, S.Y., 2022. Impact of quorum sensing signaling molecules in gram-negative bacteria on host cells: current understanding and future perspectives. Gut Microbes14, 2039048.

[54]

Xu, S.Y., Wang, B.Z., Li, Y., Jiang, D.Q., Zhou, Y.T., Ding, A.Q., Zong, Y.X., Ling, X.T., Zhang, S.Y., Lu, H.J., 2020. Ubiquity, diversity, and activity of comammox Nitrospira in agricultural soils. Science of the Total Environment706, 135684.

[55]

Yan, H.L., Jin, X., Zhou, X.L., Gu, S.S., Wu, X.X., Li, P., Shi, D.J., Liu, H.J., Lu, G.X., Deng, Y., 2025. Long-term cultivation of grass-legume mixtures changed the assembly process of the microbial community and increased microbial community stability. ISME Communications5, ycae157.

[56]

Yang, J., Jiang, H.C., Liu, W., Huang, L.Q., Huang, J.R., Wang, B.C., Dong, H.L., Chu, R.K., Tolic, N., 2020. Potential utilization of terrestrially derived dissolved organic matter by aquatic microbial communities in saline lakes. The ISME Journal14, 2313–2324.

[57]

Yang, K.M., Fu, R.X., Feng, H.C., Jiang, G.F., Finkel, O., Sun, T.Y., Liu, M.C., Huang, B.W., Li, S., Wang, X.F., Yang, T.J., Wang, Y.K., Wang, S.M., Xu, Y.C., Shen, Q.R., Friman, V.P., Jousset, A., Wei, Z., 2023. RIN enhances plant disease resistance via root exudate-mediated assembly of disease-suppressive rhizosphere microbiota. Molecular Plant16, 1379–1395.

[58]

Yuan, M.M., Guo, X., Wu, L.W., Zhang, Y., Xiao, N.J., Ning, D.L., Shi, Z., Zhou, X.S., Wu, L.Y., Yang, Y.F., Tiedje, J.M., Zhou, J.Z., 2021. Climate warming enhances microbial network complexity and stability. Nature Climate Change11, 343–348.

[59]

Zhang, H.Q., Wu, C.F., Wang, F.Y., Wang, H.T., Chen, G.X., Cheng, Y., Chen, J.P., Yang, J., Ge, T.D., 2022a. Wheat yellow mosaic enhances bacterial deterministic processes in a plant-soil system. Science of the Total Environment812, 151430.

[60]

Zhang, J.Y., Liu, W.D., Bu, J.S., Lin, Y.B., Bai, Y., 2023. Host genetics regulate the plant microbiome. Current Opinion in Microbiology72, 102268.

[61]

Zhang, J.Y., Liu, Y.X., Zhang, N., Hu, B., Jin, T., Xu, H.R., Qin, Y., Yan, P.X., Zhang, X.N., Guo, X.X., Hui, J., Cao, S.Y., Wang, X., Wang, C., Wang, H., Qu, B.Y., Fan, G.Y., Yuan, L.X., Garrido-Oter, R., Chu, C.C., Bai, Y., 2019. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology 37, 676–684.

[62]

Zhang, L.Y., Zhang, M.L., Huang, S.Y., Li, L.J., Gao, Q., Wang, Y., Zhang, S.Q., Huang, S.M., Yuan, L., Wen, Y.C., Liu, K.L., Yu, X.C., Li, D.C., Zhang, L., Xu, X.P., Wei, H.L., He, P., Zhou, W., Philippot, L., Ai, C., 2022b. A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nature Communications13, 3361.

[63]

Zhang, X.X., Ma, Y.N., Wang, X., Liao, K.J., He, S.W., Zhao, X., Guo, H.B., Zhao, D.F., Wei, H.L., 2022c. Dynamics of rice microbiomes reveal core vertically transmitted seed endophytes. Microbiome10, 216.

[64]

Zhao, M.L., Zhao, J., Yuan, J., Hale, L., Wen, T., Huang, Q.W., Vivanco, J.M., Zhou, J.Z., Kowalchuk, G.A., Shen, Q.R., 2021. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant, Cell & Environment44, 613–628.

[65]

Zhu, L.Y., Luan, L., Chen, Y., Wang, X.Y., Zhou, S.G., Zou, W.X., Han, X.R., Duan, Y.H., Zhu, B., Li, Y., Liu, W.Z., Zhou, J.Z., Zhang, J.B., Jiang, Y.J., Sun, B., 2024. Community assembly of organisms regulates soil microbial functional potential through dual mechanisms. Global Change Biology30, e17160.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3978KB)

Supplementary files

SEL-00330-OF-HQZ_suppl_1

612

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/