Unoccupied mounds of soil-feeding termites host diverse soil fauna both in primary and logged tropical forests

Jiri Tuma , Kalsum M. Yusah , Tom M. Fayle

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250329

PDF (2506KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250329 DOI: 10.1007/s42832-025-0329-8
RESEARCH ARTICLE

Unoccupied mounds of soil-feeding termites host diverse soil fauna both in primary and logged tropical forests

Author information +
History +
PDF (2506KB)

Abstract

Many termite species create conspicuous, aboveground soil nest mounds. Once the resident termite colony disappears, the mound structure gradually disintegrates. The now empty mound, which is rich in nutrients, and stable in microclimate, potentially provides an important microhabitat for a different range of species. However, the communities in unoccupied termite mounds remain poorly explored, and the relative importance of these mounds in anthropogenically modified habitats is completely unknown. Here we quantify the invertebrate communities in unoccupied mounds of the soil-feeding termites Dicuspiditermes spp. in primary and logged lowland tropical rain forest in Malaysian Borneo and compare them to communities found in control soil. We also quantify the introgression of plant roots into the mounds. We found the unoccupied mounds support a range of invertebrate groups, with ants (Formicidae) having the highest abundances of any group across both habitats. Mounds supported significantly higher abundances of invertebrates overall in both primary forest (nine times more) and logged forest (five times more). However, the number of invertebrate taxa did not differ between mounds and control soils. Plant root mass was higher in control soils than in unoccupied mounds, possibly due to dominance of fine roots in the latter microhabitat. Using previous estimates of mound densities, we estimate that unoccupied Dicuspiditermes spp. mounds support >340000 invertebrate individuals in primary forest and >17000 individuals in logged forest per hectare. Our results indicate that unoccupied mounds are an important, although ephemeral, microhabitat for a range of invertebrate groups, in both pristine and anthropogenically disturbed habitats.

Graphical abstract

Keywords

termite / Dicuspiditermes / Borneo / tropics / rainforest

Highlight

● We quantified soil fauna communities in unoccupied Dicuspiditermes spp. mounds.

● Mounds supported up to nine times more soil fauna individuals than control soil.

● Ants were the most abundant group with active colonies within the unoccupied mounds.

Cite this article

Download citation ▾
Jiri Tuma, Kalsum M. Yusah, Tom M. Fayle. Unoccupied mounds of soil-feeding termites host diverse soil fauna both in primary and logged tropical forests. Soil Ecology Letters, 2025, 7(3): 250329 DOI:10.1007/s42832-025-0329-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe, T., Matsumoto, T., 1979. Studies on the distribution and ecological role of termites in a lowland rain forest of west Malaysia: (3) distribution and abundance of termites in Pasoh forest reserve. Japanese Journal of Ecology29, 337–351.

[2]

Ackerman, I.L., Teixeira, W.G., Riha, S.J., Lehmann, J., Fernandes, E.C.M., 2007. The impact of mound-building termites on surface soil properties in a secondary forest of central Amazonia. Applied Soil Ecology37, 267–276.

[3]

Adepegba, D., Adegoke, E.A., 1974. A study of the compressive strenght and stabilizing chemicals of termite mounds in Nigeria. Soil Science117, 175–179.

[4]

Akhtar, M.S., Riaz, S., 1992. A new termite from Malaysia. Pakistan Journal of Zoology24, 35–37.

[5]

AntWeb, 2024. AntWeb [Online]. Available at the website of antweb.org (accessed Aug 27, 2024).

[6]

Araujo, R.L., 1970. Termites of the neotropical region. Biology of Termites2, 527–576.

[7]

Bardunias, P.M., Calovi, D.S., Carey, N., Soar, R., Turner, J.S., Nagpal, R., Werfel, J., 2020. The extension of internal humidity levels beyond the soil surface facilitates mound expansion in Macrotermes. Proceedings of the Royal Society B: Biological Sciences287, 20200894.

[8]

Bátori, Z., Lőrinczi, G., Tölgyesi, C., Módra, G., Juhász, O., Aguilon, D.J., Vojtkó, A., Valkó, O., Deák, B., Erdős, L., Maák, I.E., 2020. Karstic microrefugia host functionally specific ant assemblages. Frontiers in Ecology and Evolution8, 613738.

[9]

Beaudrot, L., Du, Y.J., Rahman Kassim, A., Rejmánek, M., Harrison, R.D., 2011. Do epigeal termite mounds increase the diversity of plant habitats in a tropical rain forest in peninsular Malaysia. PLoS One6, e19777.

[10]

Bignell, D., Eggleton, P., Nunes, L., Thomas, K.L., 1997. Termites as mediators of carbon fluxes in tropical forest: budgets for carbon dioxide and methane emissions. In: Watt, A.D., Stork, N.E., Hunter, M., eds. Forests and Insects. London: Chapman & Hall109–134.

[11]

Blüthgen, N., Feldhaar, H., 2010. Food and shelter: how resources influence ant ecology. In: Lach, L., Parr, C., Abbott, K., eds. Ant Ecology. Oxford: Oxford University Press115–136.

[12]

Brauman, A., 2000. Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: a review. European Journal of Soil Biology36, 117–125.

[13]

Brown, W.L., 1957. Predation of arthropod eggs by the ant genera Proceratium and Discothyrea. Psyche: A Journal of Entomology64, 115–115.

[14]

Charles, G.K., Riginos, C., Veblen, K.E., Kimuyu, D.M., Young, T.P., 2021. Termite mound cover and abundance respond to herbivore-mediated biotic changes in a Kenyan savanna. Ecology and Evolution11, 7226–7238.

[15]

Chouvenc, T., Bardunias, P., Efstathion, C.A., Chakrabarti, S., Elliott, M.L., Giblin-Davis, R., Su, N.Y., 2013. Resource opportunities from the nest of dying subterranean termite (Isoptera: Rhinotermitidae) colonies: a laboratory case of ecological succession. Annals of the Entomological Society of America106, 771–778.

[16]

Chouvenc, T., Mullins, A.J., Su, N.Y., 2015. Territorial status-quo between the big-headed ant (Hymenoptera: Formicidae) and the formosan subterranean termite (Isoptera: Rhinotermitidae). Florida Entomologist98, 157–161.

[17]

Costa, C., Vanin, S.A., 2010. Coleoptera larval fauna associated with termite nests (Isoptera) with emphasis on the “Bioluminescent termite nests” from central Brazil. Psyche: A Journal of Entomology2010, 723947.

[18]

Costa, D., Marins, A., DeSouza, O., 2019. Unexpected termite inquilines in nests of Constrictotermes cyphergaster (Silvestri, 1901) (Blattodea: Isoptera). BioRxiv55, 1–8.

[19]

Cruz, J.S., Santana, D.L., Santos, A.T., Ventura, I.M.C., Bacci, L., Cristaldo, P.F., Araujo, A.P.A., 2023. Cohabitation inquiline-host in termite nests: does it involve distinct mechanisms. Sociobiology70, e9685.

[20]

Da Cunha, H.F., Brandão, D., 2001. Invertebrates associated with the neotropical termite Constrictotermes cyphergaster (Isoptera: Termitidae, Nasutitermitinae). Sociobiology37, 593–599.

[21]

de Vasconcelos, M.F., Hoffmann, D., de Araújo, M.C., Vasconcelos, P.N., 2015. Bird-termite interactions in Brazil: a review with perspectives for future studies. Biota Neotropica15, e20140035.

[22]

Dejean, A., Dejean, A., 1998. How a ponerine ant acquired the most evolved mode of colony foundation. Insectes Sociaux45, 343–346.

[23]

Dejean, A., Fénéron, R., 1996. Polymorphism and oligogyny in the ponerine ant Centromyrmex bequaerti (Formicidae: Ponerinae). Insectes Sociaux43, 87–99.

[24]

Del Toro, I., Ribbons, R., Pelini, S., 2012. The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecological News17, 133–146.

[25]

Deligne, J., Quennedey, A., Blum, M.S., 1981. The enemies and defense mechanisms of termites. In: Hermann, H.R., ed. Social Insects. Amsterdam: Elsevier1–76.

[26]

Eggleton, P., 2011. An introduction to termites: biology, taxonomy and functional morphology. In: Bignell, D.E., Roisin, Y., Lo, N., eds. Biology of Termites: A Modern Synthesis. Dordrecht: Springer1–26.

[27]

Eggleton, P., Homathevi, R., Jones, D.T., MacDonald, J.A., Jeeva, D., Bignell, D.E., Davies, R.G., Maryati, M., 1999. Termite assemblages, forest disturbance and greenhouse gas fluxes in Sabah, east Malaysia. Philosophical Transactions of the Royal Society B: Biological Sciences354, 1791–1802.

[28]

Erpenbach, A., Bernhardt-Römermann, M., Wittig, R., Hahn, K., 2017. The contribution of termite mounds to landscape-scale variation in vegetation in a west African national park. Journal of Vegetation Science28, 105–116.

[29]

Eshel, A., Beeckman, T., 2013. Plant Roots: the Hidden Half. 4th ed. Boca Raton: CRC Press..

[30]

Ewers, R.M., Didham, R.K., Fahrig, L., Ferraz, G., Hector, A., Holt, R.D., Kapos, V., Reynolds, G., Sinun, W., Snaddon, J.L., Turner, E.C., 2011. A large-scale forest fragmentation experiment: the stability of altered forest ecosystems project. Philosophical Transactions of the Royal Society B: Biological Sciences366, 3292–3302.

[31]

Farji-Brener, A.G., Werenkraut, V., 2017. The effects of ant nests on soil fertility and plant performance: a meta-analysis. Journal of Animal Ecology86, 866–877.

[32]

Fayle, T.M., Yusah, K.M., Hashimoto, Y., 2014. Key to the ant genera of Borneo in English and Malay [Online]. Available at the website of tomfayle.com/Antkey.htm.

[33]

Florencio, D.F., Marins, A., Rosa, C.S., Cristaldo, P.F., Araújo, A.P.A., Silva, I.R., DeSouza, O., 2013. Diet segregation between cohabiting builder and inquiline termite species. PLoS One8, e66535.

[34]

Funch, R.R., 2015. Termite mounds as dominant land forms in semiarid northeastern Brazil. Journal of Arid Environments122, 27–29.

[35]

Grube, S., Rudolph, D., 1999. Water supply during building activities in the subterranean termite Reticulitermes santonensis de Feytaud (Isoptera, Rhinotermitidae). Insectes Sociaux46, 192–193.

[36]

Haviland, G.D., 1898. Observations on termites; with descriptions of new species. Zoological Journal of the Linnean Society26, 358–442.

[37]

Higashi, S., Ito, F., 1989. Defense of termitaria by termitophilous ants. Oecologia80, 145–147.

[38]

Holt, J.A., Greenslade, P.J.M., 1980. Ants (Hymenoptera: Formicidae) in mounds of Amitermes laurensis (Isoptera: Termitidae). Australian Journal of Entomology18, 349–361.

[39]

Holt, J.A., Lepage, M., 2000. Termites and soil properties. In: Abe, T., Bignell, D.E., Higashi, M., eds. Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht: Springer389–407.

[40]

Hood, A.S.C., Pashkevich, M.D., Dahlsjö, C.A.L., Advento, A.D., Aryawan, A.A.K., Caliman, J.P., Naim, M., Head, J.J., Turner, E.C., 2020. Termite mounds house a diversity of taxa in oil palm plantations irrespective of understory management. Biotropica52, 345–350.

[41]

Hothorn, T., Zeileis, A., Farebrother, R.W., Cummins, C., Millo, G., Mitchell, D., Zeileis, M.A., 2015. Package ‘lmtest’. Testing linear regression models.

[42]

Hugo, H., Cristaldo, P.F., DeSouza, O., 2020. Nonaggressive behavior: a strategy employed by an obligate nest invader to avoid conflict with its host species. Ecology and Evolution10, 8741–8754.

[43]

Hyodo, F., Matsumoto, T., Takematsu, Y., Itioka, T., 2015. Dependence of diverse consumers on detritus in a tropical rain forest food web as revealed by radiocarbon analysis. Functional Ecology29, 423–429.

[44]

Jackman, S., Tahk, A., Zeileis, A., Maimone, C., Fearon, J., Meers, Z., Jackman, M.S., Imports, M., 2015. Package ‘pscl’. Political science computational laboratory.

[45]

Jaffe, K., Ramos, C., Issa, S., 1995. Trophic interactions between ants and termites that share common nests. Annals of the Entomological Society of America88, 328–333.

[46]

Jouquet, P., Airola, E., Guilleux, N., Harit, A., Chaudhary, E., Grellier, S., Riotte, J., 2017. Abundance and impact on soil properties of cathedral and lenticular termite mounds in southern Indian woodlands. Ecosystems20, 769–780.

[47]

Jouquet, P., Traoré, S., Choosai, C., Hartmann, C., Bignell, D., 2011. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. European Journal of Soil Biology47, 215–222.

[48]

Katayama, M., 2013. Predatory behaviours of Discothyrea kamiteta (Proceratiinae) on spider eggs. Asian Myrmecology5, 121–124.

[49]

Khan, M.A., Ahmad, W., Paul, B., 2018. Ecological impacts of termites. In: Khan, M.A., Ahmad, W., eds. Termites and Sustainable Management. Cham: Springer201–216.

[50]

Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. lmertest package: tests in linear mixed effects models. Journal of Statistical Software82, 1–26.

[51]

Lavelle, P., Spain, A.V., 2001. Soil Ecology. Dordrecht: Springer.

[52]

Leal, I.R., Oliveira, P.S., 1995. Behavioral ecology of the neotropical termite-hunting ant Pachycondyla (= Termitopone) marginata: colony founding, group-raiding and migratory patterns. Behavioral Ecology and Sociobiology37, 373–383.

[53]

Longhurst, C., Howse, P.E., 1978. The use of kairomones by Megaponera foetens (Fab. ) (Hymenoptera: Formicidae) in the detection of its termite prey. Animal Behaviour26, 1213–1218.

[54]

Lubin, Y.D., Montgomery, G.G., 1981. Defenses of Nasutitermes termites (Isoptera, Termitidae) against tamandua anteaters (Edentata, Myrmecophagidae). Biotropica13, 66–76.

[55]

Marins, A., Costa, D., Russo, L., Campbell, C., Desouza, O., Bjørnstad, O.N., Shea, K., 2016. Termite cohabitation: the relative effect of biotic and abiotic factors on mound biodiversity. Ecological Entomology41, 532–541.

[56]

Martin, S.J., Funch, R.R., Hanson, P.R., Yoo, E.H., 2018. A vast 4,000-year-old spatial pattern of termite mounds. Current Biology28, R1292–R1293.

[57]

Matsumoto, T., 1976. The role of termites in an equatorial rain forest ecosystem of west Malaysia: I. Population density, biomass, carbon, nitrogen and calorific content and respiration rate. Oecologia22, 153–178.

[58]

McCormack, M.L., Dickie, I.A., Eissenstat, D.M., Fahey, T.J., Fernandez, C.W., Guo, D.L., Helmisaari, H.S., Hobbie, E.A., Iversen, C.M., Jackson, R.B., Leppälammi-Kujansuu, J., Norby, R.J., Phillips, R.P., Pregitzer, K.S., Pritchard, S.G., Rewald, B., Zadworny, M., 2015. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist207, 505–518.

[59]

Meyer, V.W., Braack, L.E.O., Biggs, H.C., Ebersohn, C., 1999. Distribution and density of termite mounds in the northern Kruger National Park, with specific reference to those constructed by Macrotermes Holmgren (Isoptera: Termitidae). African Entomology7, 123–130.

[60]

Mills, A.J., van Mazijk, R., Allen, J.L., Strydom, T., 2024. Soil geochemistry and constraint of tree seedlings immediately after germination on Macrotermes termite mounds in the Kruger National Park, south Africa. Ecology and Evolution14, e11348.

[61]

Moreira, L.A., Fenolio, D.B., Silva, H.L.R., da Silva, N.J.Jr., 2009. A preliminary list of the herpetofauna from termite mounds of the Cerrado in the Upper Tocantins river valley. Papéis Avulsos de Zoologia49, 183–189.

[62]

Muthert, L.W.F., Izzo, L.G., van Zanten, M., Aronne, G., 2020. Root tropisms: investigations on earth and in space to unravel plant growth direction. Frontiers in Plant Science10, 1807.

[63]

Muvengwi, J., Ndagurwa, H.G.T., Nyenda, T., Mlambo, I., 2014. Termitaria as preferred browsing patches for black rhinoceros (Diceros bicornis) in Chipinge Safari Area, Zimbabwe. Journal of Tropical Ecology30, 591–598.

[64]

Ndiaye, D., Lensi, R., Lepage, M., Brauman, A., 2004. The effect of the soil-feeding termite Cubitermes niokoloensis on soil microbial activity in a semi-arid savanna in west Africa. Plant and Soil259, 277–286.

[65]

Noirot, C., Darlington, J.P.E.C., 2000. Termite nests: architecture, regulation and defence. In: Abe, T., Bignell, D.E., Higashi, M., eds. Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht: Springer.

[66]

Okullo, P., Moe, S.R., 2012. Termite activity, not grazing, is the main determinant of spatial variation in savanna herbaceous vegetation. Journal of Ecology100, 232–241.

[67]

Pisno, R.M., Salazar, K., Lino-Neto, J., Serrão, J.E., DeSouza, O., 2019. Termitariophily: expanding the concept of termitophily in a physogastric rove beetle (Coleoptera: Staphylinidae). Ecological Entomology44, 305–314.

[68]

Plowman, N.S., Mottl, O., Novotny, V., Idigel, C., Philip, F.J., Rimandai, M., Klimes, P., 2020. Nest microhabitats and tree size mediate shifts in ant community structure across elevation in tropical rainforest canopies. Ecography43, 431–442.

[69]

Potapov, A.M., Beaulieu, F., Birkhofer, K., Bluhm, S.L., Degtyarev, M.I., Devetter, M., Goncharov, A.A., Gongalsky, K.B., Klarner, B., Korobushkin, D.I., Liebke, D.F., Maraun, M., Mc Donnell, R.J., Pollierer, M.M., Schaefer, I., Shrubovych, J., Semenyuk, I.I., Sendra, A., Tuma, J., Tůmová, M., Vassilieva, A.B., Chen, T.W., Geisen, S., Schmidt, O., Tiunov, A.V., Scheu, S., 2022. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biological Reviews97, 1057–1117.

[70]

Prestwich, G., 1984. Defense mechanisms of termites. Annual Review of Entomology29, 201–232.

[71]

Priest, G.V., Camarota, F., Powell, S., Vasconcelos, H.L., Marquis, R.J., 2021. Ecosystem engineering in the arboreal realm: heterogeneity of wood-boring beetle cavities and their use by cavity-nesting ants. Oecologia196, 427–439.

[72]

R Core Team, 2023. R: a language and environment for statistical computing. .

[73]

Redford, K.H., 1984. The termitaria of Cornitermes cumulans (Isoptera, Termitidae) and their role in determining a potential keystone species. Biotropica16, 112–119.

[74]

Rogers, L.K.R., French, J.R.J., Elgar, M.A., 1999. Suppression of plant growth on the mounds of the termite Coptotermes lacteus Froggatt (Isoptera, Rhinotermitidae). Insectes Sociaux46, 366–371.

[75]

Rozak, A.H., Rutishauser, E., Raulund-Rasmussen, K., Sist, P., 2018. The imprint of logging on tropical forest carbon stocks: a Bornean case-study. Forest Ecology and Management417, 154–166.

[76]

RStudio Team, 2016. RStudio: integrated development environment for R. .

[77]

Sagata, K., Mack, A.L., Wright, D.D., Lester, P.J., 2010. The influence of nest availability on the abundance and diversity of twig-dwelling ants in a Papua New Guinea forest. Insectes Sociaux57, 333–341.

[78]

Salick, J., Herrera, R., Jordan, C.F., 1983. Termitaria: nutrient patchiness in nutrient-deficient rain forests. Biotropica15, 1–7.

[79]

Santos, E.G., Svátek, M., Nunes, M.H., Aalto, J., Senior, R.A., Matula, R., Plichta, R., Maeda, E.E., 2024. Structural changes caused by selective logging undermine the thermal buffering capacity of tropical forests. Agricultural and Forest Meteorology348, 109912.

[80]

Schöning, C., Moffett, M.W., 2007. Driver ants invading a termite nest: why do the most catholic predators of all seldom take this abundant prey. Biotropica39, 663–667.

[81]

Seibold, S., Rammer, W., Hothorn, T., Seidl, R., Ulyshen, M.D., Lorz, J., Cadotte, M.W., Lindenmayer, D.B., Adhikari, Y.P., Aragón, R., Bae, S., Baldrian, P., Barimani Varandi, H., Barlow, J., Bässler, C., Beauchêne, J., Berenguer, E., Bergamin, R.S., Birkemoe, T., Boros, G., Brandl, R., Brustel, H., Burton, P.J., Cakpo-Tossou, Y.T., Castro, J., Cateau, E., Cobb, T.P., Farwig, N., Fernández, R.D., Firn, J., Gan, K.S., González, G., Gossner, M.M., Habel, J.C., Hébert, C., Heibl, C., Heikkala, O., Hemp, A., Hemp, C., Hjältén, J., Hotes, S., Kouki, J., Lachat, T., Liu, J., Liu, Y., Luo, Y.H., Macandog, D.M., Martina, P.E., Mukul, S.A., Nachin, B., Nisbet, K., O’Halloran, J., Oxbrough, A., Pandey, J.N., Pavlíček, T., Pawson, S.M., Rakotondranary, J.S., Ramanamanjato, J.B., Rossi, L., Schmidl, J., Schulze, M., Seaton, S., Stone, M.J., Stork, N.E., Suran, B., Sverdrup-Thygeson, A., Thorn, S., Thyagarajan, G., Wardlaw, T.J., Weisser, W.W., Yoon, S., Zhang, N.L., Müller, J., 2021. The contribution of insects to global forest deadwood decomposition. Nature597, 77–81.

[82]

Shattuck, S.O., Barnett, N.J., 2007. Revision of the ant genus Mayriella. In: Snelling, R.R., Fisher, B.L., Ward, P.S., eds. Advances in Ant Systematics (Hymenoptera: Formicidae): Homage to E.O. Wilson–50 Years of Contributions. Gainesville: American Entomological Institute437–458.

[83]

Shellman-Reeve, J.S., 2010. The spectrum of eusociality in termites. In: Choe, J.C., Crespi, B.J., eds. The Evolution of Social Behaviour in Insects and Arachnids. Cambridge: Cambridge University Press52–93.

[84]

Sheppe, W., 1970. Invertebrate predation on termites of the African Savanna. Insectes Sociaux17, 205–218.

[85]

Singmann, H., Bolker, B., Westfall, J., Aust, F., Ben-Shachar, M.S., Højsgaard, S., Fox, J., Lawrence, M.A., Mertens, U., Love, J., 2015. Package ‘afex.’ Afex. .

[86]

Šobotník, J., Jirošová, A., Hanus, R., 2010. Chemical warfare in termites. Journal of Insect Physiology56, 1012–1021.

[87]

Struebig, M.J., Turner, A., Giles, E., Lasmana, F., Tollington, S., Bernard, H., Bell, D., 2013. Quantifying the biodiversity value of repeatedly logged rainforests: gradient and comparative approaches from Borneo. Advances in Ecological Research48, 183–224.

[88]

Ter Braak, C.J.F., Smilauer, P., 2018. Canoco reference manual and user’s guide: software for ordination, version 5.10. Microcomputer Power, Ithaca, USA.

[89]

Traoré, S., Tigabu, M., Ouédraogo, S.J., Boussim, J.I., Guinko, S., Lepage, M.G., 2008. Macrotermes mounds as sites for tree regeneration in a Sudanian woodland (Burkina Faso). Plant Ecology198, 285–295.

[90]

Tremblay, A., Ransijn, J., 2015. Package ‘LMERConvenienceFunctions.’ R package versio. .

[91]

Tuma, J., Eggleton, P., Fayle, T.M., 2020. Ant-termite interactions: an important but under-explored ecological linkage. Biological Reviews95, 555–572.

[92]

Tuma, J., Fleiss, S., Eggleton, P., Frouz, J., Klimes, P., Lewis, O.T., Yusah, K.M., Fayle, T.M., 2019. Logging of rainforest and conversion to oil palm reduces bioturbator diversity but not levels of bioturbation. Applied Soil Ecology144, 123–133.

[93]

Tuma, J., Frouz, J., Veselá, H., Křivohlavý, F., Fayle, T.M., 2022. The impacts of tropical mound-building social insects on soil properties vary between taxa and with anthropogenic habitat change. Applied Soil Ecology179, 104576.

[94]

Turner, E.C., Foster, W.A., 2009. The impact of forest conversion to oil palm on arthropod abundance and biomass in Sabah, Malaysia. Journal of Tropical Ecology25, 23–30.

[95]

Van der Plas, F., Howison, R., Reinders, J., Fokkema, W., Olff, H., 2013. Functional traits of trees on and off termite mounds: understanding the origin of biotically-driven heterogeneity in savannas. Journal of Vegetation Science24, 227–238.

[96]

Vesala, R., Harjuntausta, A., Hakkarainen, A., Rönnholm, P., Pellikka, P., Rikkinen, J., 2019. Termite mound architecture regulates nest temperature and correlates with species identities of symbiotic fungi. PeerJ6, e6237.

[97]

Walsh, R.P.D., Newbery, D.M., 1999. The ecoclimatology of Danum, Sabah, in the context of the world’s rainforest regions, with particular reference to dry periods and their impact. Philosophical Transactions of the Royal Society B: Biological Sciences354, 1869–1883.

[98]

Wheeler, W.M., 1935. The australian ant genus Mayriella Forel. Psyche: A Journal of Entomology42, 151–160.

[99]

Wheeler, W.M., 1936. Ecological relations of Ponerine and other ants to termites. Proceedings of the American Academy of Arts and Sciences71, 159–243.

[100]

Widyati, E., Nuroniah, H.S., Tata, H.L., Mindawati, N., Lisnawati, Y., Darwo, Abdulah, L., Lelana, N.E., Mawazin, Octavia, D., Prameswari, D., Rachmat, H.H., Sutiyono, Darwiati, W., Wardani, M., Kalima, T., Yulianti, van Noordwijk, M., 2022. Soil degradation due to conversion from natural to plantation forests in Indonesia. Forests13, 1913.

[101]

Williamson, J., Teh, E., Jucker, T., Brindle, M., Bush, E., Chung, A.Y.C., Parrett, J., Lewis, O.T., Rossiter, S.J., Slade, E.M., 2022. Local-scale temperature gradients driven by human disturbance shape the physiological and morphological traits of dung beetle communities in a Bornean oil palm–forest mosaic. Functional Ecology36, 1655–1667.

RIGHTS & PERMISSIONS

The Author(s) 2025. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (2506KB)

Supplementary files

SEL-00329-OF-JT_suppl_1

SEL-00329-OF-JT_suppl_2

360

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/