Modulating effects of biochar on phosphorus dynamics in soil–biota–plant system: a comprehensive review

Radwa Fathy , Wagdi Elagroudi , Ahmed A. Taha , Ahmed Mosa

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250325

PDF (4090KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250325 DOI: 10.1007/s42832-025-0325-z
REVIEW

Modulating effects of biochar on phosphorus dynamics in soil–biota–plant system: a comprehensive review

Author information +
History +
PDF (4090KB)

Abstract

Phytoavailability of phosphorus (P) is limited in most soil orders due to insoluble precipitates formation in the rhizosphere with ions of calcium, iron, and aluminum. Therefore, biochar has been adopted as an eco-friendly soil amendment to unlock soil P reserves and modulate P dynamics in soil–biota–plant system. However, this hotspot area of research has not been critically reviewed up to now. This review delves into the specific mechanisms responsible for improving P phytoavailability in the charosphere, either directly by its inherent P content or indirectly via modulating soil physicochemical characteristics that would solubilize the legacy P. Data of this review were extracted from recent publications to evaluate the beneficial effects of biochar on mechanisms responsible for modulating P phytoavailability in the charosphere. Data analysis illustrated that inherent P content in biochar is a feedstock– and pyrolysis temperature–dependent, in which bones feedstock and the high pyrolysis temperature (>600 °C) could produce the highest P concentration (124216 and 31160 mg kg–1, respectively). Biochar showed pivotal roles in stimulating the colonization of microorganisms mediating P phytoavailability involved in organic P mineralization and legacy P solubilization. The high functionality of biochar also showed a beneficial effect in minimizing the vulnerability of P losses through surface runoff and percolation into groundwater. These modulating effects of biochar were responsible for maximizing P use efficiency (PUE) relative to the unamended soils (43.36% vs. 20.26%). %Average values of PUE varied widely according to biochar’s feedstock (29.1%–38.5%), pyrolysis temperature (9.4–60.1) and application rate (29.9%–88.1%). Nonetheless, this data showed contradictory results with obvious significant effects under lab investigations and only minimal effects under field-scale experimentations.

Graphical abstract

Keywords

biochar / legacy phosphorus / mineralization / solubilization / phytoavailability

Highlight

● Phosphorus dynamics in soil–biota–plant system of the charosphere was reviewed.

● Phosphorus content of biochar is a feedstock– and pyrolysis temperature–dependent.

● Biochar stimulates colonization of microorganisms mediating phosphorus availability.

● Modulating effects of biochar on phosphorus use efficiency was highlighted.

● Tailoring functionalized biochar to unlock phosphorus reserves was reviewed.

Cite this article

Download citation ▾
Radwa Fathy, Wagdi Elagroudi, Ahmed A. Taha, Ahmed Mosa. Modulating effects of biochar on phosphorus dynamics in soil–biota–plant system: a comprehensive review. Soil Ecology Letters, 2025, 7(3): 250325 DOI:10.1007/s42832-025-0325-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abd El-Fattah, D.A., Maze, M., Ali, B.A.A., Awed, N.M., 2023. Role of mycorrhizae in enhancing the economic revenue of water and phosphorus use efficiency in sweet corn (Zea mays L. var. saccharata) plants. Journal of the Saudi Society of Agricultural Sciences22, 174–186.

[2]

Abd El-Mageed, T.A., Abdurrahman, H.A., Abd El-Mageed, S.A., 2020. Residual acidified biochar modulates growth, physiological responses, and water relations of maize (Zea mays) under heavy metal–contaminated irrigation water. Environmental Science and Pollution Research27, 22956–22966.

[3]

Abedian-Dehaghani, N., Sadjadi, S., Heravi, M.M., 2022. Selenium and nitrogen co-doped biochar as an efficient metal-free catalyst for oxidation of aldehydes. Journal of Molecular Structure1264, 133237.

[4]

Adhikari, S., Gascó, G., Méndez, A., Surapaneni, A., Jegatheesan, V., Shah, K., Paz-Ferreiro, J., 2019. Influence of pyrolysis parameters on phosphorus fractions of biosolids derived biochar. Science of the Total Environment695, 133846.

[5]

Ahmad, Z., Mosa, A., Zhan, L., Gao, B., 2021. Biochar modulates mineral nitrogen dynamics in soil and terrestrial ecosystems: a critical review. Chemosphere278, 130378.

[6]

Ahmed, N., Basit, A., Bashir, S., Bashir, S., Bibi, I., Haider, Z., Arif Ali, M., Aslam, Z., Aon, M., Alotaibi, S.S., El-Shehawi, A.M., Samreen, T., Li, Y.Z., 2021. Effect of acidified biochar on soil phosphorus availability and fertilizer use efficiency of maize (Zea mays L. ). Journal of King Saud University - Science33, 101635.

[7]

Ai, D., Ma, H.Q., Meng, Y., Wei, T.Q., Wang, B., 2023. Phosphorus recovery and reuse in water bodies with simple ball-milled Ca-loaded biochar. Science of the Total Environment860, 160502.

[8]

Ajeng, A.A., Abdullah, R., Ling, T.C., Ismail, S., Lau, B.F., Ong, H.C., Chew, K.W., Show, P.L., Chang, J.S., 2020. Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture. Environmental Technology & Innovation20, 101168.

[9]

Akanji, M.A., Ahmad, M., Al-Wabel, M.I., Al-Farraj, A.S.F., 2022. Soil phosphorus fractionation and bio-availability in a calcareous soil as affected by conocarpus waste biochar and its acidified derivative. Agriculture12, 2157.

[10]

Ali, M.A., Ajaz, M.M., Rizwan, M., Qayyum, M.F., Arshad, M., Hussain, S., Ahmad, N., Qureshi, M.A., 2020. Effect of biochar and phosphate solubilizing bacteria on growth and phosphorus uptake by maize in an Aridisol. Arabian Journal of Geosciences13, 333.

[11]

Alotaibi, K.D., Arcand, M., Ziadi, N., 2021. Effect of biochar addition on legacy phosphorus availability in long-term cultivated arid soil. Chemical and Biological Technologies in Agriculture8, 47.

[12]

Alshaal, T., El-Ramady, H., Al-Saeedi, A.H., Shalaby, T., Elsakhawy, T., Omara, A.E.D., Gad, A., Hamad, E., El-Ghamry, A., Mosa, A., Amer, M., Abdalla, N., 2017. The rhizosphere and plant nutrition under climate change. In: Naeem, M., Ansari, A.A., Gill, S.S., eds. Essential Plant Nutrients: Uptake, Use Efficiency, and Management. Cham: Springer, 275–308.

[13]

Amin, A.E.E.A.Z., 2018. Phosphorus dynamics and corn growth under applications of corn stalks biochar in a clay soil. Arabian Journal of Geosciences11, 379.

[14]

Amin, A.E.E.A.Z., Mihoub, A., 2021. Effect of sulfur-enriched biochar in combination with sulfur-oxidizing bacterium (Thiobacillus spp. ) on release and distribution of phosphorus in high calcareous P-fixing soils. Journal of Soil Science and Plant Nutrition21, 2041–2047.

[15]

An, X.F., Wu, Z.S., Liu, X., Shi, W., Tian, F., Yu, B., 2021. A new class of biochar-based slow-release phosphorus fertilizers with high water retention based on integrated co-pyrolysis and co-polymerization. Chemosphere285, 131481.

[16]

An, X.F., Wu, Z.S., Yu, J.Z., Cravotto, G., Liu, X.C., Li, Q., Yu, B., 2020. Copyrolysis of biomass, bentonite, and nutrients as a new strategy for the synthesis of improved biochar-based slow-release fertilizers. ACS Sustainable Chemistry & Engineering8, 3181–3190.

[17]

Arenberg, M.R., Arai, Y., 2019. Uncertainties in soil physicochemical factors controlling phosphorus mineralization and immobilization processes. Advances in Agronomy154, 153–200.

[18]

Atkinson, C.J., Fitzgerald, J.D., Hipps, N.A., 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and soil337, 1–18.

[19]

Azeem, M., Ali, A., Arockiam Jeyasundar, P.G.S., Li, Y.M., Abdelrahman, H., Latif, A., Li, R.H., Basta, N., Li, G., Shaheen, S.M., Rinklebe, J., Zhang, Z., 2021a. Bone-derived biochar improved soil quality and reduced Cd and Zn phytoavailability in a multi-metal contaminated mining soil. Environmental Pollution277, 116800.

[20]

Azeem, M., Hassan, T.U., Tahir, M.I., Ali, A., Jeyasundar, P.G.S.A, Hussain, Q., Bashir, S., Mehmood, S., Zhang, Z.Q., 2021b. Tea leaves biochar as a carrier of Bacillus cereus improves the soil function and crop productivity. Applied Soil Ecology157, 103732.

[21]

Azeez, M.O., Christensen, J.T., Ravnskov, S., Heckrath, G.J., Labouriau, R., Christensen, B.T., Rubæk, G.H., 2020. Phosphorus in an arable coarse sandy soil profile after 74 years with different lime and P fertilizer applications. Geoderma376, 114555.

[22]

Bai, T.X., Ma, W.G., Li, W.H., Jiang, J.L., Chen, J.M., Cao, R., Yang, W.J., Dong, D., Liu, T.W., Xu, Y.G., 2023. Effect of different phosphates on pyrolysis temperature-dependent carbon sequestration and phosphorus release performance in biochar. Molecules28, 3950.

[23]

Barbosa, C.F., Correa, D.A., da Silva Carneiro, J.S., Melo, L.C.A., 2022. Biochar phosphate fertilizer loaded with urea preserves available nitrogen longer than conventional urea. Sustainability14, 686.

[24]

Barcellos, D., Queiroz, H.M., Nóbrega, G.N., de Oliveira Filho, R.L., Santaella, S.T., Otero, X.L., Ferreira, T.O., 2019. Phosphorus enriched effluents increase eutrophication risks for mangrove systems in northeastern Brazil. Marine Pollution Bulletin142, 58–63.

[25]

Beltran-Medina, I., Romero-Perdomo, F., Molano-Chavez, L., Gutiérrez, A.Y., Silva, A.M.M., Estrada-Bonilla, G., 2023. Inoculation of phosphate-solubilizing bacteria improves soil phosphorus mobilization and maize productivity. Nutrient Cycling in Agroecosystems126, 21–34.

[26]

Biederman, L.A., Phelps, J., Ross, B.J., Polzin, M., Harpole, W.S., 2017. Biochar and manure alter few aspects of prairie development: a field test. Agriculture, Ecosystems & Environment236, 78–87.

[27]

Blanco-Vargas, A., Chacón-Buitrago, M.A., Quintero-Duque, M.C., Poutou-Piñales, R.A., Díaz-Ariza, L.A., Devia-Castillo, C.A., Castillo-Carvajal, L.C., Toledo-Aranda, D., da Conceição de matos, C., Olaya-González, W., Ramos-Monroy, O., Pedroza-Rodríguez, A.M., 2022. Production of pine sawdust biochar supporting phosphate-solubilizing bacteria as an alternative bioinoculant in Allium cepa L. , culture. Scientific Reports12, 12815.

[28]

Borchard, N., Wolf, A., Laabs, V., Aeckersberg, R., Scherer, H.W., Moeller, A., Amelung, W., 2012. Physical activation of biochar and its meaning for soil fertility and nutrient leaching–a greenhouse experiment. Soil Use and Management28, 177–184.

[29]

Bruun, S., Harmer, S.L., Bekiaris, G., Christel, W., Zuin, L., Hu, Y.F., Jensen, L.S., Lombi, E., 2017. The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure. Chemosphere169, 377–386.

[30]

Campos-Soriano, L., Bundó, M., Bach-Pages, M., Chiang, S.F., Chiou, T.J., San Segundo, B., 2020. Phosphate excess increases susceptibility to pathogen infection in rice. Molecular Plant Pathology21, 555–570.

[31]

Cao, D.Y., Lan, Y., Liu, Z.Q., Yang, X., Liu, S.N., He, T.Y., Wang, D., Meng, J., Chen, W.F., 2020. Responses of organic and inorganic phosphorus fractions in brown earth to successive maize stover and biochar application: a 5-year field experiment in Northeast China. Journal of Soils and Sediments20, 2367–2376.

[32]

Cao, D.Y., Lan, Y., Yang, X., Chen, W.F., Jiang, L.L., Wu, Z.C., Li, N., Han, X.R., 2023. Phosphorus fractions in biochar-amended soil—chemical sequential fractionation, 31P NMR, and phosphatase activity. Archives of Agronomy and Soil Science69, 169–181.

[33]

Ch’ng, H.Y., Ahmed, O.H., Majid, N.M.A., 2014. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes. The Scientific World Journal,2014, 506356.

[34]

Che, N.J., Qu, J., Wang, J.Q., Liu, N., Li, C.L., Liu, Y.L., 2024. Adsorption of phosphate onto agricultural waste biochars with ferrite/manganese modified-ball-milled treatment and its reuse in saline soil. Science of the Total Environment915, 169841.

[35]

Chen, H., Yuan, J.H., Chen, G.L., Zhao, X., Wang, S.Q., Wang, D.J., Wang, L., Wang, Y.J., Wang, Y., 2022a. Long-term biochar addition significantly decreases rice rhizosphere available phosphorus and its release risk to the environment. Biochar4, 54.

[36]

Chen, H.M., Min, F.F., Hu, X., Ma, D.H., Huo, Z.L., 2023a. Biochar assists phosphate solubilizing bacteria to resist combined Pb and Cd stress by promoting acid secretion and extracellular electron transfer. Journal of Hazardous Materials452, 131176.

[37]

Chen, Q.C., Qin, J.L., Sun, P., Cheng, Z.W., Shen, G.Q., 2018. Cow dung-derived engineered biochar for reclaiming phosphate from aqueous solution and its validation as slow-release fertilizer in soil-crop system. Journal of Cleaner Production172, 2009–2018.

[38]

Chen, W.J., Li, P.P., Li, F., Xi, J.J., Han, Y.L., 2022b. Effects of tillage and biochar on soil physiochemical and microbial properties and its linkage with crop yield. Frontiers in Microbiology13, 929725.

[39]

Chen, W.M., Wu, Z.S., Liu, C.H., Zhang, Z.Y., Liu, X.C., 2023b. Biochar combined with Bacillus subtilis SL-44 as an eco-friendly strategy to improve soil fertility, reduce Fusarium wilt, and promote radish growth. Ecotoxicology and Environmental Safety251, 114509.

[40]

Chen, X.J., Wu, H.W., 2021. Effect of phosphorus (P) on the structure and reactivity of biochars produced from the pyrolysis of acid-washed biomass loaded with P of various forms. Proceedings of the Combustion Institute38, 3959–3967.

[41]

Chen, X.P., Zhou, B.B., 2022. Synergistic effects of nano-biochar and crop on reducing rainwater runoff and phosphorus loss from sloping farmland. Arabian Journal of Geosciences15, 43.

[42]

Chen, Y.X., Wen, Z.H., Meng, J., Liu, Z.Q., Wei, J.L., Liu, X.Y., Ge, Z.Y., Dai, W.N., Lin, L., Chen, W.F., 2024. Positive effects of biochar application and Rhizophagus irregularis inoculation on mycorrhizal colonization, rice seedlings and phosphorus cycling in paddy soils. Pedosphere34, 361–373.

[43]

Chew, J., Zhu, L.L., Nielsen, S., Graber, E., Mitchell, D.R.G., Horvat, J., Mohammed, M., Liu, M.L., van Zwieten, L., Donne, S., Munroe, P., Taherymoosavi, S., Pace, B., Rawal, A., Hook, J., Marjo, C., Thomas, D.S., Pan, G.X., Li, L.Q., Bian, R.J., Mcbeath, A., Bird, M., Thomas, T., Husson, O., Solaiman, Z., Joseph, S., Fan, X.R., 2020. Biochar-based fertilizer: supercharging root membrane potential and biomass yield of rice. Science of the Total Environment713, 136431.

[44]

Chintala, R., Schumacher, T.E., McDonald, L.M., Clay, D.E., Malo, D.D., Papiernik, S.K., Clay, S.A., Julson, J.L., 2014. Phosphorus sorption and availability from biochars and soil/B iochar mixtures. CLEAN-Soil, Air, Water42, 626–634.

[45]

Ch’ng, H.Y., Ahmed, O.H., Majid, N.M.A., Jalloh, M.B., 2017. Reducing soil phosphorus fixation to improve yield of maize on a tropical acid soil using compost and biochar derived from agro-industrial wastes. Compost Science & Utilization25, 82–94.

[46]

Cui, Q.L., Xu, J.L., Wang, W., Tan, L.S., Cui, Y.X., Wang, T.T., Li, G.L., She, D., Zheng, J.Y., 2020. Phosphorus recovery by core-shell γ-Al2O3/Fe3O4 biochar composite from aqueous phosphate solutions. Science of the Total Environment729, 138892.

[47]

da Silva, R.W., Loquez, M.H.R.S., Paquini, L.D., Andrade, F.V., de Sá Mendonça, E., R angel O.J.P., Profeti, D., Profeti, L.P.R., Passos, R.R., 2024. Organophosphate fertilizers based on biochars and phosphorus availability in the soil. ACS Agricultural Science & Technology4, 1054–1062.

[48]

Daer, D., Luo, L., Shang, Y.W., Wang, J.X., Wu, C.Z., Liu, Z.G., 2024. Co-hydrothermal carbonization of waste biomass and phosphate rock: promoted carbon sequestration and enhanced phosphorus bioavailability. Biochar6, 70.

[49]

de Morais, E.G., Jindo, K., Silva, C.A., 2023. Biochar-based phosphate fertilizers: synthesis, properties, kinetics of P release and recommendation for crops grown in Oxisols. Agronomy13, 326.

[50]

de Oliveira Mendes, G., Zafra, D.L., Vassilev, N.B., Silva, I.R., Ribeiro, J.I.Jr., Costa, M.D., 2014. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity. Applied and Environmental Microbiology80, 3081–3085.

[51]

Deinert, L., Hossen, S., Ikoyi, I., Kwapinksi, W., Noll, M., Schmalenberger, A., 2024. Poultry litter biochar soil amendment affects microbial community structures, promotes phosphorus cycling and growth of barley (Hordeum vulgare). European Journal of Soil Biology120, 103591.

[52]

Doilom, M., Guo, J.W., Phookamsak, R., Mortimer, P.E., Karunarathna, S.C., Dong, W., Liao, C.F., Yan, K., Pem, D., Suwannarach, N., Promputtha, I., Lumyong, S., Xu, J.C., 2020. Screening of phosphate-solubilizing fungi from air and soil in Yunnan, China: four novel species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Frontiers in Microbiology11, 585215.

[53]

Duan, Y.A., Chen, X.S., Huang, Y., Zhang, Y., Wang, P., Duan, X.X., Qin, X.Y., Zou, Y.A., Deng, Z.M., Zhao, Q.L., 2023. Potential risk of eutrophication in the deepest lake of Southwest China: insights from phosphorus enrichment in bottom water. Journal of Contaminant Hydrology253, 104127.

[54]

Efthymiou, A., Grønlund, M., Müller-Stöver, D.S., Jakobsen, I., 2018. Augmentation of the phosphorus fertilizer value of biochar by inoculation of wheat with selected Penicillium strains. Soil Biology and Biochemistry116, 139–147.

[55]

El-Refaey El-Bially, M., El-Metwally, I.M., Saudy, H.S., Aisa, K.H., Abd El-Samad, G.A., 2023. Mycorrhiza-inoculated biochar as an eco-friendly tool improves the broomrape control efficacy in two faba bean cultivars. Rhizosphere26, 100706.

[56]

Estrada-Bonilla, G.A., Durrer, A., Cardoso, E.J.B.N., 2021. Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Applied Soil Ecology157, 103760.

[57]

Fan, Y.X., Lv, G.H., Chen, Y.D., Chang, Y.L., Li, Z.K., 2023. Differential effects of cow dung and its biochar on Populus euphratica soil phosphorus effectiveness, bacterial community diversity and functional genes for phosphorus conversion. Frontiers in Plant Science14, 1242469.

[58]

Fang, Z.Q., Liu, F.F., Li, Y.L., Li, B.S., Yang, T.H., Li, R.D., 2021. Influence of microwave-assisted pyrolysis parameters and additives on phosphorus speciation and transformation in phosphorus-enriched biochar derived from municipal sewage sludge. Journal of Cleaner Production287, 125550.

[59]

Fei, C., Zhang, S.R., Zhang, L., Ding, X.D., 2023. Straw is more effective than biochar in mobilizing soil organic phosphorus mineralization in saline-alkali paddy soil. Applied Soil Ecology186, 104848.

[60]

Figueira-Galán, D., Heupel, S., Duelli, G., Tomasi Morgano, M., Stapf, D., Requena, N., 2023. Exploring the synergistic effects of biochar and arbuscular mycorrhizal fungi on phosphorus acquisition in tomato plants by using gene expression analyses. Science of the Total Environment884, 163506.

[61]

Filho, J.F.L., da Silva Carneiro, J.S., Barbosa, C.F., de Lima, K.P., Leite, A.D.A., Melo, L.C.A., 2020. Aging of biochar-based fertilizers in soil: effects on phosphorus pools and availability to Urochloa brizantha grass. Science of the Total Environment709, 136028.

[62]

Fox, A., Gahan, J., Ikoyi, I., Kwapinski, W., O’Sullivan, O., Cotter, P.D., Schmalenberger, A., 2016. Miscanthus biochar promotes growth of spring barley and shifts bacterial community structures including phosphorus and sulfur mobilizing bacteria. Pedobiologia59, 195–202.

[63]

Frank, A.W., 2013. Chemistry of Plant Phosphorus Compounds. Amsterdam: Elsevier.

[64]

Freitas, A.M., Nair, V.D., Harris, W.G., 2020. Biochar as influenced by feedstock variability: implications and opportunities for phosphorus management. Frontiers in Sustainable Food Systems4, 510982.

[65]

Frossard, E., Condron, L.M., Oberson, A., Sinaj, S., Fardeau, J.C., 2000. Processes governing phosphorus availability in temperate soils. Journal of Environmental Quality29, 15–23.

[66]

Ghodake, G.S., Shinde, S.K., Kadam, A.A., Saratale, R.G., Saratale, G.D., Kumar, M., Palem, R.R., Al-Shwaiman, H.A., Elgorban, A.M., Syed, A., Kim, D.Y., 2021. Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: state-of-the-art framework to speed up vision of circular bioeconomy. Journal of Cleaner Production297, 126645.

[67]

Ghodszad, L., Reyhanitabar, A., Maghsoodi, M.R., Asgari Lajayer, B., Chang, S.X., 2021. Biochar affects the fate of phosphorus in soil and water: a critical review. Chemosphere283, 131176.

[68]

Glaser, B., Lehr, V.I., 2019. Biochar effects on phosphorus availability in agricultural soils: a meta-analysis. Scientific Reports9, 9338.

[69]

Głodowska, M., Husk, B., Schwinghamer, T., Smith, D., 2016. Biochar is a growth-promoting alternative to peat moss for the inoculation of corn with a pseudomonad. Agronomy for Sustainable Development36, 21.

[70]

Goldschmidt, A., Buffam, I., 2023. Biochar-amended substrate improves nutrient retention in green roof plots. Nature-Based Solutions3, 100066.

[71]

Gong, Y.D., Hou, R.J., Fu, Q., Li, T.X., Wang, J.W., Su, Z.B., Shen, W.Z., Zhou, W.Q., Wang, Y.J., Li, M., 2024. Modified biochar reduces the greenhouse gas emission intensity and enhances the net ecosystem economic budget in black soil soybean fields. Soil and Tillage Research237, 105978.

[72]

Gul, S., Whalen, J.K., Thomas, B.W., Sachdeva, V., Deng, H.Y., 2015. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agriculture, Ecosystems & Environment206, 46–59.

[73]

Guo, M.X., He, Z.Q., Tian, J., 2024. Fractionation and lability of phosphorus species in cottonseed meal-derived biochars as influenced by pyrolysis temperature. Molecules29, 303.

[74]

Hammer, E.C., Balogh-Brunstad, Z., Jakobsen, I., Olsson, P.A., Stipp, S.L.S., Rillig, M.C., 2014. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biology and Biochemistry77, 252–260.

[75]

He, Z.W., Liu, W.Z., Wang, L., Yang, C.X., Guo, Z.C., Zhou, A.J., Liu, J.Y., Wang, A.J., 2016. Role of extracellular polymeric substances in enhancement of phosphorus release from waste activated sludge by rhamnolipid addition. Bioresource Technology202, 59–66.

[76]

Hedley, M.J., Stewart, J.W.B., 1982. Method to measure microbial phosphate in soils. Soil Biology and Biochemistry14, 377–385.

[77]

Heidari, E., Mohammadi, K., Pasari, B., Rokhzadi, A., Sohrabi, Y., 2020. Combining the phosphate solubilizing microorganisms with biochar types in order to improve safflower yield and soil enzyme activity. Soil Science and Plant Nutrition66, 255–267.

[78]

Hong, C., Lu, S.G., 2018. Does biochar affect the availability and chemical fractionation of phosphate in soils? Environmental Science and Pollution Research 25, 8725–8734.

[79]

Hou, J.J., Yi, G.W., Hao, Y.F., Li, L.T., Shen, L.C., Zhang, Q.Z., 2024. The effect of combined application of biochar and phosphate fertilizers on phosphorus transformation in saline-alkali soil and its microbiological mechanism. Science of the Total Environment951, 175610.

[80]

Hou, L.Y., Zhang, X.F., Feng, G., Li, Z., Zhang, Y.B., Cao, N., 2021. Arbuscular mycorrhizal enhancement of phosphorus uptake and yields of maize under high planting density in the black soil region of China. Scientific Reports11, 1100.

[81]

Hu, W., Zhang, Y.P., Xiangmin, R., Fei, J.C., Peng, J.W., Luo, G.W., 2023. Coupling amendment of biochar and organic fertilizers increases maize yield and phosphorus uptake by regulating soil phosphatase activity and phosphorus-acquiring microbiota. Agriculture, Ecosystems & Environment355, 108582.

[82]

Hui, K., He, R., Tian, Q.Q., Zhou, X.K., Hou, L., Zhang, X., Jiang, Y., Yao, H., 2024. Iron-based biochar materials for phosphorus recovery from agricultural runoff: mechanism and potential application as a slow-release fertilizer. Separation and Purification Technology347, 127597.

[83]

Islam, M., Siddique, K.H.M., Padhye, L.P., Pang, J.Y., Solaiman, Z.M., Hou, D.Y., Srinivasarao, C., Zhang, T., Chandana, P., Venu, N, Prasad, J.V.N.S., Srinivas, T., Singh, P., Kirkham, M.B., Bolan, N., 2024. A critical review of soil phosphorus dynamics and biogeochemical processes for unlocking soil phosphorus reserves. Advances in Agronomy158, 153–249.

[84]

Jalali, M., Jalali, M., Antoniadis, V., 2021. Impact of sewage sludge, nanoparticles, and clay minerals addition on cucumber growth, phosphorus uptake, soil phosphorus status, and potential risk of phosphorus loss. Environmental Technology & Innovation23, 101702.

[85]

Janati, W., Bouabid, R., Mikou, K., Ghadraoui, L.E., Errachidi, F., 2023. Phosphate solubilizing bacteria from soils with varying environmental conditions: occurrence and function. Plos One18, e0289127.

[86]

Jarosch, K.A., Kandeler, E., Frossard, E., Bünemann, E.K., 2019. Is the enzymatic hydrolysis of soil organic phosphorus compounds limited by enzyme or substrate availability?. Soil Biology and Biochemistry139, 107628.

[87]

Javeed, H.M.R., Ali, M., Zamir, M.S.I., Qamar, R., Kanwal, S., Andleeb, H., Qammar, N., Jhangir, K., Elkelish, A., Mubeen, M., Sarwar, M.A., Khalid, S., Zain, M., Nawaz, F., Mubeen, K., Bukhari, M.A., Zakir, A., Farooq, M.A., Masood, N., 2023. Biochar and arbuscular mycorrhizae fungi to improve soil organic matter and fertility. In: Fahad, S., Danish, S., Datta, R., Saud, S., Lichtfouse, E., eds. Sustainable Agriculture Reviews 61: Biochar to Improve Crop Production and Decrease Plant Stress Under A Changing Climate. Cham: springer, 331–354.

[88]

Jia, H.J., Lv, X.L., Sohail, M.A., Li, M., Huang, B., Wang, J., 2022. Control efficiency of biochar loaded with Bacillus subtilis Tpb55 against tobacco black shank. Processes10, 2663.

[89]

Jin, J.W., Fang, Y.Y., Liu, C.L., Eltohamy, K.M., He, S., Li, F.Y., Lu, Y.Y., Liang, X.Q., 2023. Reduced colloidal phosphorus release from paddy soils: a synergistic effect of micro-/nano-sized biochars and intermittent anoxic condition. Science of the Total Environment905, 167104.

[90]

Kamran, M.A., Xu, R.K., Li, J.Y., Jiang, J.N., Shi, R.Y., 2019. Impacts of chicken manure and peat-derived biochars and inorganic P alone or in combination on phosphorus fractionation and maize growth in an acidic ultisol. Biochar1, 283–291.

[91]

Kassem, I., Ablouh, E.H., El Bouchtaoui, F.Z., Hannache, H., Ghalfi, H., Sehaqui, H., El Achaby, M., 2022. Cellulose nanofibers/engineered biochar hybrid materials as biodegradable coating for slow-release phosphate fertilizers. ACS Sustainable Chemistry & Engineering10, 15250–15262.

[92]

Krishnamoorthy, N., Nzediegwu, C., Mao, X.H., Zeng, H.B., Paramasivan, B., Chang, S.X., 2023. Biochar seeding properties affect struvite crystallization for soil application. Soil & Environmental Health1, 100015.

[93]

Krüger, O., Adam, C., 2017. Phosphorus in recycling fertilizers-analytical challenges. Environmental Research155, 353–358.

[94]

Leite, A.D.A., Melo, L.C.A., Hurtarte, L.C.C., Zuin, L., Piccolla, C.D., Werder, D., Shabtai, I., Lehmann, J., 2023. MaMgnesium-enriched poultry manure enhances phosphorus bioavailability in biochars. Chemosphere331, 138759.

[95]

Li, F.Y., Wang, D.S., You, Y.J., Li, G.Y., Eltohamy, K.M., Khan, S., Riaz, L., 2022. The application of biochar mitigated the negative effects of freeze-thaw on soil and nutrient loss in the restored soil of the alpine mining area. Frontiers in Environmental Science10, 1053843.

[96]

Li, H., Yang, L.P., Mao, Q.Z., Zhou, H.X., Guo, P., Agathokleous, E., Wang, S.F., 2023. Modified biochar enhances soil fertility and nutrient uptake and yield of rice in mercury-contaminated soil. Environmental Technology & Innovation32, 103435.

[97]

Li, H.X., Li, Y.X., Xu, Y., Lu, X.Q., 2020. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere244, 125471.

[98]

Li, Z.Y., Huang, Y.J., Zhu, Z.C., Yu, M.Z., Cheng, H.Q., Shi, H., Xiao, Y.X., Song, H.K., Zuo, W., Zhou, H.Y., Wang, S., 2024. Attempts to obtain clean biochar from hyperaccumulator through pyrolysis: removal of heavy metals and transformation of phosphorus. Journal of Hazardous Materials468, 133837.

[99]

Liu, L., Zhang, S.R., Chen, M.M., Fei, C., Zhang, W.J., Li, Y.Y., Ding, X.D., 2023a. Fe-modified biochar combined with mineral fertilization promotes soil organic phosphorus mineralization by shifting the diversity of phoD-harboring bacteria within soil aggregates in saline-alkaline paddy soil. Journal of Soils and Sediments23, 619–633.

[100]

Liu, M.H., Zhao, Z.J., Chen, L., Wang, L.Q., Ji, L.Z., Xiao, Y., 2020. Influences of arbuscular mycorrhizae, phosphorus fertiliser and biochar on alfalfa growth, nutrient status and cadmium uptake. Ecotoxicology and Environmental Safety196, 110537.

[101]

Liu, Q., Li, J.Y., Fang, Z., Liu, Y.Y., Xu, Y.F., Ruan, X.X., Zhang, X.L., Cao, W.M., 2021. Behavior of fast and slow phosphorus release from sewage sludge–derived biochar amended with CaO. Environmental Science and Pollution Research28, 28319–28328.

[102]

Liu, Z.W., Wu, Z.S., Tian, F., Liu, X.C., Li, T., He, Y.H., Li, B.B., Zhang, Z.Y., Yu, B., 2023b. Phosphate-solubilizing microorganisms regulate the release and transformation of phosphorus in biochar-based slow-release fertilizer. Science of the Total Environment869, 161622.

[103]

Lizcano-Toledo, R., Reyes-Martín, M.P., Celi, L., Fernández-Ondoño, E., 2021. Phosphorus dynamics in the soil–plant–environment relationship in cropping systems: a review. Applied Sciences11, 11133.

[104]

Lu, H., Yan, M., Wong, M. H., Mo, W. Y., Wang, Y., Chen, X. W. Wang, J.J., 2020. Effects of biochar on soil microbial community and functional genes of a landfill cover three years after ecological restoration. Science of the total Environment717, 137133.

[105]

Lu, J.K., Liu, S.N., Chen, W.F., Meng, J., 2023. Study on the mechanism of biochar affecting the effectiveness of phosphate solubilizing bacteria. World Journal of Microbiology and Biotechnology39, 87.

[106]

Lu, L.J., Qin, W.H., Wu, M., Chen, Q., Pan, B., Xing, B.S., 2025. Biochar promotes FePO4 solubilization through modulating organic acids excreted by Talaromyces pinophilus. Carbon Research4, 27.

[107]

Luo, X.L., Wang, D.W., Liu, Y.T., Qiu, Y.Z., Zheng, J.L., Xia, G.M., Elbeltagi, A., Chi, D.C., 2024. Partial substitution of phosphorus fertilizer with iron-modified biochar improves root morphology and yield of peanut under film mulching. Frontiers in Plant Science15, 1459751.

[108]

Mabagala, F.S., Mng’ong’o, M.E., 2022. On the tropical soils; the influence of organic matter (OM) on phosphate bioavailability. Saudi Journal of Biological Sciences29, 3635–3641.

[109]

Mari Selvam, S., Paramasivan, B., 2022. Microwave assisted carbonization and activation of biochar for energy-environment nexus: a review. Chemosphere286, 131631.

[110]

Matin, N.H., Jalali, M., Antoniadis, V., Shaheen, S.M., Wang, J.X., Zhang, T., Wang, H.L., Rinklebe, J., 2020. Almond and walnut shell-derived biochars affect sorption-desorption, fractionation, and release of phosphorus in two different soils. Chemosphere241, 124888.

[111]

Matsuo, Y., 1996. Release of phosphorus from ash produced by incinerating waste activated sludge from enhanced biological phosphorus removal. Water Science and Technology34, 407–415.

[112]

McLaren, T.I., Smernik, R.J., McLaughlin, M.J., Doolette, A.L., Richardson, A.E., Frossard, E., 2020. The chemical nature of soil organic phosphorus: a critical review and global compilation of quantitative data. Advances in Agronomy160, 51–124.

[113]

Mickan, B.S., Abbott, L.K., Stefanova, K., Solaiman, Z.M., 2016. Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil. Mycorrhiza26, 565–574.

[114]

Mihoub, A., Amin, A.E.E.A.Z., Motaghian, H.R., Saeed, M.F., Naeem, A., 2022. Citric Acid (CA)–modified biochar improved available phosphorus concentration and its half-life in a P-fertilized calcareous sandy soil. Journal of Soil Science and Plant Nutrition22, 465–474.

[115]

Ministry of Ecology, Environment of the People’s Republic of China, 2019. Notification of the Open Calls for Information on the Production, Use and Substitution of Six Types of Persistent Organic Pollutants. Beijing: Ministry of Ecology and Environment of the People’s Republic of China.

[116]

Mogollón, J.M., Beusen, A.H.W., van Grinsven, H.J.M., Westhoek, H., Bouwman, A.F., 2018. Future agricultural phosphorus demand according to the shared socioeconomic pathways. Global Environmental Change50, 149–163.

[117]

Mosa, A., El-Ghamry, A., Tolba, M., 2018. Functionalized biochar derived from heavy metal rich feedstock: phosphate recovery and reusing the exhausted biochar as an enriched soil amendment. Chemosphere198, 351–363.

[118]

Mosa, A., El-Ghamry, A., Tolba, M., 2020. Biochar-supported natural zeolite composite for recovery and reuse of aqueous phosphate and humate: batch sorption–desorption and bioassay investigations. Environmental Technology & Innovation19, 100807.

[119]

Motaghian, H., Hosseinpur, A., Safian, M., 2020. The effects of sugarcane-derived biochar on phosphorus release characteristics in a calcareous soil. Journal of Soil Science and Plant Nutrition20, 66–74.

[120]

Mousavi, R., Rasouli-Sadaghiani, M., Sepehr, E., Barin, M., Vetukuri, R.R., 2023. Improving phosphorus availability and wheat yield in saline soil of the lake urmia basin through enriched biochar and microbial inoculation. Agriculture13, 805.

[121]

Nahidan, S., Ghasemzadeh, M., 2022. Biochemical phosphorus transformations in a calcareous soil as affected by earthworm, cow manure and its biochar additions. Applied Soil Ecology170, 104310.

[122]

Nan, H.Y., An, Q., 2022. Infiltration behavior of ammonium and phosphate in runoff through soil amended with Erythrina arborescens biochar. Water, Air, & Soil Pollution233, 413.

[123]

Nan, H.Y., Yang, F., Li, D.P., Cao, X.D., Xu, X.Y., Qiu, H., Zhao, L., 2023. Calcium enhances phosphorus reclamation during biochar formation: mechanisms and potential application as a phosphorus fertilizer in a paddy soil. Waste Management162, 83–91.

[124]

Neuberger, P., Romero, C., Kim, K., Hao, X.Y., McAllister, T.A., Ngo, S., Li, C.L., Gorzelak, M.A., 2024. Biochar is colonized by select arbuscular mycorrhizal fungi in agricultural soils. Mycorrhiza34, 191–201.

[125]

Ngatia, L.W., Hsieh, Y.P., Nemours, D., Fu, R., Taylor, R.W., 2017. Potential phosphorus eutrophication mitigation strategy: biochar carbon composition, thermal stability and pH influence phosphorus sorption. Chemosphere180, 201–211.

[126]

Oladele, S.O., Ojo, J., Curaqueo, G., Ajayi, A.E., 2024. Does pyrolysis temperature determine soil phosphorus bioavailability and uptake on peri-urban cropland amended with poultry litter biochar? Biomass Conversion and Biorefinery 14, 14463–14476.

[127]

Panagos, P., Köningner, J., Ballabio, C., Liakos, L., Muntwyler, A., Borrelli, P., Lugato, E., 2022. Improving the phosphorus budget of European agricultural soils. Science of the Total Environment853, 158706.

[128]

Pantigoso, H.A., Manter, D.K., Fonte, S.J., Vivanco, J.M., 2023. Root exudate-derived compounds stimulate the phosphorus solubilizing ability of bacteria. Scientific Reports13, 4050.

[129]

Pei, L., Yang, F., Xu, X.Y., Nan, H.Y., Gui, X.Y., Zhao, L., Cao, X.D., 2021. Further reuse of phosphorus-laden biochar for lead sorption from aqueous solution: isotherm, kinetics, and mechanism. Science of the Total Environment792, 148550.

[130]

Peng, Y.T., Chen, Q., Guan, C.Y., Yang, X., Jiang, X.Q., Wei, M., Tan, J.F., Li, X.Y., 2023. Metal oxide modified biochars for fertile soil management: effects on soil phosphorus transformation, enzyme activity, microbe community, and plant growth. Environmental Research231, 116258.

[131]

Peng, Y.T., Sun, Y.Q., Fan, B.Q., Zhang, S., Bolan, N.S., Chen, Q., Tsang, D.C.W., 2021. Fe/Al (hydr)oxides engineered biochar for reducing phosphorus leaching from a fertile calcareous soil. Journal of Cleaner Production279, 123877.

[132]

Pogorzelski, D., Filho, J.F.L., Matias, P.C., Santos, W.O., Vergütz, L., Melo, L.C.A., 2020. Biochar as composite of phosphate fertilizer: characterization and agronomic effectiveness. Science of the Total Environment743, 140604.

[133]

Poirier, A., Fertahi, S., Hamiach, H., Tayibi, S., Elhaissoufi, W., Arji, M., Zeroual, Y., Raihane, M., Bargaz, A., Barakat, A., 2025. Bio-based polymers and biochar materials formulation derived from lignocellulosic biomass for controlled release phosphorus fertilizers. International Journal of Biological Macromolecules304, 140255.

[134]

Qayyum, M.F., Haider, G., Iqbal, M., Hameed, S., Ahmad, N., ur Rehman, M.Z., Majeed, A., Rizwan, M., Ali, S., 2021. Effect of alkaline and chemically engineered biochar on soil properties and phosphorus bioavailability in maize. Chemosphere266, 128980.

[135]

Qi, S.T., Yang, S.H., Lin, X.Y., Hu, J.Z., Jiang, Z.W., Xu, Y., 2023. The long-term effectiveness of biochar in increasing phosphorus availability and reducing its release risk to the environment in water-saving irrigated paddy fields. Agricultural Water Management282, 108295.

[136]

Qian, T.T., Wang, L., Le, C.C., Zhou, Y., 2019. Low-temperature-steam activation of phosphorus in biochar derived from enhanced biological phosphorus removal (EBPR) sludge. Water Research161, 202–210.

[137]

Rafique, M., Sultan, T., Ortas, I., Chaudhary, H.J., 2017. Enhancement of maize plant growth with inoculation of phosphate-solubilizing bacteria and biochar amendment in soil. Soil Science and Plant Nutrition63, 460–469.

[138]

Raguet, P., Cade-Menun, B., Mollier, A., Abdi, D., Ziadi, N., Karam, A., Morel, C., 2023. Mineralization and speciation of organic phosphorus in a sandy soil continuously cropped and phosphorus-fertilized for 28 years. Soil Biology and Biochemistry178, 108938.

[139]

Rashid, M.M., Ahmed, N., Jahan, M., Islam, K.S., Nansen, C., Willers, J.L., Ali, M.P., 2017. Higher fertilizer inputs increase fitness traits of brown planthopper in rice. Scientific Reports7, 4719.

[140]

Rawat, P., Das, S., Shankhdhar, D., Shankhdhar, S.C., 2021. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition21, 49–68.

[141]

Reusser, J.E., Piccolo, A., Vinci, G., Savarese, C., Cangemi, S., Cozzolino, V., Verel, R., Frossard, E., Mclaren, T.I., 2023. Phosphorus species in sequentially extracted soil organic matter fractions. Geoderma429, 116227.

[142]

Rossati, K.F., de Figueiredo, C.C., de Oliveira Mendes, G., 2023. Aspergillus niger enhances the efficiency of sewage sludge biochar as a sustainable phosphorus source. Sustainability15, 6940.

[143]

Sachdeva, V., Hussain, N., Husk, B.R., Whalen, J.K., 2019. Biochar-induced soil stability influences phosphorus retention in a temperate agricultural soil. Geoderma351, 71–75.

[144]

Sani, M.N.H., Hasan, M., Uddain, J., Subramaniam, S., 2020. Impact of application of Trichoderma and biochar on growth, productivity and nutritional quality of tomato under reduced N-P-K fertilization. Annals of Agricultural Sciences65, 107–115.

[145]

Scavia, D., 2023. Updated phosphorus loads from Lake Huron and the Detroit River: implications. Journal of Great Lakes Research49, 422–428.

[146]

Solaiman, Z.M., Abbott, L.K., Murphy, D.V., 2019. Biochar phosphorus concentration dictates mycorrhizal colonisation, plant growth and soil phosphorus cycling. Scientific Reports9, 5062.

[147]

Soro, M.P., N’Goran, K.M., Ouattara, A.A., Yao, K.M., Kouassi, N.G.L.B, Diaco, T., 2023. Nitrogen and phosphorus spatio-temporal distribution and fluxes intensifying eutrophication in three tropical rivers of Côte d’Ivoire (West Africa). Marine Pollution Bulletin186, 114391.

[148]

Sui, L., Tang, C.Y., Cheng, K., Yang, F., 2022. Biochar addition regulates soil phosphorus fractions and improves release of available phosphorus under freezing-thawing cycles. Science of the Total Environment848, 157748.

[149]

Tarraf, W., Ruta, C., Tagarelli, A., De Cillis, F., De Mastro, G., 2017. Influence of arbuscular mycorrhizae on plant growth, essential oil production and phosphorus uptake of Salvia officinalis L. Industrial Crops and Products102, 144–153.

[150]

Tesfaye, F., Liu, X.Y., Zheng, J.F., Cheng, K., Bian, R.J., Zhang, X.H., Li, L.Q., Drosos, M., Joseph, S., Pan, G.X., 2021. Could biochar amendment be a tool to improve soil availability and plant uptake of phosphorus? A meta-analysis of published experiments. Environmental Science and Pollution Research28, 34108–34120.

[151]

Tian, J.H., Kuang, X.Z., Tang, M.T., Chen, X.D., Huang, F., Cai, Y.X., Cai, K.Z., 2021. Biochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community composition. Science of the Total Environment779, 146556.

[152]

Uchimiya, M., Hiradate, S., 2014. Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars. Journal of Agricultural and Food Chemistry62, 1802–1809.

[153]

Wahab, A., Batool, F., Muhammad, M., Zaman, W., Mikhlef, R.M., Qaddoori, S.M., Ullah, S., Abdi, G., Saqib, S., 2024. Unveiling the complex molecular dynamics of arbuscular mycorrhizae: a comprehensive exploration and future perspectives in harnessing phosphate-solubilizing microorganisms for sustainable progress. Environmental and Experimental Botany219, 105633.

[154]

Wang, C.Q., Dippold, M.A., Guggenberger, G., Kuzyakov, Y., Guenther, S., Dorodnikov, M., 2024a. The wetter the better? Preferences in plant-microbial competition for phosphorus sources in rice cultivation under contrasting irrigation. Soil Biology and Biochemistry191, 109339.

[155]

Wang, C.W., Qiu, C., Song, Z.G., Gao, M.L., 2022a. A novel Ca/Mn-modified biochar recycles P from solution: mechanisms and phosphate efficiency. Environmental Science: Processes & Impacts24, 474–485.

[156]

Wang, C.Y., Zhou, Y.L., Yu, F., Zhu, X.Y., Dong, M.Y., Li, Q.X., 2024b. Recovery of phosphate from aqueous solution by modified biochar with concentrated seawater and its potential application as fertilizer. Journal of Environmental Chemical Engineering12, 112646.

[157]

Wang, M., Fu, Y., Wang, Y., Li, Y., Shen, J., Liu, X., Wu, J., 2021a. Pathways and mechanisms by which biochar application reduces nitrogen and phosphorus runoff losses from a rice agroecosystem. Science of the Total Environment797, 149193.

[158]

Wang, M., Wang, J.J., Park, J.H., Wang, J., Wang, X.D., Zhao, Z.P., Song, F.M., Tang, B., 2022b. Pyrolysis temperature affects dissolved phosphorus and carbon levels in alkali-enhanced biochar and its soil applications. Agronomy12, 1923.

[159]

Wang, M.H., Fu, Y.X., Wang, Y., Li, Y., Shen, J.L., Liu, X.L., Wu, J.S., 2021. Pathways and mechanisms by which biochar application reduces nitrogen and phosphorus runoff losses from a rice agroecosystem. Science of the Total Environment797, 149193.

[160]

Wang, W.S., Yang, S.Q., Zhang, A.P., Yang, Z.L., 2021b. Synthesis of a slow-release fertilizer composite derived from waste straw that improves water retention and agricultural yield. Science of the Total Environment768, 144978.

[161]

Wang, X.C., Eltohamy, K.M., Liu, C.L., Li, F.Y., Fang, Y.Y., Kawasaki, A., Liang, X.Q., 2023. Biochar reduces colloidal phosphorus in soil aggregates: the role of microbial communities. Journal of Environmental Management326, 116745.

[162]

Wang, X.Y., Sun, T., Ma, H.G., Tang, G.M., Chen, M., Abulaizi, M., Yu, G.L., Jia, H.T., 2022c. Effects of acidic phosphorus-rich biochar from halophyte species on P availability and fractions in alkaline soils. Chemical and Biological Technologies in Agriculture9, 101.

[163]

Wang, Y.Z., Zhang, Y.P., Zhao, H., Hu, W., Zhang, H.F., Zhou, X., Luo, G.W., 2022d. The effectiveness of reed-biochar in mitigating phosphorus losses and enhancing microbially-driven phosphorus dynamics in paddy soil. Journal of Environmental Management314, 115087.

[164]

Warrack, J., Kang, M., von Sperber, C., 2022. Groundwater phosphorus concentrations: global trends and links with agricultural and oil and gas activities. Environmental Research Letters17, 014014.

[165]

Wu, L.P., Zhang, S.R., Chen, M.M., Liu, J., Ding, X.D., 2021. A sustainable option: biochar addition can improve soil phosphorus retention and rice yield in a saline–alkaline soil. Environmental Technology & Innovation24, 102070.

[166]

Xiao, J., Li, X.G., Zhang, X.P., Cao, Y.N., Vithanage, M., Bolan, N., Wang, H.L., Zhong, Z.K., Chen, G.C., 2024. Contrasting effect of pristine, ball-milled and Fe–Mn modified bone biochars on dendroremediation potential of Salix jiangsuensis “172” for cadmium- and zinc-contaminated soil. Environmental Pollution341, 123019.

[167]

Xiao, Y., Liu, M.H., Chen, L., Ji, L.Z., Zhao, Z.J., Wang, L.Q., Wei, L.L., Zhang, Y.C., 2020. Growth and elemental uptake of Trifolium repens in response to biochar addition, arbuscular mycorrhizal fungi and phosphorus fertilizer applications in low-Cd-polluted soils. Environmental Pollution260, 113761.

[168]

Xu, G., Zhang, Y., Shao, H.B., Sun, J.N., 2016a. Pyrolysis temperature affects phosphorus transformation in biochar: chemical fractionation and 31P NMR analysis. Science of the Total Environment 569–570, 569–570.

[169]

Xu, G., Zhang, Y., Sun, J.N., Shao, H.B., 2016b. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Science of the Total Environment568, 910–915.

[170]

Yang, C.D., Lu, S.G., 2022. Straw and straw biochar differently affect phosphorus availability, enzyme activity and microbial functional genes in an Ultisol. Science of the Total Environment805, 150325.

[171]

Yang, L., Wu, Y.C., Wang, Y.C., An, W.Q., Jin, J., Sun, K., Wang, X.K., 2021. Effects of biochar addition on the abundance, speciation, availability, and leaching loss of soil phosphorus. Science of the Total Environment758, 143657.

[172]

Yin, X.A., Zhao, L.S., Fang, Q., Zi, R.Y., Fang, F.Y., Fan, C.H., Ding, G.J., 2023. Effects of biochar on runoff generation, soil and nutrient loss at the surface and underground on the soil-mantled karst slopes. Science of the Total Environment889, 164081.

[173]

Yu, L., Rozemeijer, J., van Breukelen, B.M., Ouboter, M., van der Vlugt, C., Broers, H.P., 2018. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area. Hydrology and Earth System Sciences22, 487–508.

[174]

Yuan, J.H., Chen, H., Chen, G.L., Pokharel, P., Chang, S.X., Wang, Y.J., Wang, D.J., Yan, X.Y., Wang, S.Q., Wang, Y., 2024. Long-term biochar application influences phosphorus and associated iron and sulfur transformations in the rhizosphere. Carbon Research3, 25.

[175]

Yuan, Q.S., Gao, Y., Ma, G.Z., Wu, H.Z., Li, Q.S., Zhang, Y.L., Liu, S.L., Jie, X.L., Zhang, D.X., Wang, D.C., 2025. The long-term effect of biochar amendment on soil biochemistry and phosphorus availability of calcareous soils. Agriculture15, 458.

[176]

Yuan, Y.F., Liu, Q., Zheng, H., Li, M., Liu, Y.F., Wang, X., Peng, Y., Luo, X.X., Li, F.M., Li, X.Y., Xing, B.S., 2023. Biochar as a sustainable tool for improving the health of salt-affected soils. Soil & Environmental Health1, 100033.

[177]

Zhang, H.Z., Chen, C.R., Gray, E.M., Boyd, S.E., Yang, H., Zhang, D.K., 2016. Roles of biochar in improving phosphorus availability in soils: a phosphate adsorbent and a source of available phosphorus. Geoderma276, 1–6.

[178]

Zhang, M., Liu, Y.L., Wei, Q.Q., Gu, X.F., Liu, L.L., Gou, J.L., 2022a. Biochar application ameliorated the nutrient content and fungal community structure in different yellow soil depths in the karst area of Southwest China. Frontiers in Plant Science13, 1020832.

[179]

Zhang, M.D., Chen, Q.P., Zhang, R.R., Zhang, Y.T., Wang, F.P., He, M.Z., Guo, X.M., Yang, J., Zhang, X.Y., Mu, J.L., 2023a. Pyrolysis of Ca/Fe-rich antibiotic fermentation residues into biochars for efficient phosphate removal/recovery from wastewater: turning hazardous waste to phosphorous fertilizer. Science of the Total Environment869, 161732.

[180]

Zhang, P., Bing, X., Jiao, L., Xiao, H., Li, B.X., Sun, H.W., 2022b. Amelioration effects of coastal saline-alkali soil by ball-milled red phosphorus-loaded biochar. Chemical Engineering Journal431, 133904.

[181]

Zhang, P., Xue, B., Jiao, L., Meng, X.Y., Zhang, L.Y., Li, B.X., Sun, H.W., 2022c. Preparation of ball-milled phosphorus-loaded biochar and its highly effective remediation for Cd- and Pb-contaminated alkaline soil. Science of the Total Environment813, 152648.

[182]

Zhang, Q.Q., Song, Y.F., Wu, Z., Yan, X.Y., Gunina, A., Kuzyakov, Y., Xiong, Z.Q., 2020. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. Journal of Cleaner Production242, 118435.

[183]

Zhang, T.R., Li, T., Zhou, Z.J., Li, Z.Q., Zhang, S.R., Wang, G.Y., Xu, X.X., Pu, Y.L., Jia, Y.X., Liu, X.J., Li, Y., 2023b. Cadmium-resistant phosphate-solubilizing bacteria immobilized on phosphoric acid-ball milling modified biochar enhances soil cadmium passivation and phosphorus bioavailability. Science of the Total Environment877, 162812.

[184]

Zhang, Y.K., Chen, H.Z., Xiang, J., Xiong, J.H., Wang, Y.L., Wang, Z.G., Zhang, Y.P., 2022d. Effect of rice-straw biochar application on the acquisition of rhizosphere phosphorus in acidified paddy soil. Agronomy12, 1556.

[185]

Zhang, Y.P., Yan, J., Rong, X.M., Han, Y.L., Yang, Z.Y., Hou, K., Zhao, H., Hu, W., 2021. Responses of maize yield, nitrogen and phosphorus runoff losses and soil properties to biochar and organic fertilizer application in a light-loamy fluvo-aquic soil. Agriculture, Ecosystems & Environment314, 107433.

[186]

Zhao, D., Luo, Y., Feng, Y.Y., He, Q.P., Zhang, L.S., Zhang, K.Q., Wang, F., 2021. Enhanced adsorption of phosphorus in soil by lanthanum-modified biochar: improving phosphorus retention and storage capacity. Environmental Science and Pollution Research,28, 68982–68995.

[187]

Zhao, D., Qiu, S.K., Li, M.M., Luo, Y., Zhang, L.S., Feng, M.H., Yuan, M.Y., Zhang, K.Q., Wang, F., 2022a. Modified biochar improves the storage capacity and adsorption affinity of organic phosphorus in soil. Environmental Research205, 112455.

[188]

Zhao, L., Cao, X.D., Zheng, W., Scott, J.W., Sharma, B.K., Chen, X., 2016. Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustainable Chemistry & Engineering4, 1630–1636.

[189]

Zhao, Y., Hao, Y., Cheng, K., Wang, L.L., Dong, W.C., Liu, Z.Q., Yang, F., 2024. Artificial humic acid mediated migration of phosphorus in soil: experiment and modelling. CATENA238, 107896.

[190]

Zhao, Y.F., Lu, Y.P., Zhuang, H.F., Shan, S.D., 2023. In-situ retention of nitrogen, phosphorus in agricultural drainage and soil nutrients by biochar at different temperatures and the effects on soil microbial response. Science of the Total Environment904, 166292.

[191]

Zhao, Z.P., Wang, B., Zhang, X.Y., Xu, H.J., Cheng, N., Feng, Q.W., Zhao, R.H., Gao, Y.N., Wei, M., 2022b. Release characteristics of phosphate from ball-milled biochar and its potential effects on plant growth. Science of the Total Environment821, 153256.

[192]

Zheng, Q., Yang, L.F., Song, D.L., Zhang, S., Wu, H., Li, S.T., Wang, X.B., 2020. High adsorption capacity of Mg–Al-modified biochar for phosphate and its potential for phosphate interception in soil. Chemosphere259, 127469.

[193]

Zheng, Z.J., Ali, A., Su, J.F., Fan, Y.Y., Zhang, S., 2021. Layered double hydroxide modified biochar combined with sodium alginate: a powerful biomaterial for enhancing bioreactor performance to remove nitrate. Bioresource Technology323, 124630.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4090KB)

427

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/