Negative effects of Euphorbiaceae cultivation on soil nematode communities in tropical soils

Chunyu Hou , Hong Chen , Haoran Lei , Jiaojiao Jiao , Shangwen Xia , Jianping Wu

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250324

PDF (4123KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250324 DOI: 10.1007/s42832-025-0324-0
RESEARCH ARTICLE

Negative effects of Euphorbiaceae cultivation on soil nematode communities in tropical soils

Author information +
History +
PDF (4123KB)

Abstract

Soil nematodes regulate belowground ecological processes, yet their community composition and energy structure responses to Chinese herbal medicine planting are largely unknown. Here, four Euphorbiaceae plants—Phyllanthus emblica, Excoecaria acerifolia, Baccaurea ramiflora, and Aporosa yunnanensis—were selected and cultivated in the Xishuangbanna Tropical Botanical Garden. After two years of cultivation, we assessed soil physicochemical properties, plant traits, microbial diversity, nematode diversity and community composition, and nematode energy flux. Our results revealed that the cultivation of these four medicinal plants significantly reduced soil nematode abundance and diversity and altered the community composition. Total nematode abundance was positively correlated with soil pH, aboveground biomass, and microbial richness, but negatively correlated with soil moisture, soil total phosphorus, and leaf thickness. Additionally, the energy flux within the soil nematode food web decreased by 40%−71% after the cultivation of medicinal plants, which was attributed to the reduction in nematode diversity and abundance. Our findings suggest that the cultivation of medicinal plants can influence soil resource availability and alter soil nematode communities, with diverse nematode species playing a key role in energy transfer within the belowground ecosystem.

Graphical abstract

Keywords

soil fauna / Chinese herbal medicine / functional traits / biodiversity / ecosystem function

Highlight

● Euphorbiaceae cultivation had negative effects on soil nematode communities.

● Euphorbiaceae cultivation reduced the energy flow of soil nematode micro-food webs.

● The energy flux was positively correlated with nematode diversity and abundance.

Cite this article

Download citation ▾
Chunyu Hou, Hong Chen, Haoran Lei, Jiaojiao Jiao, Shangwen Xia, Jianping Wu. Negative effects of Euphorbiaceae cultivation on soil nematode communities in tropical soils. Soil Ecology Letters, 2025, 7(3): 250324 DOI:10.1007/s42832-025-0324-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barnes, A.D., Jochum, M., Mumme, S., Haneda, N.F., Farajallah, A., Widarto, T.H., Brose, U., 2014. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nature Communications5, 5351.

[2]

Barnes, A.D., Weigelt, P., Jochum, M., Ott, D., Hodapp, D., Haneda, N.F., Brose, U., 2016. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences371, 20150279.

[3]

Beugnon, R., Steinauer, K., Barnes, A.D., Ebeling, A., Roscher, C., Eisenhauer, N., 2019. Plant functional trait identity and diversity effects on soil meso- and macrofauna in an experimental grassland. Advances in Ecological Research61, 163–184.

[4]

Blackman, C.J., Creek, D., Maier, C., Aspinwall, M.J., Drake, J.E., Pfautsch, S., O'Grady, A., Delzon, S., Medlyn, B.E., Tissue, D.T., Choat, B., 2019. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure. Tree Physiology39, 910–924.

[5]

Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight, R., Huttley, G.A., Gregory Caporaso, J., 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome6, 90.

[6]

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J.R., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L.J., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciólek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petráš, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y.H., Wang, M.X., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y.L., Zhu, Q.Y., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology37, 852–857.

[7]

Buzhdygan, O.Y., Meyer, S.T., Weisser, W.W., Eisenhauer, N., Ebeling, A., Borrett, S.R., Buchmann, N., Cortois, R., De Deyn, G.B., de Kroon, H., Gleixner, G., Hertzog, L.R., Hines, J., Lange, M., Mommer, L., Ravenek, J., Scherber, C., Scherer-Lorenzen, M., Scheu, S., Schmid, B., Steinauer, K., Strecker, T., Tietjen, B., Vogel, A., Weigelt, A., Petermann, J.S., 2020. Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. Nature Ecology & Evolution4, 393–405.

[8]

Cao, M., Zou, X.M., Warren, M., Zhu, H., 2006. Tropical forests of Xishuangbanna, China. Biotropica38, 306–309.

[9]

Carvalho, C.E., Sfair, J.C., Eller, C.B., Menezes, B.S., Menezes, M.O.T., Araújo, F.S., 2023. Tree height, leaf thickness and seed size drive Caatinga plants' sensitivity to climate change. Journal of Biogeography50, 2057–2068.

[10]

Cui, H.W., Liu, X., Chen, S.Y., Liu, Z.Y., Chen, J.W., Zhou, H.K., Xiao, S., Wang, J.J., Song, H.X., Wang, Y.J., Yang, Z., Liu, K., An, L.Z., Nielsen, U.N., 2023. Contrasting responses of nematode composition, richness and biomass to long-term warming. Science of the Total Environment894, 165074.

[11]

Cui, S.Y., Liang, S.W., Zhang, X.K., Li, Y.B., Liang, W.J., Sun, L.J., Wang, J.K., Martijn Bezemer, T., Li, Q., 2018. Long-term fertilization management affects the C utilization from crop residues by the soil micro-food web. Plant and Soil429, 335–348.

[12]

Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro, F.D., Bastida, F., Berhe, A.A., Cutler, N.A., Gallardo, A., García-Velázquez, L., Hart, S.C., Hayes, P.E., He, J.Z., Hseu, Z.Y., Hu, H.W., Kirchmair, M., Neuhauser, S., Pérez, C.A., Reed, S.C., Santos, F., Sullivan, B.W., Trivedi, P., Wang, J.T., Weber-Grullon, L., Williams, M.A., Singh, B.K., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution4, 210–220.

[13]

Ferris, H., 2010a. Contribution of nematodes to the structure and function of the soil food web. Journal of Nematology42, 63–67.

[14]

Ferris, H., 2010b. Form and function: metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology46, 97–104.

[15]

Gauzens, B., Barnes, A., Giling, D.P., Hines, J., Jochum, M., Lefcheck, J.S., Rosenbaum, B., Wang, S.P., Brose, U., 2019. fluxweb: an R package to easily estimate energy fluxes in food webs. Methods in Ecology and Evolution10, 270–279.

[16]

Goyal, A.K., Middha, S.K., Usha, T., 2022. Baccaurea ramiflora Lour. : a comprehensive review from traditional usage to pharmacological evidence. Advances in Traditional Medicine22, 231–249.

[17]

Han, M.G., Chen, Y., Sun, L.J., Yu, M., Li, R., Li, S.F., Su, J.R., Zhu, B., 2023. Linking rhizosphere soil microbial activity and plant resource acquisition strategy. Journal of Ecology111, 875–888.

[18]

Hu, J.W., Hassi, U., Gebremikael, M.T., Dumack, K., De Swaef, T., Wesemael, W., Sleutel, S., De Neve, S., 2023. Root traits explain multitrophic interactions of belowground microfauna on soil nitrogen mineralization and plant productivity. Soil Biology and Biochemistry184, 109093.

[19]

Kitagami, Y., Suzuki, K., Matsuda, Y., 2024. Effects of tree species identity and soil origin on soil nematode communities and trophic composition in coniferous and broad-leaved forests. Plant and Soil503, 489–502.

[20]

Kõljalg, U., Larsson, K.H., Abarenkov, K., Nilsson, R.H., Alexander, I.J., Eberhardt, U., Erland, S., Høiland, K., Kjøller, R., Larsson, E., Pennanen, T., Sen, R., Taylor, A.F.S., Tedersoo, L., Vrålstad, T., Ursing, B.M., 2005. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytologist166, 1063–1068.

[21]

Laughlin, D.C., 2011. Nitrification is linked to dominant leaf traits rather than functional diversity. Journal of Ecology99, 1091–1099.

[22]

Li, G., Liu, T., Whalen, J.K., Wei, Z., 2024. Nematodes: an overlooked tiny engineer of plant health. Trends in Plant Science29, 52–63.

[23]

Liao, X.H., Fu, S.L., Zhao, J., 2023. Altered energy dynamics of multitrophic groups modify the patterns of soil CO2 emissions in planted forest. Soil Biology and Biochemistry178, 108953.

[24]

Liu, Q., Lan, Q.Y., Wen, B., Tan, Y.H., Wang, X.F., 2014. Germination of recalcitrant Baccaurea ramiflora seeds. Scienceasia40, 101.

[25]

Liu, X.T., Liang, S.W., Tian, Y.J., Wang, X., Liang, W.J., Zhang, X.K., 2024. Effect of land use on soil nematode community composition and co-occurrence network relationship. Journal of Integrative Agriculture23, 2807–2819.

[26]

Ma, J.H., Wei, X., Liu, S.R., Wu, P.F., 2022. Changes in the soil nematode community among climate zones do not keep pace with changes in plant communities. CATENA215, 106319.

[27]

Magaña Ugarte, R., Hurtado Martínez, M., Díaz-Santiago, E., Pugnaire, F.I., 2024. Microbial controls on seed germination. Soil Biology and Biochemistry199, 109576.

[28]

Martin, T., Wade, J., Singh, P., Sprunger, C.D., 2022. The integration of nematode communities into the soil biological health framework by factor analysis. Ecological Indicators136, 108676.

[29]

Moche, M., Gutknecht, J., Schulz, E., Langer, U., Rinklebe, J., 2015. Monthly dynamics of microbial community structure and their controlling factors in three floodplain soils. Soil Biology and Biochemistry90, 169–178.

[30]

Morriën, E., Hannula, S.E., Snoek, L.B., Helmsing, N.R., Zweers, H., De Hollander, M., Soto, R.L., Bouffaud, M.L., Buée, M., Dimmers, W., Duyts, H., Geisen, S., Girlanda, M., Griffiths, R.I., Jørgensen, H.B., Jensen, J., Plassart, P., Redecker, D., Schmelz, R.M., Schmidt, O., Thomson, B.C., Tisserant, É., Uroz, S., Winding, A., Bailey, M.J., Bonkowski, M., Faber, J.H., Martin, F., Lemanceau, P., De Boer, W., van Veen, J.A., van der Putten, W.H., 2017. Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications8, 14349.

[31]

Nisa, R.U., Tantray, A.Y., Kouser, N., Allie, K.A., Wani, S.M., Alamri, S.A., Alyemeni, M.N., Wijaya, L., Shah, A.A., 2021. Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi Journal of Biological Sciences28, 3049–3059.

[32]

Oliveira, R.S., Eller, C.B., Barros, F.D.V., Hirota, M., Brum, M., Bittencourt, P., 2021. Linking plant hydraulics and the fast-slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist230, 904–923.

[33]

Orwin, K.H., Mason, N.W.H., Aalders, L., Bell, N.L., Schon, N., Mudge, P.L., 2021. Relationships of plant traits and soil biota to soil functions change as nitrogen fertiliser rates increase in an intensively managed agricultural system. Journal of Applied Ecology58, 392–405.

[34]

Osnas, J.L.D., Lichstein, J.W., Reich, P.B., Pacala, S.W., 2013. Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science340, 741–744.

[35]

Pathak, S., Pratap, A., Sharma, R., Jha, M.K., 2024. The Phyllanthus emblica fruits: a review on phytochemistry traditional uses, bioactive composition and pharmacological activities. Current Topics in Medicinal Chemistry24, 1917–1939.

[36]

Paul, M., Catterall, C.P., Pollard, P.C., Kanowski, J., 2010. Recovery of soil properties and functions in different rainforest restoration pathways. Forest Ecology and Management259, 2083–2092.

[37]

Peters, B.G., Wallace, H.R., 1964. The biology of plant parasitic nematodes. The Journal of Animal Ecology33, 379.

[38]

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research41, D590–D596.

[39]

R Core Team, 2024. R: a language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria.

[40]

Salehi, B., Iriti, M., Vitalini, S., Antolak, H., Pawlikowska, E., Kręgiel, D., Sharifi-Rad, J., Oyeleye, S.I., Ademiluyi, A.O., Czopek, K., Staniak, M., Custódio, L., Coy-Barrera, E., Segura-Carretero, A., de la Luz Cádiz-Gurrea, M., Capasso, R., Cho, W.C., Seca, A.M.L., 2019. Euphorbia-derived natural products with potential for use in health maintenance. Biomolecules9, 337.

[41]

Thakur, M.P., Geisen, S., 2019. Trophic regulations of the soil microbiome. Trends in Microbiology27, 771–780.

[42]

Townshend, J.L., 1963. A modification and evaluation of the apparatus for the oostenbrink direct cottonwool filter extraction method. Nematologica9, 106–110.

[43]

Treseder, K.K., Vitousek, P.M., 2001. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology82, 946–954.

[44]

Tu, C.W., Zhang, A.J., Luo, R.Y., Qiang, W., Zhang, Y., Pang, X.Y., Kuzyakov, Y., 2024. Linking nematode trophic diversity to plantation identity and soil nutrient cycling. Geoderma448, 116945.

[45]

Tusher, M.M.H., Asrafuzzaman, M., Rahman, M.H., Hossain, M.A., Halder, S., Sarker, N., Mosihuzzaman, D.M., Rokeya, B., 2022. IDF21–0417 Antidiabetic activity of Baccaurea ramiflora Lour peel on n-STZ induced type 2 diabetic model rats. Diabetes Research and Clinical Practice186, 109537.

[46]

van Bommel, M., Arndt, K., Endress, M.G., Dehghani, F., Wirsching, J., Blagodatskaya, E., Blagodatsky, S., Kandeler, E., Marhan, S., Poll, C., Ruess, L., 2024. Under the lens: carbon and energy channels in the soil micro-food web. Soil Biology and Biochemistry199, 109575.

[47]

van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D.A., de Goede, R.G.M., Adams, B.J., Ahmad, W., Andriuzzi, W.S., Bardgett, R.D., Bonkowski, M., Campos-Herrera, R., Cares, J.E., Caruso, T., de Brito Caixeta, L., Chen, X.Y., Costa, S.R., Creamer, R., Mauro da Cunha Castro, J., Dam, M., Djigal, D., Escuer, M., Griffiths, B.S., Gutiérrez, C., Hohberg, K., Kalinkina, D., Kardol, P., Kergunteuil, A., Korthals, G., Krashevska, V., Kudrin, A.A., Li, Q., Liang, W.J., Magilton, M., Marais, M., Martín, J.A.R., Matveeva, E., Mayad, E.H., Mulder, C., Mullin, P., Neilson, R., Nguyen, T.A.D., Nielsen, U.N., Okada, H., Rius, J.E.P., Pan, K.W., Peneva, V., Pellissier, L., Carlos Pereira da Silva, J., Pitteloud, C., Powers, T.O., Powers, K., Quist, C.W., Rasmann, S., Moreno, S.S., Scheu, S., Setälä, H., Sushchuk, A., Tiunov, A.V., Trap, J., van der Putten, W., Vestergård, M., Villenave, C., Waeyenberge, L., Wall, D.H., Wilschut, R., Wright, D.G., Yang, J.I., Crowther, T.W., 2019. Soil nematode abundance and functional group composition at a global scale. Nature572, 194–198.

[48]

Vashisth, N., Kumar, A., Kumar, V., Kumar, M., Sindhu, A.S., Goel, S.R., Singh, G., 2019. Bio-nematicidal effect of botanicals against root-knot nematode (Meloidogyne incognita) in tomato (Solanum lycopersicum). Indian Journal of Agricultural Sciences89, 2096–2101.

[49]

Wagg, C., Bender, S.F., Widmer, F., van der Heijden, M.G.A., 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America111, 5266–5270.

[50]

Wan, B.B., Hu, Z.K., Liu, T., Yang, Q., Li, D.M., Zhang, C.Z., Chen, X.Y., Hu, F., Kardol, P., Griffiths, B.S., Liu, M.Q., 2022. Organic amendments increase the flow uniformity of energy across nematode food webs. Soil Biology and Biochemistry170, 108695.

[51]

Wang, B., Wu, Y., Chen, D.M., Hu, S.J., Bai, Y.F., 2021a. Legacy effect of grazing intensity mediates the bottom-up controls of resource addition on soil food webs. Journal of Applied Ecology58, 976–987.

[52]

Wang, D.J., Yuan, F., Xie, W.Y., Zuo, J., Zhou, H.K., 2024a. Effects of leaf size and defensive traits on the contribution of soil fauna to litter decomposition. Forests15, 481.

[53]

Wang, H.L., Xing, Y.J., Yan, G.Y., Liu, G.C., Wang, Q.G., 2024b. Nitrogen addition and precipitation reduction alter ecosystem multifunctionality and decrease soil nematode abundance and trophic energy fluxes in a temperate forest. Applied Soil Ecology201, 105489.

[54]

Wang, J.Q., Mao, J.Y., Tan, Y.Y., Lam, S.K., Guo, Q.L., Shi, X.Z., 2023. Leaf phenology rather than mycorrhizal type regulates soil nematode abundance, but collectively affects nematode diversity in seven common subtropical tree species. Forest Ecosystems10, 100103.

[55]

Wang, J.Q., Zheng, Y.F., Shi, X.Z., Lam, S.K., Lucas-Borja, M.E., Huang, Z.Q., 2022. Nature restoration shifts the abundance and structure of soil nematode communities in subtropical forests. Plant and Soil471, 315–327.

[56]

Wang, M.G., De Deyn, G.B., Bezemer, T.M., 2019. Separating effects of soil microorganisms and nematodes on plant community dynamics. Plant and Soil441, 455–467.

[57]

Wang, S.M., Chen, X.Y., Li, D.B., Wu, J.P., 2021b. Effects of soil organism interactions and temperature on carbon use efficiency in three different forest soils. Soil Ecology Letters3, 156–166.

[58]

Wilschut, R.A., Geisen, S., 2021. Nematodes as drivers of plant performance in natural systems. Trends in Plant Science26, 237–247.

[59]

Wilschut, R.A., van der Putten, W.H., Garbeva, P., Harkes, P., Konings, W., Kulkarni, P., Martens, H., Geisen, S., 2019. Root traits and belowground herbivores relate to plant-soil feedback variation among congeners. Nature Communications10, 1564.

[60]

Xu, Y., Tang, P.Y., Zhu, M., Wang, Y.L., Sun, D.J., Li, H., Chen, L.X., 2021. Diterpenoids from the genus Euphorbia: structure and biological activity (2013–2019). Phytochemistry190, 112846.

[61]

Yang, X.D., Chen, J., 2009. Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, Southwestern China. Soil Biology and Biochemistry41, 910–918.

[62]

Zeng, X.Y., Gao, H.L., Wang, R.X., Majcher, B.M., Woon, J.S., Wenda, C., Eggleton, P., Griffiths, H.M., Ashton, L.A., 2024. Global contribution of invertebrates to forest litter decomposition. Ecology Letters27, e14423.

[63]

Zhang, C.Z., Wright, I.J., Nielsen, U.N., Geisen, S., Liu, M.Q., 2024. Linking nematodes and ecosystem function: a trait-based framework. Trends in Ecology & Evolution39, 644–653.

[64]

Zhang, X.K., Guan, P.T., Wang, Y.L., Li, Q., Zhang, S.X., Zhang, Z.Y., Bezemer, T.M., Liang, W.J., 2015. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biology and Biochemistry80, 118–126.

[65]

Zhao, J., Neher, D.A., 2014. Soil energy pathways of different ecosystems using nematode trophic group analysis: a meta analysis. Nematology16, 379–385.

[66]

Zhao, J., Wang, F.M., Li, J., Zou, B., Wang, X.L., Li, Z.A., Fu, S.L., 2014. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biology and Biochemistry75, 1–10.

[67]

Zhao, L.N., Yu, B.B., Wang, M.M., Zhang, J., Shen, Z.F., Cui, Y., Li, J.Y., Ye, J., Zu, W.Z., Liu, X.J., Fan, Z.J., Fu, S.L., Shao, Y.H., 2021. The effects of plant resource inputs on the energy flux of soil nematodes are affected by climate and plant resource type. Soil Ecology Letters3, 134–144.

[68]

Zheng, H., Gao, D.D., Zhou, Y.Q., Zhao, J., 2023. Energy flow across soil food webs of different ecosystems: food webs with complex structures support higher energy flux. Geoderma439, 116666.

[69]

Zhu, B.J., Wan, B.B., Liu, T., Zhang, C.Z., Cheng, L.Z., Cheng, Y.H., Tian, S.Y., Chen, X.Y., Hu, F., Whalen, J.K., Liu, M.Q., 2023. Biochar enhances multifunctionality by increasing the uniformity of energy flow through a soil nematode food web. Soil Biology and Biochemistry183, 109056.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4123KB)

Supplementary files

SEL-00324-OF-JPW_suppl_1

430

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/