Distribution patterns and driving forces of soil fungal communities along elevational gradients on two snow mountains in the Hengduan Mountain Range

Shiqi Zhang , Zhenjiao Cao , Wei Fu , Congcong Shen , Zhipeng Hao , Guoxin Sun , Yuan Ge , Limei Zhang , Xin Zhang , Baodong Chen

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250323

PDF (7996KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250323 DOI: 10.1007/s42832-025-0323-1
RESEARCH ARTICLE

Distribution patterns and driving forces of soil fungal communities along elevational gradients on two snow mountains in the Hengduan Mountain Range

Author information +
History +
PDF (7996KB)

Abstract

Despite extensive research, fungal diversity along elevation gradients remains difficult to generalize. In this study we examined soil fungal diversity and network stability on two snow mountains in the Hengduan Mountain Range of China and identified distinct biodiversity patterns. On Meili Snow Mountain, fungal ASV richness declined significantly with altitude, with MAT identified as the primary driver. On Baima Snow Mountain, richness exhibited a hump-shaped pattern, with TN as the key influencing factor. Regression analysis and structural equation modelling revealed that elevation indirectly influenced fungal richness by affecting climate, vegetation, and soil properties. Despite similar climatic conditions, elevational patterns of fungal communities on the two mountains are driven by distinct local factors: Fungal communities on Meili Snow Mountain are mainly driven by NDVI, whereas those on Baima Snow Mountain are mainly shaped by soil fertility. Co-occurrence network analysis further indicates that fungal network complexity on Meili Snow Mountain increases with altitude, while fungal network stability follows a U-shaped distribution driven by species interactions and environmental filtering. In contrast, on Baima Snow Mountain, fungal network complexity peaks at mid-altitudes and stability shows no significant correlation with altitude, suggesting strong niche adaptability. These findings highlight the complex effects of elevation on fungal diversity and networks, providing new insights into biodiversity in mountain ecosystem and guidance for ecosystem management under climate change.

Graphical abstract

Keywords

soil fungal diversity / elevational gradients / co-occurrence network / network stability / mountain ecosystem

Highlight

● Soil fungal communities were characterized in two geographically close snow mountains.

● Unique fungal diversity patterns and environmental drivers on the two mountains were revealed.

● One mountain displayed a consistent decrease in fungal diversity with elevation, in contrast to the hump-shaped pattern in another mountain.

● Soil fungal network stability also varies with elevation.

● The study highlights the complex impact of elevation on fungal diversity and networks.

Cite this article

Download citation ▾
Shiqi Zhang, Zhenjiao Cao, Wei Fu, Congcong Shen, Zhipeng Hao, Guoxin Sun, Yuan Ge, Limei Zhang, Xin Zhang, Baodong Chen. Distribution patterns and driving forces of soil fungal communities along elevational gradients on two snow mountains in the Hengduan Mountain Range. Soil Ecology Letters, 2025, 7(3): 250323 DOI:10.1007/s42832-025-0323-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antonelli, A., Kissling, W.D., Flantua, S.G.A., Bermúdez, M.A., Mulch, A., Muellner-Riehl, A.N., Kreft, H., Linder, H.P., Badgley, C., Fjeldså, J., Fritz, S.A., Rahbek, C., Herman, F., Hooghiemstra, H., Hoorn, C., 2018. Geological and climatic influences on mountain biodiversity. Nature Geoscience11, 718–725.

[2]

Aregahegn, Z., 2020. Optimization of the analytical method for the determination of organic matter. Journal of Soil Science and Environmental Management11, 1–5.

[3]

Bahram, M., Hildebrand, F., Forslund, S.K., Anderson, J.L., Soudzilovskaia, N.A., Bodegom, P.M., Bengtsson-Palme, J., Anslan, S., Coelho, L.P., Harend, H., Huerta-Cepas, J., Medema, M.H., Maltz, M.R., Mundra, S., Olsson, P.A., Pent, M., Põlme, S., Sunagawa, S., Ryberg, M., Tedersoo, L., Bork, P., 2018. Structure and function of the global topsoil microbiome. Nature560, 233–237.

[4]

Banerjee, S., Schlaeppi, K., Van Der Heijden, M.G.A., 2018. Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology16, 567–576.

[5]

Begum, N., Qin, C., Ahanger, M.A., Raza, S., Khan, M.I., Ashraf, M., Ahmed, N., Zhang, L.X., 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science10, 1068.

[6]

Brunsfeld, S.J., Sullivan, J., Soltis, D.E., Soltis, P.S., 2001. Comparative phylogeography of northwestern North America: a synthesis. Special Publication-British Ecological Society 14, 319–340.

[7]

Callahan, B.J., Mcmurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.

[8]

Camenzind, T., Hättenschwiler, S., Treseder, K.K., Lehmann, A., Rillig, M.C., 2018. Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs88, 4–21.

[9]

Centenaro, G., De Miguel, S., Amouzgar, L., Piñuela, Y., Son, D., Bonet, J.A., De Aragón, J.M., Dashevskaya, S., Castaño, C., Alday, J.G., 2023. Silvicultural management and altitude prevail on soil properties and fungal community in shaping understorey plant communities in a Mediterranean pine forest. Science of the Total Environment858, 159860.

[10]

Chen, W.Q., Wang, J.Y., Chen, X., Meng, Z.X., Xu, R., Duoji, D., Zhang, J.H., He, J., Wang, Z.A., Chen, J., Liu, K.X., Hu, T.M., Zhang, Y.J., 2022. Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau. Soil Biology and Biochemistry172, 108766.

[11]

Coince, A., Cordier, T., Lengellé, J., Defossez, E., Vacher, C., Robin, C., Buée, M., Marçais, B., 2014. Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PLoS One9, e100668.

[12]

Condron, L., Stark, C., O’Callaghan, M., Clinton, P., Huang, Z.Q., 2010. The role of microbial communities in the formation and decomposition of soil organic matter. In: Dixon, G.R., Tilston, E.L., eds. Soil Microbiology and Sustainable Crop Production. Dordrecht: Springer, 81–118.

[13]

Courty, P.E., Buée, M., Diedhiou, A.G., Frey-Klett, P., Le Tacon, F., Rineau, F., Turpault, M.P., Uroz, S., Garbaye, J., 2010. The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biology and Biochemistry42, 679–698.

[14]

Coyte, K.Z., Schluter, J., Foster, K.R., 2015. The ecology of the microbiome: networks, competition, and stability. Science350, 663–666.

[15]

Davidson, E.A., Hart, S.C., Firestone, M.K., 1992. Internal cycling of nitrate in soils of a mature coniferous forest. Ecology73, 1148–1156.

[16]

de Vries, F.T., Griffiths, R.I., Bailey, M., Craig, H., Girlanda, M., Gweon, H.S., Hallin, S., Kaisermann, A., Keith, A.M., Kretzschmar, M., Lemanceau, P., Lumini, E., Mason, K.E., Oliver, A., Ostle, N., Prosser, J.I., Thion, C., Thomson, B., Bardgett, R.D., 2018. Soil bacterial networks are less stable under drought than fungal networks. Nature Communications9, 3033.

[17]

Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., Singh, B.K., 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications7, 10541.

[18]

Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro, F.D., Bastida, F., Berhe, A.A., Cutler, N.A., Gallardo, A., García-Velázquez, L., Hart, S.C., Hayes, P.E., He, J.Z., Hseu, Z.Y., Hu, H.W., Kirchmair, M., Neuhauser, S., Pérez, C.A., Reed, S.C., Santos, F., Sullivan, B.W., Trivedi, P., Wang, J.T., Weber-Grullon, L., Williams, M.A., Singh, B.K., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution4, 210–220.

[19]

Doetterl, S., Berhe, A.A., Arnold, C., Bodé, S., Fiener, P., Finke, P., Fuchslueger, L., Griepentrog, M., Harden, J.W., Nadeu, E., Schnecker, J., Six, J., Trumbore, S., Van Oost, K., Vogel, C., Boeckx, P., 2018. Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nature Geoscience11, 589–593.

[20]

Duan, S.M., Liu, S.Y., Zhu, Y., Miao, W.F., Han, F.Z., Qi, M.M., 2022. Reconstructing and analyzing avalanche events of 1991 and 2019 in Meili Snow Mountain. Journal of Glaciology and Geocryology44, 771–783.

[21]

Fan, R., Hua, J.G., Jiang, S.L., Wang, X.Q., Liu, W.T., Ji, W.L., 2023. Dauciform roots affect functional traits of Carex filispica under nitrogen and phosphorus fertilization in alpine meadow. Scientific Reports13, 14195.

[22]

Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nature Reviews Microbiology10, 538–550.

[23]

Feng, H.Q., Li, G.H., Du, S.W., Yang, S., Li, X.Q., De Figueiredo, P., Qin, Q.M., 2017. The septin protein Sep4 facilitates host infection by plant fungal pathogens via mediating initiation of infection structure formation. Environmental Microbiology19, 1730–1749.

[24]

Fleischhacker, A., Grube, M., Kopun, T., Hafellner, J., Muggia, L., 2015. Community analyses uncover high diversity of lichenicolous fungi in alpine habitats. Microbial Ecology70, 348–360.

[25]

Fu, W., Chen, B.D., Jansa, J., Wu, H.H., Ma, W., Luo, W.T., Xu, C., Hao, Z.P., Wu, H., Yu, Q., Han, X.G., 2022. Contrasting community responses of root and soil dwelling fungi to extreme drought in a temperate grassland. Soil Biology and Biochemistry169, 108670.

[26]

Gilbert, K.J., Bittleston, L.S., Naive, M.A.K., Kiszewski, A.E., Buenavente, P.A.C., Lohman, D.J., Pierce, N.E., 2020. Investigation of an elevational gradient reveals strong differences between bacterial and eukaryotic communities coinhabiting Nepenthes phytotelmata. Microbial Ecology80, 334–349.

[27]

Graham, J.H., Duda, J.J., 2011. The humpbacked species richness-curve: a contingent rule for community ecology. International Journal of Ecology2011, 868426.

[28]

Hagedorn, F., Gavazov, K., Alexander, J.M., 2019. Above- and belowground linkages shape responses of mountain vegetation to climate change. Science365, 1119–1123.

[29]

Herren, C.M., Mcmahon, K.D., 2017. Cohesion: a method for quantifying the connectivity of microbial communities. The ISME Journal11, 2426–2438.

[30]

Hodkinson, I.D., 2005. Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews80, 489–513.

[31]

Hou, M.Y., Leng, C.Y., Zhu, J., Yang, M.S., Yin, Y.F., Xing, Y.M., Chen, J., 2024. Alpine and subalpine plant microbiome mediated plants adapt to the cold environment: A systematic review. Environmental Microbiome19, 82.

[32]

Jiao, Z.W., Gao, Z.W., Liao, Y.C.Z., Liu, Y., Dong, L.N., Sun, H., 2023. Effects of pine wilt disease on rhizosphere microbiota and fine root fungi: insights into enzyme activity, ectomycorrhizal infection and microbial composition. Forests14, 1884.

[33]

Juan-Ovejero, R., Briones, M.J.I., Öpik, M., 2020. Fungal diversity in peatlands and its contribution to carbon cycling. Applied Soil Ecology146, 103393.

[34]

Kivlin, S.N., Lynn, J.S., Kazenel, M.R., Beals, K.K., Rudgers, J.A., 2017. Biogeography of plant-associated fungal symbionts in mountain ecosystems: A meta-analysis. Diversity and Distributions23, 1067–1077.

[35]

Koshila Ravi, R., Anusuya, S., Balachandar, M., Muthukumar, T., 2019. Microbial interactions in soil formation and nutrient cycling. Mycorrhizosphere and Pedogenesis 363–382.

[36]

Leff, J.W., Bardgett, R.D., Wilkinson, A., Jackson, B.G., Pritchard, W.J., De Long, J.R., Oakley, S., Mason, K.E., Ostle, N.J., Johnson, D., Baggs, E.M., Fierer, N., 2018. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. The ISME Journal12, 1794–1805.

[37]

Li, X.L., Xu, M., Christie, P., Li, X.L., Zhang, J.L., 2018. Large elevation and small host plant differences in the arbuscular mycorrhizal communities of montane and alpine grasslands on the Tibetan Plateau. Mycorrhiza28, 605–619.

[38]

Li, Y., Nie, C., Liu, Y.H., Du, W., He, P., 2019. Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland. Science of the Total Environment654, 264–274.

[39]

Livinus, M.U., Bala, S.Z., Abdulsalam, M., Innocent, M.O., Hassan, M., Elelu, S.A., Kini, P., 2024. Role of microbes in soil food webs and vegetation development. In: Aransiola, S.A., Atta, H.I., Maddela, N.R., eds. Soil Microbiome in Green Technology Sustainability. Cham: Springer, 107–132.

[40]

Louca, S., Polz, M.F., Mazel, F., Albright, M.B.N., Huber, J.A., O’connor, M.I., Ackermann, M., Hahn, A.S., Srivastava, D.S., Crowe, S.A., Doebeli, M., Parfrey, L.W., 2018. Function and functional redundancy in microbial systems. Nature Ecology & Evolution2, 936–943.

[41]

Ma, B., Wang, H.Z., Dsouza, M., Lou, J., He, Y., Dai, Z.M., Brookes, P.C., Xu, J.M., Gilbert, J.A., 2016. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. The ISME Journal10, 1891–1901.

[42]

Maestre, F.T., Callaway, R.M., Valladares, F., Lortie, C.J., 2009. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology97, 199–205.

[43]

Margesin, R., Jud, M., Tscherko, D., Schinner, F., 2009. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiology Ecology67, 208–218.

[44]

Martens, D.A., 2000. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biology and Biochemistry32, 361–369.

[45]

Miyajima, C., Nishiwaki, Y., Ozawa, K., Wakita, T., Itou, K., Takeda, K., Itakura, F., 2007. Driver modeling based on driving behavior and its evaluation in driver identification. Proceedings of the IEEE95, 427–437.

[46]

Miyamoto, Y., Nakano, T., Hattori, M., Nara, K., 2014. The mid-domain effect in ectomycorrhizal fungi: range overlap along an elevation gradient on Mount Fuji, Japan. The ISME Journal8, 1739–1746.

[47]

Mukhtar, H., Lin, C.M., Wunderlich, R.F., Cheng, L.C., Ko, M.C., Lin, Y.P., 2021. Climate and land cover shape the fungal community structure in topsoil. Science of the Total Environment751, 141721.

[48]

Oliveira, N.M., Niehus, R., Foster, K.R., 2014. Evolutionary limits to cooperation in microbial communities. Proceedings of the National Academy of Sciences of the United States of America111, 17941–17946.

[49]

Olsen, S.R., 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. Washington: U.S. Department of Agriculture, 939.

[50]

Pauchard, A., Kueffer, C., Dietz, H., Daehler, C.C., Alexander, J., Edwards, P.J., Arévalo, J.R., Cavieres, L.A., Guisan, A., Haider, S., Jakobs, G., Mcdougall, K., Millar, C.I., Naylor, B.J., Parks, C.G., Rew, L.J., Seipel, T., 2009. Ain't no mountain high enough: plant invasions reaching new elevations. Frontiers in Ecology and the Environment7, 479–486.

[51]

Peay, K.G., Von Sperber, C., Cardarelli, E., Toju, H., Francis, C.A., Chadwick, O.A., Vitousek, P.M., 2017. Convergence and contrast in the community structure of Bacteria, Fungi and Archaea along a tropical elevation-climate gradient. FEMS Microbiology Ecology93, fix045.

[52]

Rillig, M.C., Aguilar-Trigueros, C.A., Bergmann, J., Verbruggen, E., Veresoglou, S.D., Lehmann, A., 2015. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytologist205, 1385–1388.

[53]

Segnini, A., Posadas, A., Quiroz, R., Milori, D.M.B.P., Saab, S.C., Neto, L.M., Vaz, C.M.P., 2010. Spectroscopic assessment of soil organic matter in wetlands from the high Andes. Soil Science Society of America Journal74, 2246–2253.

[54]

Sharma, P., Sangwan, S., Kumari, A., Singh, S., Kaur, H., 2022. Impact of climate change on soil microorganisms regulating nutrient transformation. In: Vaishnav, A., Arya, S.S., Choudhary, D.K., eds. Plant Stress Mitigators: Action and Application. Singapore: Springer, 145–172.

[55]

Shen, C.C., Gunina, A., Luo, Y., Wang, J.J., He, J.Z., Kuzyakov, Y., Hemp, A., Classen, A.T., Ge, Y., 2020. Contrasting patterns and drivers of soil bacterial and fungal diversity across a mountain gradient. Environmental Microbiology22, 3287–3301.

[56]

Sigoillot, J.C., Berrin, J.G., Bey, M., Lesage-Meessen, L., Levasseur, A., Lomascolo, A., Record, E., Uzan-Boukhris, E., 2012. Fungal strategies for lignin degradation. Advances in Botanical Research61, 263–308.

[57]

Sun, D.L., Yao, B.M., Yang, G., Sun, G.X., 2023. Climate and soil properties regulate the vertical heterogeneity of minor and trace elements in the alpine topsoil of the Hengduan Mountains. Science of the Total Environment899, 165653.

[58]

Sun, M., Li, J.N., Cao, R.J., Tian, K., Zhang, W.G., Yin, D.C., Zhang, Y., 2021. Climate-growth relations of Abies georgei along an altitudinal gradient in Haba Snow Mountain, Southwestern China. Forests12, 1569.

[59]

Tang, S., Ma, Q.X., Marsden, K.A., Chadwick, D.R., Luo, Y., Kuzyakov, Y., Wu, L.H., Jones, D.L., 2023. Microbial community succession in soil is mainly driven by carbon and nitrogen contents rather than phosphorus and sulphur contents. Soil Biology and Biochemistry180, 109019.

[60]

Tian, J., Zong, N., Hartley, I.P., He, N.P., Zhang, J.J., Powlson, D., Zhou, J.Z., Kuzyakov, Y., Zhang, F.S., Yu, G.R., Dungait, J.A.J., 2021. Microbial metabolic response to winter warming stabilizes soil carbon. Global Change Biology27, 2011–2028.

[61]

Treseder, K.K., Lennon, J.T., 2015. Fungal traits that drive ecosystem dynamics on land. Microbiology and Molecular Biology Reviews79, 243–262.

[62]

Wang, C., Lu, X.K., Mori, T., Mao, Q.G., Zhou, K.J., Zhou, G.Y., Nie, Y.X., Mo, J.M., 2018. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biology and Biochemistry121, 103–112.

[63]

Wang, J.J., Hu, A., Meng, F.F., Zhao, W.Q., Yang, Y.F., Soininen, J., Shen, J., Zhou, J.Z., 2022. Embracing mountain microbiome and ecosystem functions under global change. New Phytologist234, 1987–2002.

[64]

Wang, P., Guo, J., Xu, X.Y., Yan, X.B., Zhang, K.C., Qiu, Y.P., Zhao, Q.Z., Huang, K.L., Luo, X., Yang, F., Guo, H., Hu, S.J., 2020. Soil acidification alters root morphology, increases root biomass but reduces root decomposition in an alpine grassland. Environmental Pollution265, 115016.

[65]

Whittaker, R.J., 2006. Island species–energy theory. Journal of Biogeography33, 11–12.

[66]

Wu, J.Y., Anderson, B.J., Buckley, H.L., Lewis, G., Lear, G., 2017. Aspect has a greater impact on alpine soil bacterial community structure than elevation. FEMS Microbiology Ecology93, fiw253.

[67]

Xiao, X., Liang, Y.T., Zhou, S., Zhuang, S.Y., Sun, B., 2018. Fungal community reveals less dispersal limitation and potentially more connected network than that of bacteria in bamboo forest soils. Molecular Ecology27, 550–563.

[68]

Yang, N., Li, X.X., Liu, D., Zhang, Y., Chen, Y.H., Wang, B., Hua, J.N., Zhang, J.B., Peng, S.L., Ge, Z.W., Li, J.J., Ruan, H.H., Mao, L.F., 2022a. Diversity patterns and drivers of soil bacterial and fungal communities along elevational gradients in the Southern Himalayas, China. Applied Soil Ecology178, 104563.

[69]

Yang, N., Zhang, Y., Li, J.J., Li, X.X., Ruan, H.H., Bhople, P., Keiblinger, K., Mao, L.F., Liu, D., 2022b. Interaction among soil nutrients, plant diversity and hypogeal fungal trophic guild modifies root-associated fungal diversity in coniferous forests of Chinese Southern Himalayas. Plant and Soil481, 395–408.

[70]

Zhang, Q.Y., Luo, P., Zhang, Y.C., Shi, F.S., Yi, S.L., Wu, N., 2008. Ecological characteristics of Abies georgei population at timberline on the north-facing slope of Baima Snow Mountain, southwest China. Acta Ecologica Sinica28, 129–135.

[71]

Zhang, W., Bi, W.L., Li, Y.H., Dong, Y.W., Yu, Z.L., Li, Y.Y., 2013. Analysis of the geomorphology features of the glacial trough valleys and the influence factors in the Baimaxue shan, northwest of Yunnan province. Quaternary Sciences33, 479–489.

[72]

Zhang, Y., Liu, B.L., 2024. Biological soil crusts and their potential applications in the sand land over Qinghai-Tibet Plateau. Research in Cold and Arid Regions16, 20–29.

[73]

Zheng, H.F., Chen, Y.M., Liu, Y., Heděnec, P., Peng, Y., Xu, Z.F., Tan, B., Zhang, L., Guo, L., Wang, L.F., Vesterdal, L., 2021. Effects of litter quality diminish and effects of vegetation type develop during litter decomposition of two shrub species in an alpine treeline ecotone. Ecosystems24, 197–210.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (7996KB)

Supplementary files

SEL-00323-OF-BDC_suppl_1

372

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/