Legacy effects of invasive plant species on soil bacterial community assembly, β-diversity, and ecological interactions

Pantelitsa Kapagianni , Magdi Mola , Spiros Papakostas , Nikos Monokrousos , George Pericles Stamou , Effimia Michael Papatheodorou

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250321

PDF (1391KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250321 DOI: 10.1007/s42832-025-0321-3
RESEARCH ARTICLE

Legacy effects of invasive plant species on soil bacterial community assembly, β-diversity, and ecological interactions

Author information +
History +
PDF (1391KB)

Abstract

Invasions of exotic plant species pose a serious threat to local biodiversity and ecosystem functioning, with their effects on soil persisting even after removal. In a mesocosm experiment, we investigated the impact of two alien species, Conyza bonariensis (annual) and Solanum elaeagnifolium (perennial) on soil bacterial community after one year of growth (conditioning sampling), and their legacy effects on the bacterial community developed during the subsequent growth of a native grass species, Cichorium intybus (legacy sampling). We assessed the effects of these species by analysing soil enzymatic activity, bacterial community biomass and structure, β-diversity and the co-occurrence patterns of microbial members. Plant identity did not affect enzymatic activity, bacterial biomass and community composition. The communities across all treatments were dominated by the phylum Firmicutes particularly the Bacillus genus. The heterogeneity in the composition of bacterial communities between treatments (β-diversity) was higher at conditioning compared to legacy sampling while the niche width of the bacterial members expanded after C. intybus growth. β-diversity in soils with S. elaeagnifolium legacy was mainly driven by stochastic processes such as ecological or genetic drift while in soils with C. bonarienzis legacy, deterministic processes like environmental filtering played a dominant role. Regulation of microbial co-occurrence patterns was nearly equally influenced by stochastic and deterministic processes. However, the legacy effects of the invaders significantly impacted the robustness of bacterial networks to further disturbance, with the networks in C. bonarienzis exhibiting enhanced robustness. Our results suggest divergent management strategies for these two species: precautionary containment for S. elaeagnifolium vs. direct intervention for C. bonariensis.

Graphical abstract

Keywords

rank abundance models / S. elaeagnifolium / C. bonarienzis / soil enzyme activity / PLFAs

Highlight

● No invasive-specific effects on bacterial community composition and biomass.

● The identity of invaders’ legacy impacted the robustness of bacterial networks.

● Legacy of C. bonarienzis exerts strong filtering effect on soil bacterial β-diversity.

S. elaeagnifolium legacy promotes the stochastic regulation of bacterial β-diversity.

Cite this article

Download citation ▾
Pantelitsa Kapagianni, Magdi Mola, Spiros Papakostas, Nikos Monokrousos, George Pericles Stamou, Effimia Michael Papatheodorou. Legacy effects of invasive plant species on soil bacterial community assembly, β-diversity, and ecological interactions. Soil Ecology Letters, 2025, 7(3): 250321 DOI:10.1007/s42832-025-0321-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Afzal, M.R., Naz, M., Ashraf, W., Du, D.L., 2023. The legacy of plant invasion: impacts on soil nitrification and management implications. Plants12, 2980.

[2]

Allison, S.D., Jastrow, J.D., 2006. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils. Soil Biology and Biochemistry38, 3245–3256.

[3]

Andrews S. 2010. FastQC: A quality control tool for high throughput sequence data. available at the website of bioinformatics.babraham.ac.uk.

[4]

Balah, M.A.A., 2015. Herbicidal activity of constituents isolated from Solanum elaeagnifolium (Solanaceae). Journal of Crop Protection4, 487–496.

[5]

Baselga, A., Orme, C.D.L., 2012. betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution3, 808–812.

[6]

Beier, S., Bertilsson, S., 2013. Bacterial chitin degradation-mechanisms and ecophysiological strategies. Frontiers in Microbiology4, 149.

[7]

Bezemer, T.M., Lawson, C.S., Hedlund, K., Edwards, .AR., Brook, A.J., Igual, J.M., Mortimer, S.R., van der Putten, W.H., 2006. Plant species and functional group effects on abiotic and microbial soil properties and plant–soil feedback responses in two grasslands. Journal of Ecology 94, 893–904.

[8]

Borgatti, S.P., Everett, M.G., Freeman, L.C., 2002. UCINET for Windows: Software for Social Network Analysis. Harvard, MA, USA: Analytic Technologies.

[9]

Bouslamti, M., Metouekel, A., Chelouati, T., El Moussaoui, A., Barnossi, A.E., Chebaibi, M., Nafidi, H.A., Salamatullah, A.M., Alzahrani, A., Aboul-Soud, M.A.M., Bourhia, M., Lyoussi, B., Benjelloun, A.S., 2022. Solanum elaeagnifolium var. obtusifolium (Dunal) Dunal: antioxidant, antibacterial, and antifungal activities of polyphenol-rich extracts chemically characterized by use of in vitro and in silico approaches. Molecules27, 8688.

[10]

Callaway, R.M., Ridenour, W.M., 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment2, 436–443.

[11]

Carey, C.J., Beman, J.M., Eviner, V.T., Malmstrom, C.M., Hart, S.C., 2015. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands. Frontiers in Microbiology6, 466.

[12]

Connell, J.H., 1978. Diversity in tropical rain forests and coral reefs. Science199, 1302–1310.

[13]

Corbin, J.D., D’Antonio, C.M., 2012. Gone but Not Forgotten? Invasive plants’ legacies on community and ecosystem properties. Invasive Plant Science and Management5, 117–124.

[14]

Custer, G.F., van Diepen, L.T.A., 2020. Plant invasion has limited impact on soil microbial α-diversity: a meta-analysis. Diversity12, 112.

[15]

De Coster, W., Rademakers, R., 2023. NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics39, btad311.

[16]

Du, E.W., Chen, Y.P., Li, Y.H., Sun, Z.X., Gui, F.R., 2022. Rhizospheric bacillus-facilitated effects on the growth and competitive ability of the invasive plant Ageratina adenophora. Frontiers in Plant Science13, 882255.

[17]

Duda, J.J., Freeman, D.C., Emlen, J.M., Belnap, J., Kitchen, S.G., Zak, J.C., Sobek, E., Tracy, M., Montante, J., 2003. Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halogeton glomeratus. Biology and Fertility of Soils38, 72–77.

[18]

Farrer, E.C., Birnbaum, C., Waryszak, P., Halbrook, S.R., Brady, M.V., Bumby, C.R., Candaele, H., Kulick, N.K., Lee, S.F.H., Schroeder, C.S., Smith, M.K.H., Wilber, W., 2021. Plant and microbial impacts of an invasive species vary across an environmental gradient. Journal of Ecology109, 2163–2176.

[19]

Faust, K., Raes, J., 2016. CoNet app: inference of biological association networks using Cytoscape. F1000Research5, 1519.

[20]

Feng, Y.Z., Chen, R.R., Stegen, J.C., Guo, Z.Y., Zhang, J.W., Li, Z.P., Lin, X.G., 2018. Two key features influencing community assembly processes at regional scale: initial state and degree of change in environmental conditions. Molecular Ecology27, 5238–5251.

[21]

Galil, B.S., 2007. Loss or gain? Invasive aliens and biodiversity in the Mediterranean Sea. Marine Pollution Bulletin55, 314–322.

[22]

Goss-Souza, D., Mendes, L.W., Rodrigues, J.L.M., Tsai, S.M., 2020. Ecological processes shaping bulk soil and rhizosphere microbiome assembly in a long-term amazon forest-to-agriculture conversion. Microbial Ecology79, 110–122.

[23]

Grman, E., Suding, K.N., 2010. Within-Year soil legacies contribute to strong priority effects of exotics on native California grassland communities. Restoration Ecology18, 664–670.

[24]

He, G.X., Peng, T.S., Guo, Y., Wen, S.Z., Ji, L., Luo, Z., 2022. Forest succession improves the complexity of soil microbial interaction and ecological stochasticity of community assembly: evidence from Phoebe bournei-dominated forests in subtropical regions. Frontiers in Microbiology13, 1021258.

[25]

Hierro, J.L., Callaway, R.M., 2003. Allelopathy and exotic plant invasion. Plant and Soil256, 29–39.

[26]

Humphries, M.D., Gurney, K., 2008. Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS One3, e0002051.

[27]

Jabot, F., Etienne, R.S., Chave, J., 2008. Reconciling neutral assemblage models and environmental filtering: theory and an empirical test. Oikos 117, 1308–1320.

[28]

Kapagianni, P.D., Topalis, I., Gwynn-Jones, D., Menkissoglu-Spiroudi, U., Stamou, G.P., Papatheodorou, E.M., 2021. Effects of plant invaders on rhizosphere microbial attributes depend on plant identity and growth stage. Soil Research59, 225–238.

[29]

Karmezi, M., Krigas, N., Papatheodorou, E.M., Argyropoulou, M.D., 2023. The invasion of alien populations of solanum elaeagnifolium in two mediterranean habitats modifies the soil communities in different ways. Plants12, 2193.

[30]

Klein, B., Swain, A., Byrum, T., Scarpino, S.V., Fagan, W.F., 2022. Exploring noise, degeneracy and determinism in biological networks with the einet package. Methods in Ecology and Evolution13, 799–804.

[31]

Knolmajer, B., Jócsák, I., Taller, J., Keszthelyi, S., Kazinczi, G., 2024. Common ragweed—Ambrosia artemisiifolia L. : a review with special regards to the latest results in biology and ecology. Agronomy14, 497.

[32]

Kulmatiski, A., Beard, K.H., Stark, J.M., 2006. Soil history as a primary control on plant invasion in abandoned agricultural fields. Journal of Applied Ecology43, 868–876.

[33]

Kulmatiski, A., Heavilin, J., Beard, K.H., 2011. Testing predictions of a three-species plant–soil feedback model. Journal of Ecology99, 542–550.

[34]

Kumar, R.P., Singh, J.S., 2020. Invasive alien plant species: their impact on environment, ecosystem services and human health. Ecological Indicators111, 106020.

[35]

Lanfear, R., Schalamun, M., Kainer, D., Wang, W., Schwessinger, Β., 2019. MinIONQC: fast and simple quality control for MinION sequencing data. Bioinformatics35, 523–525.

[36]

Langenheder, S., Lindström, E.S., 2019. Factors influencing aquatic and terrestrial bacterial community assembly. Environmental Microbiology Reports11, 306–315.

[37]

Li, C.C., Bo, H.Z., Song, B.Z., Chen, X.C., Cao, Q.Q., Yang, R.R., Ji, S.P., Wang, L.F., Liu, J., 2022. Reshaping of the soil microbiome by the expansion of invasive plants: shifts in structure, diversity, co-occurrence, niche breadth, and assembly processes. Plant Soil477, 629–646.

[38]

Liendo, D., Campos, J.A., Gandarillas, A., 2023. Cortaderia selloana, an example of aggressive invaders that affect human health, yet to be included in binding international invasive catalogues. NeoBiota89, 229–237.

[39]

Liu, J., Zhou, M.X., Wang, S., Liu, P.H., 2017. A comparative study of network robustness measures. Frontiers of Computer Science11, 568–584.

[40]

Lu, J., Breitwieser, F.P., Thielen, P., Salzberg, S.L., 2017. Bracken: estimating species abundance in metagenomics data. PeerJ Computer Science3, e104.

[41]

Luan, L., Liang, C., Chen, L.J., Wang, H.T., Xu, Q.S., Jiang, Y.J., Sun, B., 2020. Coupling bacterial community assembly to microbial metabolism across soil profiles. mSystems5, e00298–20.

[42]

Luo, X., Han, S., Fu, X., Li, X., Wang, L., Peng, S., Chen, W., Huang, Q., 2019. The microbial network in naturally fertile paddy soil possibly facilitates functional recruitment in the rice mature stage. Applied Soil Ecology 135, 174–181.

[43]

Mandic-Mulec, I., Stefanic, P., van Elsas, J.D., 2016. Ecology of Bacillaceae. In: Driks, A., Eichenberger, P., eds. The Bacterial Spore: From Molecules to Systems. Washington: ASM Press59–85.

[44]

McKinley, V.L., Peacock, A.D., White, D.C., 2005. Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils. Soil Biology and Biochemistry37, 1946–1958.

[45]

Mooney, H.A., Hobbs, R.J., 2000. Invasive Species in a Changing World. 2nd ed. Washington, DC: Island Press, 457.

[46]

Nikolaidou, C., Monokrousos, N., Kapagianni, P.D., Orfanoudakis, M., Dermitzoglou, T., Papatheodorou, E.M., 2021. The effect of Rhizophagus irregularis, Bacillus subtilis and water regime on the Plant–Microbial soil system: the case of Lactuca sativa. Agronomy11, 2183.

[47]

Nunes, E.A., Cassiano, G.H., da Silveira, A.P.D., De Andrade, S.A.L., 2025. Soil legacies left by a 20-year eucalypt plantation and a secondary vegetation covers on young eucalypt plants and plant-soil feedback. Biology and Fertility of Soils61, 187–210.

[48]

Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H.B.A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M.O., Lahti, L., McGlinn, D., Ouellette, M.H., Cunha, E.R., Smith, T., Stier, A., Ter Braak, C.J.F., Weedon, J., Borman, T., 2017. Vegan: community ecology package. R package version 2.4-3 [Online]. available at the website of cran.r-project.org/web/packages/vegan/vegan.pdf.

[49]

Papatheodorou, E.M., Monokrousos, N., Angelina, E., Stamou, G.P., 2021. Robustness of rhizosphere microbial communities of L. sativa originated from soils of different legacy after inoculation with Plant Growth Promoting Rhizobacteria. Applied Soil Ecology167, 104028.

[50]

Pérez-Valera, E., Goberna, M., Faust, K., Raes, J., García, C., Verdú, M., 2017. Fire modifies the phylogenetic structure of soil bacterial cooccurrence networks. Environmental Microbiology19, 317–327.

[51]

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research41, D590–D596.

[52]

Rillig, M.C., Mummey, D.L., Ramsey, P.W., Klironomos, J.N., Gannon, J.E., 2006. Phylogeny of arbuscular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria. FEMS Microbiology Ecology57, 389–395.

[53]

Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., Fierer, N., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal4, 1340–1351.

[54]

Ryan, K.B., De Menezes, A., Finn, J.A., Brennan, F.P., 2023. Plant species and soil depth differentially affect microbial diversity and function in grasslands. Journal of Sustainable Agriculture and Environment2, 397–411.

[55]

Sammani, A., Shammaa, E., Chehna, F., 2013. Qualitative and quantitative steroidal alkaloids of Solanum species distributed widely in Syria by TLC and HPLC. International Journal of Pharmaceutical Sciences Review and Research23, 23–27.

[56]

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape: a software environment for integrated models of Biomolecular Interaction Networks. Genome Research13, 2498–2504.

[57]

Simberloff, D., Martin, J.L., Genovesi, P., Maris, V., Wardle, D.A., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E., Vilà, M., 2013. Impacts of biological invasions: what’s what and the way forward. Trends in Ecology & Evolution28, 58–66.

[58]

Sinsabaugh, R.L., Reynolds, H., Long, T.M., 2000. Rapid assay for amidohydrolase (urease) activity in environmental samples. Soil Biology and Biochemistry32, 2095–2097.

[59]

Stamou, G.P., Panagos, P., Papatheodorou, E.M., 2024. Connections between soil microbes, land use and European climate: insights for management practices. Journal of Environmental Management360, 121180.

[60]

Stamou, G.P., Papatheodorou, E.M., 2023. Deterministic versus stochastic control in β-diversity, abundance and co-occurrence patterns of a soil nematode assemblage living in a Mediterranean soil. Applied Soil Ecology188, 104879.

[61]

Tamburello, N., Litt, M.A., 2023. Multiple impacts of invasive species on species at risk: a case study in British Columbia, Canada. FACETS8, 1–13.

[62]

Torres, N., Herrera, I., Fajardo, L., Bustamante, R.O., 2021. Meta-analysis of the impact of plant invasions on soil microbial communities. BMC Ecology and Evolution21, 172.

[63]

Tsaballa, A., Nikolaidis, A., Trikka, F., Ignea, C., Kampranis, S.C., Makris, A.M., Argiriou, A., 2015. Use of the de novo transcriptome analysis of silver-leaf nightshade (Solanum elaeagnifolium) to identify gene expression changes associated with wounding and terpene biosynthesis. BMC Genomics16, 504.

[64]

Turbelin, A.J., Cuthbert, R.N., Essl, F., Haubrock, P.J., Ricciardi, A., Courchamp, F., 2023. Biological invasions are as costly as natural hazards. Perspectives in Ecology and Conservation21, 143–150.

[65]

Uludag, A., Gbehounou, G., Kashefi, J., Bouhache, M., Bon, M.C., Bell, C., Lagopodi, A.L., 2016. Review of the current situation for Solanum elaeagnifolium in the Mediterranean Basin. EPPO Bulletin46, 139–147.

[66]

van der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., Sanders, I.R., 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature396, 69–72.

[67]

Van Der Putten, W.H., 2003. Plant defense belowground and spatiotemporal processes in natural vegetation. Ecology84, 2269–2280.

[68]

Vitousek, P.M., Walker, L.R., 1989. Biological iInvasion by Myrica faya in Hawai'i: plant demography, nitrogen fixation, ecosystem effects. Ecological Monographs59, 247–265.

[69]

Wan, X.L., Gao, Q., Zhao, J.S., Feng, J.J., van Nostrand, J.D., Yang, Y.F., Zhou, J.Z., 2020. Biogeographic patterns of microbial association networks in paddy soil within Eastern China. Soil Biology and Biochemistry142, 107696.

[70]

White, D., Stair, J., Ringelberg, D., 1996. Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. Journal of Industrial Microbiology & Biotechnology17, 185–196.

[71]

Wood, D.E., Lu, J., Langmead, B., 2019. Improved metagenomic analysis with Kraken 2. Genome Biology20, 257.

[72]

Xie, J., Wang, X.Q., Xu, J.W., Xie, H.W., Cai, Y.H., Liu, Y.Z., Ding, X., 2021. Strategies and structure feature of the aboveground and belowground microbial community respond to drought in wild rice (Oryza longistaminata). Rice14, 79.

[73]

Xiong, D., Wei, C.Z., Wang, X.G., Lü, X.T., Fang, S., Li, Y.B., Wang, X.B., Liang, W.J., Han, X.G., Bezemer, T.M., Li, Q., 2021. Spatial patterns and ecological drivers of soil nematode β-diversity in natural grasslands vary among vegetation types and trophic position. Journal of Animal Ecology90, 1367–1378.

[74]

Xu, Q.C., Vandenkoornhuyse, P., Li, L., Guo, J.J., Zhu, C., Guo, S.W., Ling, N., Shen, Q.R., 2022. Microbial generalists and specialists differently contribute to the community diversity in farmland soils. Journal of Advanced Research40, 17–27.

[75]

Zhang, C.P., Xu, J., Liu, X.G., Dong, F.S., Kong, Z.Q., Sheng, Y., Zheng, Y.Q., 2010. Impact of imazethapyr on the microbial community structure in agricultural soils. Chemosphere81, 800–806.

[76]

Zhou, J.Z., Deng, Y., Zhang, P., Xue, K., Liang, Y.T., Van Nostrand, J.D., Yang, Y.F., He, Z.L., Wu, L.Y., Stahl, D.A., Hazen, T.C., Tiedje, J.M., Arkin, A.P., 2014. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proceedings of the National Academy of Sciences of the United States of America111, E836–E845.

[77]

Zhou, Z.H., Zheng, M.H., Xia, J.Y., Wang, C.K., 2022. Nitrogen addition promotes soil microbial beta diversity and the stochastic assembly. Science of the Total Environment806, 150569.

RIGHTS & PERMISSIONS

The Author(s) 2025. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (1391KB)

Supplementary files

SEL-00321-OF-EP_suppl_1

235

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/