Three-year cattle manure application does not induce the proliferation of antibiotic resistance genes in vegetable soil

Ziying Zheng , Junfang Niu , Yunchao Liu , Ruibo Sun , Wanxue Han , Liang Meng , Jianhong Liang , Jin Liu , Fenghua Wang

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250319

PDF (1950KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250319 DOI: 10.1007/s42832-025-0319-x
RESEARCH ARTICLE

Three-year cattle manure application does not induce the proliferation of antibiotic resistance genes in vegetable soil

Author information +
History +
PDF (1950KB)

Abstract

The application of cattle manure may significantly burden the reservoir of antibiotic resistance genes (ARGs) in agricultural soils, necessitating careful consideration. A 3-year field experiment was conducted to investigate the distribution characteristics of ARGs and bacterial communities in soil with different levels of cattle manure application, encompassing five distinct amounts of cattle manure: Control (0 t hm−2), M1 (35.28 t hm−2), M2 (68.62 t hm−2), M3 (102.87 t hm−2), and M4 (137.23 t hm−2). Applying varying rates of cattle manure slightly increased the abundance of tetracycline and sulfonamide resistance genes in vegetable fields, posing a potential risk of soil contamination with these genes. As the amount of cattle manure fertilization increased, soil bacterial 16S rRNA gene abundance gradually increased, however, the Shannon index and OTUs did not differ significantly among varying rates of cattle manure fertilization. PCoA plot based on Bray−Curtis revealed that soil bacterial community structure significantly differed between cattle manure treatments and Control. No significant difference was found for physicochemical indicators among various cattle manure treatments. In addition, the intI1 gene was significantly and positively correlated with sul1, sul2, and tetL genes, indicating that the intI1 played a crucial role in the proliferation of certain ARGs. These findings enhance our understanding of the impacts of varying rates of cattle manure fertilization on the prevalence of ARGs in vegetable fields, and assist in developing effective strategies to mitigate their spread.

Graphical abstract

Keywords

cattle manure / antibiotic resistance gene / intI1 gene / bacterial community

Highlight

● Increasing cattle manure application did not significantly increase soil ARGs.

● Cattle manure application exceeded a greater effect on soil beta diversity.

● The intI1 gene played a crucial role in facilitating the dissemination of ARGs.

Cite this article

Download citation ▾
Ziying Zheng, Junfang Niu, Yunchao Liu, Ruibo Sun, Wanxue Han, Liang Meng, Jianhong Liang, Jin Liu, Fenghua Wang. Three-year cattle manure application does not induce the proliferation of antibiotic resistance genes in vegetable soil. Soil Ecology Letters, 2025, 7(3): 250319 DOI:10.1007/s42832-025-0319-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bao, S.D., 2000. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press.

[2]

Bier, R.L., Daniels, M., Oviedo-Vargas, D., Peipoch, M., Price, J.R., Omondi, E., Smith, A., Kan, J.J., 2024. Agricultural soil microbiomes differentiate in soil profiles with fertility source, tillage, and cover crops. Agriculture, Ecosystems & Environment368, 109002.

[3]

Chen, Q.L., An, X.L., Zheng, B.X., Ma, Y.B., Su, J.Q., 2018. Long-term organic fertilization increased antibiotic resistome in phyllosphere of maize. Science of the Total Environment645, 1230–1237.

[4]

Chen, Q.L., Cui, H.L., Su, J.Q., Penuelas, J., Zhu, Y.G., 2019a. Antibiotic resistomes in plant microbiomes. Trends in Plant Science24, 530–541.

[5]

Chen, Z.Y., Zhang, W., Yang, L.X., Stedtfeld, R.D., Peng, A.P., Gu, C., Boyd, S.A., Li, H., 2019b. Antibiotic resistance genes and bacterial communities in cornfield and pasture soils receiving swine and dairy manures. Environmental Pollution248, 947–957.

[6]

Cheng, J.H., Tang, X.Y., Cui, J.F., 2022. Distinct aggregate stratification of antibiotic resistome in farmland soil with long-term manure application. Science of the Total Environment833, 155088.

[7]

Das, S., Jeong, S.T., Das, S., Kim, P.J., 2017. Composted cattle manure increases microbial activity and soil fertility more than composted swine manure in a submerged rice paddy. Frontiers in Microbiology8, 1702.

[8]

Dincă, L.C., Grenni, P., Onet, C., Onet, A., 2022. Fertilization and soil microbial community: A review. Applied Sciences12, 1198.

[9]

Dong, H., Chen, Y.L., Wang, J., Zhang, Y., Zhang, P., Li, X., Zou, J.X., Zhou, A.G., 2021. Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments. Journal of Hazardous Materials403, 123961.

[10]

Duan, M.L., Gu, J., Wang, X.J., Li, Y., Zhang, S.Q., Yin, Y.N., Zhang, R.R., 2018. Effects of genetically modified cotton stalks on antibiotic resistance genes, intI1, and intI2 during pig manure composting. Ecotoxicology and Environmental Safety147, 637–642.

[11]

Elizabeth, R., Chanda, D.D., Chakravarty, A., Paul, D., Chetri, S., Bhowmik, D., Wangkheimayum, J., Bhattacharjee, A., 2018. Association of glycerol kinase gene with Class 3 integrons: a novel cassette array within Escherichia coli. Indian Journal of Medical Microbiology36, 104–107.

[12]

Forsberg, K.J., Patel, S., Gibson, M.K., Lauber, C.L., Knight, R., Fierer, N., Dantas, G., 2014. Bacterial phylogeny structures soil resistomes across habitats. Nature509, 612–616.

[13]

Francioli, D., Schulz, E., Lentendu, G., Wubet, T., Buscot, F., Reitz, T., 2016. Mineral vs. Organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Frontiers in Microbiology7, 1446.

[14]

Franz, E., van Bruggen, A.H.C., 2008. Ecology of E. coli O157: H7 and Salmonella enterica in the primary vegetable production chain. Critical Reviews in Microbiology34, 143–161.

[15]

Gou, C.L., Wang, Y.Q., Zhang, X.Q., Zhong, R.Z., Gao, Y.H., 2021. Effects of chlorotetracycline on antibiotic resistance genes and the bacterial community during cattle manure composting. Bioresource Technology323, 124517.

[16]

Guo, Y.J., Qiu, T.L., Gao, M., Ru, S.H., Gao, H.Z., Wang, X.M., 2023. Does increasing the organic fertilizer application rate always boost the antibiotic resistance level in agricultural soils? Environmental Pollution 322, 121251.

[17]

Han, X.M., Hu, H.W., Chen, Q.L., Yang, L.Y., Li, H.L., Zhu, Y.G., Li, X.Z., Ma, Y.B., 2018. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. Soil Biology and Biochemistry126, 91–102.

[18]

Hatch, D.J., Lovell, R.D., Antil, R.S., Jarvis, S.C., Owen, P.M., 2000. Nitrogen mineralization and microbial activity in permanent pastures amended with nitrogen fertilizer or dung. Biology and Fertility of Soils30, 288–293.

[19]

Hazra, M., Watts, J.E.M., Williams, J.B., Joshi, H., 2024. An evaluation of conventional and nature-based technologies for controlling antibiotic-resistant bacteria and antibiotic-resistant genes in wastewater treatment plants. Science of the Total Environment917, 170433.

[20]

He, L.Y., He, L.K., Liu, Y.S., Zhang, M., Zhao, J.L., Zhang, Q.Q., Ying, G.G., 2019. Microbial diversity and antibiotic resistome in swine farm environments. Science of the Total Environment685, 197–207.

[21]

He, Y.W., Yin, X.W., Li, F.H., Wu, B., Zhu, L., Ge, D.B., Wang, N.Y., Chen, A.W., Zhang, L.H., Yan, B.H., Huang, H.L., Luo, L., Wu, G.Y., Zhang, J.C., 2023. Response characteristics of antibiotic resistance genes and bacterial communities during agricultural waste composting: Focusing on biogas residue combined with biochar amendments. Bioresource Technology372, 128636.

[22]

Heuer, H., Solehati, Q., Zimmerling, U., Kleineidam, K., Schloter, M., Müller, T., Focks, A., Thiele-Bruhn, S., Smalla, K., 2011. Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Applied and Environmental Microbiology77, 2527–2530.

[23]

Hu, H.W., Han, X.M., Shi, X.Z., Wang, J.T., Han, L.L., Chen, D.L., He, J.Z., 2016. Temporal changes of antibiotic resistance genes and bacterial communities in two contrasting soils treated with cattle manure. FEMS Microbiology Ecology92, fiv169.

[24]

Johnson, T.A., Stedtfeld, R.D., Wang, Q., Cole, J.R., Hashsham, S.A., Looft, T., Zhu, Y.G., Tiedje, J.M., 2016. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture. mBio7, e02214–15.

[25]

Kyselková, M., Kotrbová, L., Bhumibhamon, G., Chroňáková, A., Jirout, J., Vrchotová, N., Schmitt, H., Elhottová, D., 2015. Tetracycline resistance genes persist in soil amended with cattle feces independently from chlortetracycline selection pressure. Soil Biology and Biochemistry81, 259–265.

[26]

Larsson, D.G.J., Flach, C.F., 2022. Antibiotic resistance in the environment. Nature Reviews Microbiology5, 257–269.

[27]

Lei, L.S., Chen, N., Chen, Z.Y., Zhao, Y.R., Lin, H., Li, X., Hu, W.J., Zhang, H.H., Shi, J.L., Luo, Y., 2024. Dissemination of antibiotic resistance genes from aboveground sources to groundwater in livestock farms. Water Research256, 121584.

[28]

Li, C.H., Zhang, C.X., Tang, L.S., Xiong, Z.Q., Wang, B.Z., Jia, Z.J., Li, Y., 2014. Effect of long-term fertilizing regime on soil microbial diversity and soil property. Acta Microbiologica Sinica54, 319–329.

[29]

Li, H.Y., Zheng, X.Q., Tan, L., Shao, Z.L., Cao, H.Y., Xu, Y., 2022. The vertical migration of antibiotic-resistant genes and pathogens in soil and vegetables after the application of different fertilizers. Environmental Research203, 111884.

[30]

Lin, D., Huang, D., Zhang, J.H., Yao, Y.L., Zhang, G.Q., Ju, F., Xu, B.L., Wang, M.Z., 2022. Reduction of antibiotic resistance genes (ARGs) in swine manure-fertilized soil via fermentation broth from fruit and vegetable waste. Environmental Research214, 113835.

[31]

Liu, Y.R., van der Heijden, M.G.A., Riedo, J., Sanz-Lazaro, C., Eldridge, D.J., Bastida, F., Moreno-Jiménez, E., Zhou, X.Q., Hu, H.W., He, J.Z., Moreno, J.L., Abades, S., Alfaro, F., Bamigboye, A.R., Berdugo, M., Blanco-Pastor, J.L., de los Ríos, A., Duran, J., Grebenc, T., Illán, J.G., Makhalanyane, T.P., Molina-Montenegro, M.A., Nahberger, T.U., Peñaloza-Bojacá, G.F., Plaza, C., Rey, A., Rodríguez, A., Siebe, C., Teixido, A.L., Casado-Coy, N., Trivedi, P., Torres-Díaz, C., Verma, J.P., Mukherjee, A., Zeng, X.M., Wang, L., Wang, J.Y., Zaady, E., Zhou, X.B., Huang, Q.Y., Tan, W.F., Zhu, Y.G., Rillig, M.C., Delgado-Baquerizo, M., 2023a. Publisher Correction: soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide. Nature Communications14, 2405.

[32]

Liu, Z.P., Xie, W.Y., Yang, Z.X., Hu, X.C., Zhang, P.F., Zhou, H.P., 2023b. Effects of long-term application of cattle manure on antibiotic resistome in cinnamon soil. Asian Journal of Ecotoxicology18, 78–87.

[33]

McKinney, C.W., Dungan, R.S., Moore, A., Leytem, A.B., 2018. Occurrence and abundance of antibiotic resistance genes in agricultural soil receiving dairy manure. FEMS Microbiology Ecology94, fiy010.

[34]

Nikaido, H., Pagès, J.M., 2012. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiology Reviews36, 340–363.

[35]

Nõlvak, H., Truu, M., Kanger, K., Tampere, M., Espenberg, M., Loit, E., Raave, H., Truu, J., 2016. Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil. Science of the Total Environment562, 678–689.

[36]

Peng, H.L., Gu, J., Wang, X.J., Wang, Q.Z., Sun, W., Hu, T., Guo, H.H., Ma, J.Y., Bao, J.F., 2020. Insight into the fate of antibiotic resistance genes and bacterial community in co-composting green tea residues with swine manure. Journal of Environmental Management266, 110581.

[37]

Pu, C.J., Yu, Y., Diao, J.X., Gong, X.Y., Li, J., Sun, Y., 2019. Exploring the persistence and spreading of antibiotic resistance from manure to biocompost, soils and vegetables. Science of the Total Environment688, 262–269.

[38]

Pu, Q., Zhao, L.X., Li, Y.T., Su, J.Q., 2020. Manure fertilization increase antibiotic resistance in soils from typical greenhouse vegetable production bases, China. Journal of Hazardous Materials391, 122267.

[39]

Qian, X., Gu, J., Sun, W., Wang, X.J., Su, J.Q., Stedfeld, R., 2018. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting. Journal of Hazardous Materials344, 716–722.

[40]

Qiao, M., Ying, G.G., Singer, A.C., Zhu, Y.G., 2018. Review of antibiotic resistance in China and its environment. Environment International110, 160–172.

[41]

Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F., 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ4, e2584.

[42]

Shen, C., He, M.Y., Zhang, J.H., Liu, J.L., Wang, Y.D., 2024. Response of soil antibiotic resistance genes and bacterial communities to fresh cattle manure and organic fertilizer application. Journal of Environmental Management349, 119453.

[43]

Shi, X.D., Xia, Y., Wei, W., Ni, B.J., 2022. Accelerated spread of antibiotic resistance genes (ARGs) induced by non-antibiotic conditions: Roles and mechanisms. Water Research224, 119060.

[44]

Su, Z.G., Zhang, Y., Dai, T.J., Chen, J.Y., Zhang, Y.M., Wen, D.H., 2018. Antibiotic resistance genes and class 1 integron in the environment: research progress. Microbiology China45, 2217–2233.

[45]

Sun, R.B., Zhang, X.X., Guo, X.S., Wang, D.Z., Chu, H.Y., 2015. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry88, 9–18.

[46]

Suzuki, M.T., Taylor, L.T., DeLong, E.F., 2000. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Applied and Environmental Microbiology66, 4605–4614.

[47]

Tan, M.X., Hou, Y., Zhang, T., Ma, Y.F., Long, W.T., Gao, C.N., Liu, P., Fang, Q.C., Dai, G.C., Shi, S.L., Reijneveld, A., Oenema, O., 2023. Relationships between livestock density and soil phosphorus contents-county and farm level analyses. CATENA222, 106817.

[48]

Tang, X.J., Lou, C.L., Wang, S.X., Lu, Y.H., Liu, M., Hashmi, M.Z., Liang, X.Q., Li, Z.P., Liao, Y.L., Qin, W.J., Fan, F., Xu, J.M., Brookes, P.C., 2015. Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: Evidence from four field experiments in south of China. Soil Biology and Biochemistry90, 179–187.

[49]

Thomas, M., Webb, M., Ghimire, S., Blair, A., Olson, K., Fenske, G.J., Fonder, A.T., Christopher-Hennings, J., Brake, D., Scaria, J., 2017. Metagenomic characterization of the effect of feed additives on the gut microbiome and antibiotic resistome of feedlot cattle. Scientific Reports7, 12257.

[50]

Walters, W., Hyde, E.R., Berg-Lyons, D., Ackermann, G., Humphrey, G., Parada, A., Gilbert, J.A., Jansson, J.K., Caporaso, J.G., Fuhrman, J.A., Apprill, A., Knight, R., 2016. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems1, e00009–15.

[51]

Wang, F.H., Han, W.X., Chen, S.M., Dong, W.X., Qiao, M., Hu, C.S., Liu, B.B., 2020. Fifteen-year application of manure and chemical fertilizers differently impacts soil ARGs and microbial community structure. Frontiers in Microbiology11, 62.

[52]

Wang, F.H., Qiao, M., Chen, Z., Su, J.Q., Zhu, Y.G., 2015. Antibiotic resistance genes in manure-amended soil and vegetables at harvest. Journal of Hazardous Materials299, 215–221.

[53]

Wang, N., Guo, X.Y., Yan, Z., Wang, W., Chen, B., Ge, F., Ye, B.P., 2016. A comprehensive analysis on spread and distribution characteristic of antibiotic resistance genes in livestock farms of southeastern China. PLoS One11, e0156889.

[54]

Wang, W.H., Liu, Y., Tang, H.M., Sun, Z.L., Li, B.Z., Ge, T.D., Wu, J.S., 2018. Effects of long-term fertilization regimes on microbial biomass, community structure and activity in a paddy soil. Environmental Science39, 430–437.

[55]

Wang, X.R., Zhang, X., Li, N., Yang, Z.Z., Li, B.X., Zhang, X.L., Li, H.N., 2024a. Prioritized regional management for antibiotics and heavy metals in animal manure across China. Journal of Hazardous Materials461, 132706.

[56]

Wang, Y.Z., Li, H., Chen, Q.L., Pan, T., Zhu, Y.G., Springael, D., Su, J.Q., 2024b. Prevention and control strategies for antibiotic resistance: from species to community level. Soil Ecology Letters6, 230222.

[57]

Wright, G.D., 2010. Antibiotic resistance in the environment: a link to the clinic? Current Opinion in Microbiology 13, 589–594.

[58]

Wu, N., Zhang, W.Y., Xie, S.Y., Zeng, M., Liu, H.X., Yang, J.H., Liu, X.Y., Yang, F., 2020. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China. Frontiers of Environmental Science & Engineering14, 1.

[59]

Xie, W.Y., Yuan, S.T., Xu, M.G., Yang, X.P., Shen, Q.R., Zhang, W.W., Su, J.Q., Zhao, F.J., 2018. Long-term effects of manure and chemical fertilizers on soil antibiotic resistome. Soil Biology and Biochemistry122, 111–119.

[60]

Xu, M., Chen, M.K., Pan, C.Y., Xu, R.Z., Gao, P., Chen, H.Q., Shen, X.X., 2024. Microplastics shape microbial interactions and affect the dissemination of antibiotic resistance genes in different full-scale wastewater treatment plants. Science of the Total Environment912, 168313.

[61]

Yang, Q.L., Gao, Y., Ke, J., Show, P.L., Ge, Y.H., Liu, Y.H., Guo, R.X., Chen, J.Q., 2021. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered12, 7376–7416.

[62]

Zang, Y.F., Hao, M.D., Zhang, L.Q., Zhang, H.Q., 2015. Effects of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years. Acta Ecologica Sinica35, 1445–1451.

[63]

Zhang, R.M., Liu, X., Wang, S.L., Fang, L.X., Sun, J., Liu, Y.H., Liao, X.P., 2021. Distribution patterns of antibiotic resistance genes and their bacterial hosts in pig farm wastewater treatment systems and soil fertilized with pig manure. Science of the Total Environment758, 143654.

[64]

Zhang, Y., Wu, S.X., Lei, Q.L., Zhai, L.M., Wang, H.Y., Li, H., Yang, B., Liu, H.B., 2022. Effects of different manures on soil enzyme activity and microbial community. Soils54, 1175–1184.

[65]

Zhang, Y.J., Hu, H.W., Gou, M., Wang, J.T., Chen, D.L., He, J.Z., 2017. Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environmental Pollution231, 1621–1632.

[66]

Zhao, Y., Su, J.Q., An, X.L., Huang, F.Y., Rensing, C., Brandt, K.K., Zhu, Y.G., 2018. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut. Science of the Total Environment621, 1224–1232.

[67]

Zheng, Z.Y., Ding, L., Yang, J., Han, W.X., Liu, J., Wang, X.Z., Wang, F.H., 2023. Effect of fertilizer types on antibiotic resistance genes and bacterial community in vegetable fields. Chinese Journal of Eco-Agriculture31, 1953–1962.

[68]

Zhu, Y.G., Johnson, T.A., Su, J.Q., Qiao, M., Guo, G.X., Stedtfeld, R.D., Hashsham, S.A., Tiedje, J.M., 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America110, 3435–3440.

[69]

Zhu, Y.G., Zhao, Y., Li, B., Huang, C.L., Zhang, S.Y., Yu, S., Chen, Y.S., Zhang, T., Gillings, M.R., Su, J.Q., 2017. Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology2, 16270.

[70]

Zou, Y.N., Wu, M.H., Liu, J.Y., Tu, W.M., Xie, F.X., Wang, H., 2022. Deciphering the extracellular and intracellular antibiotic resistance genes in multiple environments reveals the persistence of extracellular ones. Journal of Hazardous Materials429, 128275.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1950KB)

Supplementary files

SEL-00319-OF-FHW_suppl_1

299

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/