Overlooking dynamics and multi-functionality of reactive minerals in soil organic carbon stabilization

Songlin Wu , Baodong Chen , Longbin Huang

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250317

PDF (992KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250317 DOI: 10.1007/s42832-025-0317-z
COMMENTARY

Overlooking dynamics and multi-functionality of reactive minerals in soil organic carbon stabilization

Author information +
History +
PDF (992KB)

Abstract

The formation and stabilization of soil organic carbon (OC) are key to building resilient soil structures and maintaining biogeochemical functions. As the main component of soil organic matter (OM), the portion of stabilized soil OC is influenced by both inherent properties of OM and physical and chemical characteristics of soil. In a perspective study by Angst et al. (2023), particulate organic matter (POM) was highlighted as a factor that enhances OC sequestration under conditions where mineral-associated OM is saturated. The study primarily proposes increasing OC sequestration by enhancing POM inputs while overlooking pathways that improve the soil’s capacity for OC stabilization, particularly through the multifaceted role of reactive minerals. We suggest that efforts should focus on both increasing OM inputs and enhancing reactive minerals to promote OC stabilization through both POM occlusion in soil aggregates and new mineral-associated OM formation. Furthermore, future strategies should consider the overlooked organo-mineral dynamics and the multiple roles of reactive minerals in governing soil OM biochemical properties and persistence. Only through a systematic consideration of OM inputs and soil mineral characteristics can practical and effective strategies be developed to enhance soil OC sequestration.

Graphical abstract

Keywords

soil minerals / soil organic carbon / mineral associated organic matter / particulate organic matter / organo-mineral interaction

Cite this article

Download citation ▾
Songlin Wu, Baodong Chen, Longbin Huang. Overlooking dynamics and multi-functionality of reactive minerals in soil organic carbon stabilization. Soil Ecology Letters, 2025, 7(3): 250317 DOI:10.1007/s42832-025-0317-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrade, G.R.P., Furquim, S.A.C., do Nascimento, T.T.V., Brito, A.C., Camargo, G.R., de Souza, G.C., 2020. Transformation of clay minerals in salt-affected soils, Pantanal wetland, Brazil. Geoderma371, 114380.

[2]

Angst, G., Mueller, K.E., Castellano, M.J., Vogel, C., Wiesmeier, M., Mueller, C.W., 2023. Unlocking complex soil systems as carbon sinks: multi-pool management as the key. Nature Communications14, 2967.

[3]

Baveye, P.C., Berthelin, J., Tessier, D., Lemaire, G., 2023. Storage of soil carbon is not sequestration: Straightforward graphical visualization of their basic differences. European Journal of Soil Science74, e13380.

[4]

Begill, N., Don, A., Poeplau, C., 2023. No detectable upper limit of mineral-associated organic carbon in temperate agricultural soils. Global Change Biology29, 4662–4669.

[5]

Buss, W., Hasemer, H., Sokol, N.W., Rohling, E.J., Borevitz, J., 2024. Applying minerals to soil to draw down atmospheric carbon dioxide through synergistic organic and inorganic pathways. Communications Earth & Environment5, 602.

[6]

Chen, C.M., Kukkadapu, R.K., Lazareva, O., Sparks, D.L., 2017. Solid-phase Fe speciation along the vertical redox gradients in floodplains using XAS and mössbauer spectroscopies. Environmental Science & Technology51, 7903–7912.

[7]

De Gryze, S., Six, J., Merckx, R., 2006. Quantifying water-stable soil aggregate turnover and its implication for soil organic matter dynamics in a model study. European Journal of Soil Science57, 693–707.

[8]

Finley, B.K., Mau, R.L., Hayer, M., Stone, B.W., Morrissey, E.M., Koch, B.J., Rasmussen, C., Dijkstra, P., Schwartz, E., Hungate, B.A., 2022. Soil minerals affect taxon-specific bacterial growth. The ISME Journal16, 1318–1326.

[9]

Hemingway, J.D., Rothman, D.H., Grant, K.E., Rosengard, S.Z., Eglinton, T.I., Derry, L.A., Galy, V.V., 2019. Mineral protection regulates long-term global preservation of natural organic carbon. Nature570, 228–231.

[10]

Henneron, L., Balesdent, J., Alvarez, G., Barré, P., Baudin, F., Basile-Doelsch, I., Cécillon, L., Fernandez-Martinez, A., Hatté, C., Fontaine, S., 2022. Bioenergetic control of soil carbon dynamics across depth. Nature Communications13, 7676.

[11]

Hernandez-Soriano, M.C., Dalal, R.C., Warren, F.J., Wang, P., Green, K., Tobin, M.J., Menzies, N.W., Kopittke, P.M., 2018. Soil organic carbon stabilization: mapping carbon speciation from intact microaggregates. Environmental Science & Technology52, 12275–12284.

[12]

Hochella, M.F., Lower, S.K., Maurice, P.A., Penn, R.L., Sahai, N., Sparks, D.L., Twining, B.S., 2008. Nanominerals, mineral nanoparticles, and earth systems. Science319, 1631–1635.

[13]

Huang, J.Y., Hartemink, A.E., 2020. Soil and environmental issues in sandy soils. Earth-Science Reviews208, 103295.

[14]

Jastrow, J.D., 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biology and Biochemistry28, 665–676.

[15]

Jiang, M., Lu, X.G., Wang, H.Q., Zou, Y.C., Wu, H.T., 2011. Transfer and transformation of soil iron and implications for hydrogeomorpholocial changes in Naoli River catchment, Sanjiang Plain, northeast China. Chinese Geographical Science21, 149–158.

[16]

Kleber, M., Bourg, I.C., Coward, E.K., Hansel, C.M., Myneni, S.C.B., Nunan, N., 2021. Dynamic interactions at the mineral–organic matter interface. Nature Reviews Earth & Environment2, 402–421.

[17]

Kleber, M., Lindsley, A., 2022. The science and semantics of “soil organic matter stabilization”. In: Yang, Y., Keiluweit, M., Senesi, N., Xing, B.S., eds. Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes. Hoboken: John Wiley & Sons, 13–49.

[18]

Kleber, M., Sollins, P., Sutton, R., 2007. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry85, 9–24.

[19]

Lammirato, C., Miltner, A., Wick, L.Y., Kästner, M., 2010. Hydrolysis of cellobiose by β-glucosidase in the presence of soil minerals – Interactions at solid–liquid interfaces and effects on enzyme activity levels. Soil Biology and Biochemistry42, 2203–2210.

[20]

Lehmann, J., Kleber, M., 2015. The contentious nature of soil organic matter. Nature528, 60–68.

[21]

Lu, Y.X., Zhang, P., Liu, H., Bu, X.C., Li, Y.M., Wen, Z., Li, M.J., Mao, S.J., Yuan, S.H., 2022. Effect of dam on iron species distribution and transformation in riparian zones. Journal of Hydrology610, 127869.

[22]

Martens, J., Mueller, C.W., Joshi, P., Rosinger, C., Maisch, M., Kappler, A., Bonkowski, M., Schwamborn, G., Schirrmeister, L., Rethemeyer, J., 2023. Stabilization of mineral-associated organic carbon in Pleistocene permafrost. Nature Communications14, 2120.

[23]

Mavris, C., Egli, M., Plötze, M., Blum, J.D., Mirabella, A., Giaccai, D., Haeberli, W., 2010. Initial stages of weathering and soil formation in the Morteratsch proglacial area (Upper Engadine, Switzerland). Geoderma155, 359–371.

[24]

Mayer, M., Leifeld, J., Szidat, S., Mäder, P., Krause, H.M., Steffens, M., 2023. Dynamic stability of mineral-associated organic matter: enhanced stability and turnover through organic fertilization in a temperate agricultural topsoil. Soil Biology and Biochemistry184, 109095.

[25]

Minasny, B., Fiantis, D., Hairiah, K., Van Noordwijk, M., 2021. Applying volcanic ash to croplands – The untapped natural solution. Soil Security3, 100006.

[26]

Moore, O.W., Curti, L., Woulds, C., Bradley, J.A., Babakhani, P., Mills, B.J.W., Homoky, W.B., Xiao, K.Q., Bray, A.W., Fisher, B.J., Kazemian, M., Kaulich, B., Dale, A.W., Peacock, C.L., 2023. Long-term organic carbon preservation enhanced by iron and manganese. Nature621, 312–317.

[27]

Naughton, H.R., Tolar, B.B., Dewey, C., Keiluweit, M., Nico, P.S., Fendorf, S., 2023. Reactive iron, not fungal community, drives organic carbon oxidation potential in floodplain soils. Soil Biology and Biochemistry178, 108962.

[28]

Possinger, A.R., Zachman, M.J., Enders, A., Levin, B.D.A., Muller, D.A., Kourkoutis, L.F., Lehmann, J., 2020. Organo-organic and organo-mineral interfaces in soil at the nanometer scale. Nature Communications11, 6103.

[29]

Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E., 2011. Persistence of soil organic matter as an ecosystem property. Nature478, 49–56.

[30]

Sokolova, T.A., 2011. The role of soil biota in the weathering of minerals: a review of literature. Eurasian Soil Science44, 56–72.

[31]

Thevenot, M., Dignac, M.F., Rumpel, C., 2010. Fate of lignins in soils: a review. Soil Biology and Biochemistry42, 1200–1211.

[32]

Thompson, A., Chadwick, O.A., Rancourt, D.G., Chorover, J., 2006. Iron-oxide crystallinity increases during soil redox oscillations. Geochimica et Cosmochimica Acta70, 1710–1727.

[33]

Tisdall, J.M., Oades, J.M., 1982. Organic matter and water-stable aggregates in soils. Journal of Soil Science33, 141–163.

[34]

Uroz, S., Kelly, L.C., Turpault, M.P., Lepleux, C., Frey-Klett, P., 2015. The mineralosphere concept: mineralogical control of the distribution and function of mineral-associated bacterial communities. Trends in Microbiology23, 751–762.

[35]

Vogel, C., Mueller, C.W., Höschen, C., Buegger, F., Heister, K., Schulz, S., Schloter, M., Kögel-Knabner, I., 2014. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nature Communications5, 2947.

[36]

Vogelsang, V., Kaiser, K., Wagner, F.E., Jahn, R., Fiedler, S., 2016. Transformation of clay-sized minerals in soils exposed to prolonged regular alternation of redox conditions. Geoderma278, 40–48.

[37]

Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H.J., Kögel-Knabner, I., 2019. Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma333, 149–162.

[38]

Wu, S.L., Bougoure, J., Wang, J., Thomsen, L., Chan, T.S., Yi, Q., Li, Z., Southam, G., Huang, L.B., 2023a. Nitrogen-rich organic matter formation and stabilization in iron ore tailings: a submicrometer investigation. Environmental Science & Technology57, 12325–12338.

[39]

Wu, S.L., Konhauser, K.O., Chen, B.D., Huang, L.B., 2023b. “Reactive Mineral Sink” drives soil organic matter dynamics and stabilization. npj Materials Sustainability1, 3.

[40]

Wu, S.L., Liu, Y.J., Bougoure, J.J., Southam, G., Chan, T.S., Lu, Y.R., Haw, S.C., Nguyen, T.A.H., You, F., Huang, L.B., 2019. Organic matter amendment and plant colonization drive mineral weathering, organic carbon sequestration, and water-stable aggregation in magnetite Fe ore tailings. Environmental Science & Technology53, 13720–13731.

[41]

Yi, Q., Wu, S.L., Southam, G., Robertson, L., You, F., Liu, Y.J., Wang, S.C., Saha, N., Webb, R., Wykes, J., Chan, T.S., Lu, Y.R., Huang, L.B., 2021. Acidophilic iron- and sulfur-oxidizing bacteria, Acidithiobacillus ferrooxidans, drives alkaline pH neutralization and mineral weathering in Fe ore tailings. Environmental Science & Technology55, 8020–8034.

[42]

Yu, G.H., Kuzyakov, Y., 2021. Fenton chemistry and reactive oxygen species in soil: Abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cycling. Earth-Science Reviews214, 103525.

[43]

Zhang, X.L., Liu, Y.X., Zhou, Q.X., Bai, Y. G., Li, R.X., Li, T., Li, J.T., Alessi, D.S., Konhauser, K.O., 2023. Exogenous electroactive microbes regulate soil geochemical properties and microbial communities by enhancing the reduction and transformation of Fe(III) minerals. Environmental Science & Technology57, 7743–7752.

[44]

Zosso, C.U., Ofiti, N.O.E., Torn, M.S., Wiesenberg, G.L.B., Schmidt, M.W.I., 2023. Rapid loss of complex polymers and pyrogenic carbon in subsoils under whole-soil warming. Nature Geoscience16, 344–348.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (992KB)

394

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/