Patterns, Processes, and Predictions: Soil bacteria unique habitats along a megametre transect in Eastern Australia

Mingming Du , Peipei Xue , Budiman Minasny , Alex McBratney , Yijia Tang

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250313

PDF (5280KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250313 DOI: 10.1007/s42832-025-0313-3
RESEARCH ARTICLE

Patterns, Processes, and Predictions: Soil bacteria unique habitats along a megametre transect in Eastern Australia

Author information +
History +
PDF (5280KB)

Abstract

Soil microbiomes play a crucial role in ecosystem functioning, yet knowledge about region-specific bacterial taxa across diverse soil types, particularly at a continental scale, remains uncertain. This study employs 16S rRNA sequencing to analyze 141 soil samples collected along a 1400 km transect in New South Wales, Australia, revealing distinct bacterial communities adapted to the varying climatic and soil conditions from east to west. The transect is characterised by three unique pedo-climatic zones: >900 mm mean annual precipitation in the eastern region, 900300 mm in the central region, and <300 mm in the western region. These variations in climate and soil properties, particularly soil pH, organic carbon, and precipitation, significantly influence bacterial diversity and composition. We identified regionally enriched taxa, including Verrucomicrobia in the eastern, Chloroflexi in the central, and Gemmatimonadetes in the western, demonstrating the adaptation of microbial communities to local environmental conditions. Additionally, our findings show that increasing land use intensity, particularly in agricultural areas, correlates with higher Actinobacteria abundance and leads to more homogenised and interconnected microbial networks. This study provides new insights into the biogeography of soil bacteria in Australia, highlighting the importance of local environmental factors in shaping microbial community structure and offering valuable information for ecological and agricultural management strategies.

Graphical abstract

Keywords

soil bacteria / land use / biogeography

Highlight

● Bacteria distribution exhibited stronger regional preference even at high taxonomy.

● The increased land use intensity enhances the relative abundance of Actinobacteria and bacterial connectivity.

● Regionally unique bacterial taxa exhibit conserved adaptation to specific pedo-climatic thresholds, e.g., Candidatus_Udaeobacter for high precipitation, Rubrobacter for high pH.

Cite this article

Download citation ▾
Mingming Du, Peipei Xue, Budiman Minasny, Alex McBratney, Yijia Tang. Patterns, Processes, and Predictions: Soil bacteria unique habitats along a megametre transect in Eastern Australia. Soil Ecology Letters, 2025, 7(3): 250313 DOI:10.1007/s42832-025-0313-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amend, A.S., Martiny, A.C., Allison, S.D., Berlemont, R., Goulden, M.L., Lu, Y., Treseder, K.K., Weihe, C., Martiny, J.B.H., 2016. Microbial response to simulated global change is phylogenetically conserved and linked with functional potential. The ISME Journal10, 109–118.

[2]

Baas Becking, L.G.M., 1934. Geobiologie of Inleiding Tot De Milieukunde. W.P. Van Stockum & Zoon, The Hague.

[3]

Banerjee, S., Baah-Acheamfour, M., Carlyle, C.N., Bissett, A., Richardson, A.E., Siddique, T., Bork, E.W., Chang, S.X., 2016. Determinants of bacterial communities in Canadian agroforestry systems. Environmental Microbiology18, 1805–1816.

[4]

Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the 3rd International AAAI Conference on Weblogs and Social Media. San Jose, 361–362.

[5]

Bhattacharyya, S.S., Ros, G.H., Furtak, K., Iqbal, H.M.N., Parra-Saldívar, R., 2022. Soil carbon sequestration–an interplay between soil microbial community and soil organic matter dynamics. Science of the Total Environment815, 152928.

[6]

Buckley, D.H., Schmidt, T.M., 2001. Environmental factors influencing the distribution of rRNA from Verrucomicrobia in soil. FEMS Microbiology Ecology35, 105–112.

[7]

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference from illumina amplicon data. Nature Methods13, 581–583.

[8]

DeBruyn, J.M., Nixon, L.T., Fawaz, M.N., Johnson, A.M., Radosevich, M., 2011. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Applied and Environmental Microbiology77, 6295–6300.

[9]

Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Trivedi, P., Osanai, Y., Liu, Y.R., Hamonts, K., Jeffries, T.C., Singh, B.K., 2016. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecological Monographs86, 373–390.

[10]

Delgado-Baquerizo, M., Oliverio, A.M., Brewer, T.E., Benavent-González, A., Eldridge, D.J., Bardgett, R.D., Maestre, F.T., Singh, B.K., Fierer, N., 2018. A global atlas of the dominant bacteria found in soil. Science359, 320–325.

[11]

Evangelista, S.J., Field, D.J., McBratney, A.B., Minasny, B., Ng, W., Padarian, J., Román Dobarco, M., Wadoux, A.M.J.C., 2024. Soil security—strategizing a sustainable future for soil. Advances in Agronomy183, 1–70.

[12]

Fierer, N., 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology15, 579–590.

[13]

Fierer, N., Jackson, R.B., 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America103, 626–631.

[14]

Fierer, N., Lauber, C.L., Ramirez, K.S., Zaneveld, J., Bradford, M.A., Knight, R., 2012a. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME Journal6, 1007–1017.

[15]

Fierer, N., Leff, J.W., Adams, B.J., Nielsen, U.N., Bates, S.T., Lauber, C.L., Owens, S., Gilbert, J.A., Wall, D.H., Caporaso, J.G., 2012b. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America109, 21390–21395.

[16]

Foesel, B.U., Geppert, A., Rohde, M., Overmann, J., 2016. Parviterribacter kavangonensis gen. nov., sp. nov. and Parviterribacter multiflagellatus sp. nov., novel members of Parviterribacteraceae fam. nov. within the order Solirubrobacterales, and emended descriptions of the classes Thermoleophilia and Rubrobacteria and their orders and families. International Journal of Systematic and Evolutionary Microbiology 66, 652–665.

[17]

Fondi, M., Karkman, A., Tamminen, M.V., Bosi, E., Virta, M., Fani, R., Alm, E., McInerney, J.O., 2016. “Every gene is everywhere but the environment selects”: global geolocalization of gene sharing in environmental samples through network analysis. Genome Biology and Evolution8, 1388–1400.

[18]

Gee, G.W., Bauder, J.W., 1986. Particle-size analysis. In: Klute, M., ed. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods. 2nd ed. American Society of Agronomy383–411.

[19]

Griffiths, R.I., Thomson, B.C., James, P., Bell, T., Bailey, M., Whiteley, A.S., 2011. The bacterial biogeography of British soils. Environmental Microbiology13, 1642–1654.

[20]

Griffiths, R.I., Thomson, B.C., Plassart, P., Gweon, H.S., Stone, D., Creamer, R.E., Lemanceau, P., Bailey, M.J., 2016. Mapping and validating predictions of soil bacterial biodiversity using European and national scale datasets. Applied Soil Ecology97, 61–68.

[21]

Gu, Z.G., Eils, R., Schlesner, M., 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics32, 2847–2849.

[22]

Guerra, C.A., Berdugo, M., Eldridge, D.J., Eisenhauer, N., Singh, B.K., Cui, H.Y., Abades, S., Alfaro, F.D., Bamigboye, A.R., Bastida, F., Blanco-Pastor, J.L., de los Ríos, A., Durán, J., Grebenc, T., Illán, J.G., Liu, Y.R., Makhalanyane, T.P., Mamet, S., Molina-Montenegro, M.A., Moreno, J.L., Mukherjee, A., Nahberger, T.U., Peñaloza-Bojacá, G.F., Plaza, C., Picó, S., Verma, J.P., Rey, A., Rodríguez, A., Tedersoo, L., Teixido, A.L., Torres-Díaz, C., Trivedi, P., Wang, J.T., Wang, L., Wang, J.Y., Zaady, E., Zhou, X.B., Zhou, X.Q., Delgado-Baquerizo, M., 2022. Global hotspots for soil nature conservation. Nature610, 693–698.

[23]

He, Z.L., Piceno, Y., Deng, Y., Xu, M.Y., Lu, Z.M., DeSantis, T., Andersen, G., Hobbie, S.E., Reich, P.B., Zhou, J.Z., 2012. The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. The ISME Journal6, 259–272.

[24]

Hijmans, R.J., Van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J.A., Lamigueiro, O.P., Bevan, A., Racine, E.B., Shortridge, A.J.R., 2015. Package ‘raster’. R Package734, 473.

[25]

Huang, H., 2021. LinkET: everything is linkable. R package version, 0.03.

[26]

Karimi, B., Terrat, S., Dequiedt, S., Saby, N.P.A., Horrigue, W., Lelièvre, M., Nowak, V., Jolivet, C., Arrouays, D., Wincker, P., Cruaud, C., Bispo, A., Maron, P.A., Bouré, N.C.P., Ranjard, L., 2018. Biogeography of soil bacteria and archaea across France. Science Advances4, eaat1808.

[27]

Kielak, A.M., Barreto, C.C., Kowalchuk, G.A., Van Veen, J.A., Kuramae, E.E., 2016. The ecology of Acidobacteria: moving beyond genes and genomes. Frontiers in Microbiology7, 744.

[28]

Lê, S., Josse, J., Husson, F., 2008. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software25, 1–18.

[29]

Liu, C., Cui, Y.M., Li, X.Z., Yao, M.J., 2021. microeco: an R package for data mining in microbial community ecology. FEMS Microbiology Ecology97, fiaa255.

[30]

Liu, J.J., Sui, Y., Yu, Z.H., Shi, Y., Chu, H.Y., Jin, J., Liu, X.B., Wang, G.H., 2014. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biology and Biochemistry70, 113–122.

[31]

Liu, Y., Just, A., 2019. SHAPforxgboost: SHAP plots for'XGBoost'. CRAN: Contributed Packages.

[32]

Maestre, F.T., Delgado-Baquerizo, M., Jeffries, T.C., Eldridge, D.J., Ochoa, V., Gozalo, B., Quero, J.L., García-Gómez, M., Gallardo, A., Ulrich, W., Bowker, M.A., Arredondo, T., Barraza-Zepeda, C., Bran, D., Florentino, A., Gaitán, J., Gutiérrez, J.R., Huber-Sannwald, E., Jankju, M., Mau, R.L., Miriti, M., Naseri, K., Ospina, A., Stavi, I., Wang, D.L., Woods, N.N., Yuan, X., Zaady, E., Singh, B.K., 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America112, 15684–15689.

[33]

Miralles, I., Ortega, R., del Carmen Montero-Calasanz, M., 2023. Functional and biotechnological potential of microbiome associated with soils colonised by cyanobacteria in drylands. Applied Soil Ecology192, 105076.

[34]

O'Brien, L., Searle, R., 2019. slga: data access tools for the soil and landscape grid of Australia. R package version, 1.

[35]

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., 2013. Package ‘vegan’. Community Ecology Package, Version, 21–295.

[36]

Peyraud, J.L., Taboada, M., Delaby, L., 2014. Integrated crop and livestock systems in western Europe and South America: a review. European Journal of Agronomy57, 31–42.

[37]

Philippot, L., Andersson, S.G.E., Battin, T.J., Prosser, J.I., Schimel, J.P., Whitman, W.B., Hallin, S., 2010. The ecological coherence of high bacterial taxonomic ranks. Nature Reviews Microbiology8, 523–529.

[38]

Pino, V., McBratney, A., Fajardo, M., Wilson, N., Deaker, R., 2019. Understanding soil biodiversity using two orthogonal 1000km transects across New South Wales, Australia. Geoderma354, 113860.

[39]

Qin, C., Pellitier, P.T., Van Nuland, M.E., Peay, K.G., Zhu, K., 2023. Niche modelling predicts that soil fungi occupy a precarious climate in boreal forests. Global Ecology and Biogeography32, 1127–1139.

[40]

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research41, D590–D596.

[41]

Ramadoss, D., Lakkineni, V.K., Bose, P., Ali, S., Annapurna, K., 2013. Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. SpringerPlus2, 6.

[42]

Ramoneda, J., Stallard-Olivera, E., Hoffert, M., Winfrey, C.C., Stadler, M., Niño-García, J.P., Fierer, N., 2023. Building a genome-based understanding of bacterial pH preferences. Science Advances9, eadf8998.

[43]

Rayment, G.E., Lyons, D.J., 2011. Soil Chemical Methods-Australasia. CSIRO Publishing: Collingwood.

[44]

Román Dobarco, M., McBratney, A., Minasny, B., Malone, B., 2021. A modelling framework for pedogenon mapping. Geoderma393, 115012.

[45]

Rout, M.E., Callaway, R.M., 2012. Interactions between exotic invasive plants and soil microbes in the rhizosphere suggest that ‘everything is not everywhere’. Annals of Botany110, 213–222.

[46]

Sall, J., Lehman, A., 2001. JMP Start Statistics: A Guide to Statistics and Data Analysis Using JMP and JMP IN Software. Duxbury Press: Pacific Grove.

[47]

Seaton, F.M., George, P.B.L., Lebron, I., Jones, D.L., Creer, S., Robinson, D.A., 2020. Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biology and Biochemistry144, 107766.

[48]

Srour, A.Y., Ammar, H.A., Subedi, A., Pimentel, M., Cook, R.L., Bond, J., Fakhoury, A.M., 2020. Microbial communities associated with long-term tillage and fertility treatments in a corn-soybean cropping system. Frontiers in Microbiology11, 1363.

[49]

VanInsberghe, D., Maas, K.R., Cardenas, E., Strachan, C.R., Hallam, S.J., Mohn, W.W., 2015. Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. The ISME Journal9, 2435–2441.

[50]

Vieira, S., Huber, K.J., Geppert, A., Wolf, J., Neumann-Schaal, M., Luckner, M., Wanner, G., Müsken, M., Overmann, J., 2022. Capillimicrobium parvum gen. nov., sp. nov., a novel representative of Capillimicrobiaceae fam. nov. within the order Solirubrobacterales, isolated from a grassland soil. International Journal of Systematic and Evolutionary Microbiology72, 005508.

[51]

Wang, Z.K., Chen, Z.Y., Kowalchuk, G.A., Xu, Z.H., Fu, X.X., Kuramae, E.E., 2021. Succession of the resident soil microbial community in response to periodic inoculations. Applied and Environmental Microbiology87, e00046.

[52]

Willms, I.M., Rudolph, A.Y., Göschel, I., Bolz, S.H., Schneider, D., Penone, C., Poehlein, A., Schöning, I., Nacke, H., 2020. Globally abundant “Candidatus Udaeobacter” benefits from release of antibiotics in soil and potentially performs trace gas scavenging. mSphere5, .

[53]

Xia, Q., Rufty, T., Shi, W., 2020. Soil microbial diversity and composition: links to soil texture and associated properties. Soil Biology and Biochemistry149, 107953.

[54]

Xue, P.P., Carrillo, Y., Pino, V., Minasny, B., McBratney, A.B., 2018. Soil properties drive microbial community structure in a large scale transect in South eastern Australia. Scientific Reports8, 11725.

[55]

Xue, P.P., Minasny, B., McBratney, A.B., 2022. Land-use affects soil microbial co-occurrence networks and their putative functions. Applied Soil Ecology169, 104184.

[56]

Xue, P.P., Minasny, B., Wadoux, A.M.J.C., Dobarco, M.R., McBratney, A., Bissett, A., de Caritat, P., 2024. Drivers and human impacts on topsoil bacterial and fungal community biogeography across Australia. Global Change Biology30, e17216.

RIGHTS & PERMISSIONS

The Author(s) 2025. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (5280KB)

Supplementary files

SEL-00313-OF-MMD_suppl_1

302

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/