The role of local environmental heterogeneity in shaping soil mesofauna communities of Argentine high Andean wetlands

M. Fernanda Chiappero , María V. Vaieretti , Pablo A. Martínez , Andrea E. Izquierdo

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250312

PDF (1685KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250312 DOI: 10.1007/s42832-025-0312-4
RESEARCH ARTICLE

The role of local environmental heterogeneity in shaping soil mesofauna communities of Argentine high Andean wetlands

Author information +
History +
PDF (1685KB)

Abstract

In the Argentine Puna, a particular type of wetlands called vegas are considered unique, as they are the main biodiversity hotspots in this arid high-elevation environment. Also, they provide essential ecosystem services. Despite their ecological significance, these ecosystems remain poorly studied. Particularly soil mesofauna, which play critical roles in nutrient cycling and organic matter dynamics, remain to be explored. We investigated the composition, abundance, and richness of taxa and feeding guilds of soil mesofauna communities across 10 vegas. These wetlands were distributed along an environmental gradient, in an elevation range of 3323–4748 m a.s.l., where we analysed soil properties and plant communities. We collected a total of 5239 invertebrates, from which Acari was the most abundant group, followed by Collembola. Regarding feeding guilds, detritivores and predators dominated soil mesofauna communities. Variability in taxa abundance and richness was strongly influenced by local soil properties, such as organic matter, carbon-to-nitrogen ratio, and phosphorus content, as well as plant community attributes, particularly cushion plant cover. However, no soil or vegetation variables explained the differences in taxa identity across vegas. These findings highlight the critical role of local heterogeneity in shaping soil mesofauna communities and provide the first insights into these understudied ecosystems.

Graphical abstract

Keywords

soil arthropods / vegas / Andean region / highland ecosystems / environmental local variation

Highlight

● Soil mesofauna abundance and richness increased with soil nutrients and water.

● Cushion plant cover positively influenced soil mesofauna abundance and richness in vegas .

● Soil mesofauna communities were dominated by Acari and Collembola and detritivores.

● Taxa identity was not related to variation in soil properties and plant cover.

Cite this article

Download citation ▾
M. Fernanda Chiappero, María V. Vaieretti, Pablo A. Martínez, Andrea E. Izquierdo. The role of local environmental heterogeneity in shaping soil mesofauna communities of Argentine high Andean wetlands. Soil Ecology Letters, 2025, 7(3): 250312 DOI:10.1007/s42832-025-0312-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahumada Campos, M.A., Faúndez Yancas, L., 2010. Guía Descriptiva De Los Sistemas Vegetacionales Azonales Hídricos Terrestres De La Ecorregión Altiplánica (SVAHT), 2a. ed. ed. Ministerio de Agricultura. Servicio Agrícola y Ganadero, Santiago. (in Spanish)

[2]

Aldebron, C., Jones, M.S., Snyder, W.E., Blubaugh, C.K., 2020. Soil organic matter links organic farming to enhanced predator evenness. Biological Control146, 104278.

[3]

Anthelme, F., Dangles, O., 2012. Plant–plant interactions in tropical alpine environments. Perspectives in Plant Ecology, Evolution and Systematics14, 363–372.

[4]

Anthony, M.A., Bender, S.F., Van Der Heijden, M.G.A., 2023. Enumerating soil biodiversity. Proceedings of the National Academy of Sciences of the United States of America120, e2304663120.

[5]

Bai, Y.F., Cotrufo, M.F., 2022. Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science377, 603–608.

[6]

Baldassini, P., Volante, J.N., Califano, L.M., Paruelo, J.M., 2012. Caracterización regional de la estructura y de la productividad de la vegetación de la Puna mediante el uso de imágenes MODIS. Ecología Austral22, 22–32.

[7]

Belfiore, C., Fernandez, A., Santos, A.P., Contreras, M., Farías, M.E., 2018. Characterization and comparison of microbial soil diversity in two Andean peatlands in different states of Conservation-Vega tocorpuri. Journal of Geoscience and Environment Protection6, 194–210.

[8]

Bokhorst, S., Phoenix, G.K., Bjerke, J.W., Callaghan, T.V., Huyer-Brugman, F., Berg, M.P., 2012. Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. Global Change Biology18, 1152–1162.

[9]

Bremner, J.M., 1960. Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science55, 11–33.

[10]

Bronick, C.J., Lal, R., 2005. Soil structure and management: a review. Geoderma124, 3–22.

[11]

Cabrera, A.L., 1971. Fitogeografía de la República Argentina. Boletín de la Sociedad Argentina de Botánica14, 1–42 (in Spanish).

[12]

Calderón-Sanou, I., Zinger, L., Hedde, M., Martinez-Almoyna, C., Saillard, A., Renaud, J., Gielly, L., Khedim, N., Lionnet, C., Ohlmann, M., Consortium, O., Münkemüller, T., Thuiller, W., 2022. Energy and physiological tolerance explain multi-trophic soil diversity in temperate mountains. Diversity and Distributions28, 2549–2564.

[13]

Chiappero, M.F., Vaieretti, M.V., Izquierdo, A.E., 2021. A baseline soil survey of two peatlands associated with a lithium-rich salt flat in the Argentine Puna: physico-chemical characteristics, carbon storage and biota. Mires and Peat27, 16.

[14]

Chimner, R.A., Resh, S.C., Hribljan, J.A., Battaglia, M., Bourgeau-Chavez, L., Bowser, G., Lilleskov, E.A., 2023. Mountain wetland soil carbon stocks of Huascarán National Park, Peru. Frontiers in Plant Science14, 1048609.

[15]

Coleman, D.C., Callaham, M.A.Jr., Crossley, D.A.Jr., 2018. Secondary production: activities of heterotrophic organisms-the soil fauna. In: Coleman, D.C., Callaham, M.A.Jr., Crossley, D.A.Jr., eds. Fundamentals of Soil Ecology. 3rd ed. Amsterdam: Elsevier77–171.

[16]

Cooper, D.J., Wolf, E.C., Colson, C., Vering, W., Granda, A., Meyer, M., 2010. Alpine peatlands of the Andes, Cajamarca, Peru. Arctic, Antarctic, and Alpine Research42, 19–33.

[17]

Corcos, D., Cerretti, P., Mei, M., Vigna Taglianti, A., Paniccia, D., Santoiemma, G., De Biase, A., Marini, L., 2018. Predator and parasitoid insects along elevational gradients: role of temperature and habitat diversity. Oecologia188, 193–202.

[18]

Cotrufo, M.F., Ranalli, M.G., Haddix, M.L., Six, J., Lugato, E., 2019. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience12, 989–994.

[19]

Courtney, G.W., Pape, T., Skevington, J.H., Sinclair, B.J. 2017. Biodiversity of Diptera. In: Foottit, R.G., Adler, P.H., eds. Insect Biodiversity: Science and Society. Hoboken: Wiley229–278.

[20]

Covarrubias, R., 2009. Microartrópodos de la estepa altoandina altiplánica, con detalle de especies de oribátidos (Oribatida: Acarina). Neotropical Entomology38, 482–490.

[21]

Covarrubias, R., 2004. Oribatid mites (Aari: Oribatida) from the Altiplanic Region. Acta Entomológica Chilena28, 33–39.

[22]

Covarrubias, R., Figueroa, M.I., 2005. Oribátidos (Acarina: Oribatida) en vegas de altura de la región Metropolitana, Chile. Acta Entomológica Chilena29, 37–44.

[23]

da Silva Santana, M., Andrade, E.M., Oliveira, V.R., Costa, B.B., Silva, V.C., Freitas, M.D.S.C.D., Cunha, T.J.F., Giongo, V., 2021. Trophic groups of soil fauna in semiarid: Impacts of land use change, climatic seasonality and environmental variables. Pedobiologia89, 150774.

[24]

Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P.B., Moles, A.T., Dickie, J., Gillison, A.N., Zanne, A.E., Chave, J., Joseph Wright, S., Sheremet’ev, S.N., Jactel, H., Baraloto, C., Cerabolini, B., Pierce, S., Shipley, B., Kirkup, D., Casanoves, F., Joswig, J.S., Günther, A., Falczuk, V., Rüger, N., Mahecha, M.D., Gorné, L.D., 2016. The global spectrum of plant form and function. Nature529, 167–171.

[25]

Erdmann, G., Scheu, S., Maraun, M., 2012. Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari, Oribatida). Experimental and Applied Acarology57, 157–169.

[26]

Ettema, C.H., Wardle, D.A., 2002. Spatial soil ecology. Trends in Ecology & Evolution17, 177–183.

[27]

Fan, Q.H., Chen, Y., 2005. A review of the Pomerantziidae (Acari: Prostigmata: Pomerantzioidea), with the description of a new genus. Zootaxa1037, 1–22.

[28]

FAO, 2020. State of knowledge of soil biodiversity - Status, challenges and potentialities. Rome: FAO.

[29]

Filser, J., Faber, J.H., Tiunov, A.V., Brussaard, L., Frouz, J., De Deyn, G., Uvarov, A.V., Berg, M.P., Lavelle, P., Loreau, M., Wall, D.H., Querner, P., Eijsackers, H., Jiménez, J.J., 2016. Soil fauna: key to new carbon models. Soil2, 565–582.

[30]

González-Reyes, A.X., Corronca, J.A., Rodriguez-Artigas, S.M., 2017. Changes of arthropod diversity across an altitudinal ecoregional zonation in northwestern Argentina. PeerJ5, e4117.

[31]

Hammer, M.S.J., 1958. Investigations on the Oribatid Fauna of the Andes Mountains. I. The Argentine and Bolivia. København: I Kommission Hos Munksgaard, 1–129.

[32]

Harta, I., Simon, B., Vinogradov, S., Winkler, D., 2021. Collembola communities and soil conditions in forest plantations established in an intensively managed agricultural area. Journal of Forestry Research32, 1819–1832.

[33]

Heděnec, P., Zheng, H.F., Siqueira, D.P., Peng, Y., Schmidt, I.K., Frøslev, T.G., Kjøller, R., Li, H., Frouz, J., Vesterdal, L., 2023. Litter chemistry of common European tree species drives the feeding preference and consumption rate of soil invertebrates, and shapes the diversity and structure of gut and faecal microbiomes. Soil Biology and Biochemistry177, 108918.

[34]

Hribljan, J.A., Cooper, D.J., Sueltenfuss, J., Wolf, E.C., Heckman, K.A., Lilleskov, E.A., Chimner, R.A., 2015. Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia. Mires and Peat15, 12.

[35]

Huang, C.Y., Tully, K.L., Clark, D.A., Oberbauer, S.F., McGlynn, T.P., 2012. The δ15N signature of the detrital food web tracks a landscape-scale soil phosphorus gradient in a Costa Rican lowland tropical rain forest. Journal of Tropical Ecology28, 395–403.

[36]

Irving, G.C.J., McLaughlin, M.J., 1990. A rapid and simple field test for phosphorus in Olsen and Bray No. 1 extracts of soil. Communications in Soil Science and Plant Analysis21, 2245–2255.

[37]

Izquierdo, A.E., Aragón, R., Navarro, C.J., Casagranda, E., 2018. Humedales de la Puna: principales proveedores de servicios ecosistémicos de la región. In: Grau, H.R., Babot, M.J., Izquierdo, A.E., Grau, A., eds. La Puna argentina: Naturaleza y Cultura. San Miguel de Tucumán: Fundación Miguel Lillo96–111 (in Spanish).

[38]

Izquierdo, A.E., Blundo, C., Carilla, J., Foguet, J., Navarro, C.J., Casagranda, E., Chiappero, M.F., Vaieretti, M.V., 2022. Floristic types of high-Andean wetlands from northwest Argentina and their remote-sensed characterization at a regional scale. Applied Vegetation Science25, e12658.

[39]

Izquierdo, A.E., Carilla, J., Nieto, C., Osinaga Acosta, O., Martin, E., Grau, H.R., Reynaga, M.C., 2020. Multi-taxon patterns from high Andean peatlands: assessing climatic and landscape variables. Community Ecology21, 317–332.

[40]

Izquierdo, A.E., Foguet, J., Ricardo Grau, H., 2015. Mapping and spatial characterization of Argentine high Andean peatbogs. Wetlands Ecology and Management23, 963–976.

[41]

Jarrel, W.M., Armstrong, D.E., Grigal, D.F., Kelly, D.F., Monger, H.C., Wedin, D.A., 1999. Soil water and temperature status. In: Robertson, G.P., Coleman, D.C., Bledsoe, C.S., Sollins, P., eds. Standard Soil Methods for Long-Term Ecological Research. New York: Oxford Academic, 55–73.

[42]

Juan-Ovejero, R., Granjel, R.R., Ramil-Rego, P., Briones, M.J.I., 2020. The interplay between abiotic factors and below-ground biological interactions regulates carbon exports from peatlands. Geoderma368, 114313.

[43]

Karyanto, A., Rahmadi, C., Franklin, E., 2013. Collembola, acari y otra mesofauna del suelo: el método Berlese. In: Manual De Biología De Suelos Tropicales (in Spanish).

[44]

Lin, Y.L., Wu, H.T., Liu, D., Li, Y.X., Kang, Y.J., Zhang, Z.S., Wang, W.F., 2023. Patterns and drivers of soil surface-dwelling Oribatida diversity along an altitudinal gradient on the Changbai Mountain, China. Ecology and Evolution13, e10105.

[45]

Lopezosa, P., Berdugo, M., Morales-Márquez, J., Pastor, E., Delgado-Baquerizo, M., Bonet, A., Wang, J.T., Singh, B.K., Soliveres, S., 2023. On the relative importance of resource availability and habitat connectivity as drivers of soil biodiversity in Mediterranean ecosystems. Journal of Ecology111, 1455–1467.

[46]

Martínez-Amigo, V., Jaramillo, R., 2024. Cushion Plants from the Andes — an overview of current knowledge and some research needs. Wetland Science & Practice97–103, .

[47]

Minor, M.A., Ermilov, S.G., Philippov, D.A., Prokin, A.A., 2016. Relative importance of local habitat complexity and regional factors for assemblages of oribatid mites (Acari: Oribatida) in Sphagnum peat bogs. Experimental and Applied Acarology70, 275–286.

[48]

Mitsch, W.J., Gosselink, J.G., 2015. Wetlands. 5th ed. Hoboken: John Wiley and Sons, Inc.

[49]

Mlewski, E.C., Saona, L.A., Boidi, F.J., Chiappero, M.F., Vaieretti, M.V., Soria, M., Farías, M.E., Izquierdo, A.E., 2024. Exploring soil bacterial diversity in relation to edaphic physicochemical properties of high-altitude wetlands from Argentine Puna. Microbial Ecology87, 6.

[50]

Momo, F.R., Falco, L.B., 2009. Biología y ecología de la fauna del suelo. Buenos Aires: Imago Mundi. (in Spanish)

[51]

Morales, M.S., Christie, D.A., Neukom, R., Rojas, J.F., Villalba, R., 2018. Variabilidad hidroclimática en el sur del Altiplano: pasado, presente y futuro. In: La Puna: Naturaleza y Cultura. San Miguel de Tucumán: Fundación Miguel Lillo75–91.

[52]

Navarro, C.J., Izquierdo, A.E., Aráoz, E., Foguet, J., Grau, H.R., 2020. Rewilding of large herbivore communities in high elevation Puna: geographic segregation and no evidence of positive effects on peatland productivity. Regional Environmental Change20, 112.

[53]

Nelson, D.W., Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., eds. Methods of Soil Analysis: Part 3, Chemical Methods. Madison: ASA, 961–1010.

[54]

Nieto, C., Malizia, A., Carilla, J., Izquierdo, A.E., Rodriguez, J., Cuello, S., Zannier, M., Grau, H.R., 2016. Patrones espaciales en comunidades de macroinvertebrados acuáticos de la Puna Argentina. Revista de Biología Tropical64, 747–762 (in Spanish).

[55]

Palabral Aguilera, A.N., 2013. Relación de la composición florística y su biomasa subterránea con las variables hidrológicas en bofedales de Sajama (in Spanish). .

[56]

Panigatti, J.A., 2010. Argentina: 200 años, 200 suelos, INTA. ed. INTA, Buenos Aires. .

[57]

Pérez Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., Gurvich, D.E., Urcelay, C., Veneklaas, E.J., Reich, P.B., Poorter, L., Wright, I.J., Ray, P., Enrico, L., Pausas, J.G., De Vos, A.C., Buchmann, N., Funes, G., Quétier, F., Hodgson, J.G., Thompson, K., Morgan, H.D., Ter Steege, H., Sack, L., Blonder, B., Poschlod, P., Vaieretti, M.V., Conti, G., Staver, A.C., Aquino, S., Cornelissen, J.H.C., 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany61, 167.

[58]

Pollierer, M.M., Klarner, B., Ott, D., Digel, C., Ehnes, R.B., Eitzinger, B., Erdmann, G., Brose, U., Maraun, M., Scheu, S., 2021. Diversity and functional structure of soil animal communities suggest soil animal food webs to be buffered against changes in forest land use. Oecologia196, 195–209.

[59]

Potapov, A.M., Beaulieu, F., Birkhofer, K., Bluhm, S.L., Degtyarev, M.I., Devetter, M., Goncharov, A.A., Gongalsky, K.B., Klarner, B., Korobushkin, D.I., Liebke, D.F., Maraun, M., Mc Donnell, R.J., Pollierer, M.M., Schaefer, I., Shrubovych, J., Semenyuk, I.I., Sendra, A., Tuma, J., Tůmová, M., Vassilieva, A.B., Chen, T.W., Geisen, S., Schmidt, O., Tiunov, A.V., Scheu, S., 2022. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biological Reviews97, 1057–1117.

[60]

Potapov, A.M., Guerra, C.A., van den Hoogen, J., Babenko, A., Bellini, B.C., Berg, M.P., Chown, S.L., Deharveng, L., Kováč, Ľ., Kuznetsova, N.A., Ponge, J.F., Potapov, M.B., Russell, D.J., Alexandre, D., Alatalo, J.M., Arbea, J.I., Bandyopadhyaya, I., Bernava, V., Bokhorst, S., Bolger, T., Castaño-Meneses, G., Chauvat, M., Chen, T.W., Chomel, M., Classen, A.T., Cortet, J., Čuchta, P., Manuela de la Pedrosa, A., Ferreira, S.S.D., Fiera, C., Filser, J., Franken, O., Fujii, S., Koudji, E.G., Gao, M.X., Gendreau-Berthiaume, B., Gomez-Pamies, D.F., Greve, M., Tanya Handa, I., Heiniger, C., Holmstrup, M., Homet, P., Ivask, M., Janion-Scheepers, C., Jochum, M., Joimel, S., Jorge, B.C.S., Jucevica, E., Ferlian, O., de Oliveira Filho, L.C.I., Klauberg-Filho, O., Baretta, D., Krab, E.J., Kuu, A., de Lima, E.C.A., Lin, D.M., Lindo, Z., Liu, A., Lu, J.Z., Luciañez, M.J., Marx, M.T., McCary, M.A., Minor, M.A., Nakamori, T., Negri, I., Ochoa-Hueso, R., Palacios-Vargas, J.G., Pollierer, M.M., Querner, P., Raschmanová, N., Rashid, M.I., Raymond-Léonard, L.J., Rousseau, L., Saifutdinov, R.A., Salmon, S., Sayer, E.J., Scheunemann, N., Scholz, C., Seeber, J., Shveenkova, Y.B., Stebaeva, S.K., Sterzynska, M., Sun, X., Susanti, W.I., Taskaeva, A.A., Thakur, M.P., Tsiafouli, M.A., Turnbull, M.S., Twala, M.N., Uvarov, A.V., Venier, L.A., Widenfalk, L.A., Winck, B.R., Winkler, D., Wu, D.H., Xie, Z.J., Yin, R., Zeppelini, D., Crowther, T.W., Eisenhauer, N., Scheu, S., 2023. Globally invariant metabolism but density-diversity mismatch in springtails. Nature Communications14, 674.

[61]

R Core Team, 2019. The R Project for Statistical Computing. Vienna: R Foundation for Statistical Computing.

[62]

Raevel, V., Anthelme, F., Meneses, R.I., Munoz, F., 2018. Cushion-plant protection determines guild-dependent plant strategies in high-elevation peatlands of the cordillera real, Bolivian Andes. Perspectives in Plant Ecology, Evolution and Systematics30, 103–114.

[63]

Rhoades, J.D., 1996. Salinity: electrical conductivity and total dissolved solids. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., eds. Methods of Soil Analysis, Part 3: Chemical Methods. Madison: American Society of Agronomy, Inc.

[64]

Ruthsatz, B., Schittek, K., Backes, B., 2020. The vegetation of cushion peatlands in the Argentine Andes and changes in their floristic composition across a latitudinal gradient from 39°S to 22°S. Phytocoenologia50, 249–278.

[65]

Salvador, F., Monerris, J., Rochefort, L., 2014. Peatlands of the Peruvian Puna ecoregion: types, characteristics and disturbance. Mires and Peat15, 3.

[66]

Soong, J.L., Fuchslueger, L., Marañon-Jimenez, S., Torn, M.S., Janssens, I.A., Penuelas, J., Richter, A., 2020. Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling. Global Change Biology26, 1953–1961.

[67]

Steinwandter, M., Seeber, J., 2023. Ground-dwelling invertebrates of the high alpine: changes in diversity and community composition along elevation (1500–3000 m). Applied Soil Ecology190, 104988.

[68]

Tchilinguirian, P., Olivera, E.D., 2012. Degradación y Formación De Vegas Puneñas (900–150 Años AP), Puna Austral (26°S) ¿Respuesta Del Paisaje Al Clima o Al Hombre?. Fundación Miguel Lillo41–61 (in Spanish).

[69]

Thomas, G.W., 1996. Soil pH and soil acidity. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., eds. Methods of Soil Analysis: Part 3 Chemical Methods. Madison: American Society of Agronomy475–490.

[70]

Thomas, G.W., 1982. Exchangeable cations. In: Page, A.L., ed. Methods of Soil Analysis. Hoboken: John Wiley & Sons, Ltd.159–165.

[71]

Tsiafouli, M.A., Kallimanis, A.S., Katana, E., Stamou, G.P., Sgardelis, S.P., 2005. Responses of soil microarthropods to experimental short-term manipulations of soil moisture. Applied Soil Ecology29, 17–26.

[72]

Urbanowski, C.K., Turczański, K., Andrzejewska, A., Kamczyc, J., Jagodziński, A.M., 2022. Which soil properties affect soil mite (Acari, Mesostigmata) communities in stands with various shares of European ash (Fraxinus excelsior L. )? Applied Soil Ecology180, 104633.

[73]

Wall, D.H., Bardgett, R.D., Behan-Pelletier, V., Herrick, J.E., Jones, T.H., Ritz, K., Six, J., Strong, D.R., van der Putten, W.H., 2012. Soil Ecology and Ecosystem Services. Oxford: Oxford University Press.

[74]

Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., Von Lützow, M., Marin-Spiotta, E., Van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J., Kögel-Knabner, I., 2019. Soil organic carbon storage as a key function of soils–A review of drivers and indicators at various scales. Geoderma333, 149–162.

[75]

Wu, T.H., Ayres, E., Bardgett, R.D., Wall, D.H., Garey, J.R., 2011. Molecular study of worldwide distribution and diversity of soil animals. Proceedings of the National Academy of Sciences of the United States of America108, 17720–17725.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1685KB)

Supplementary files

SEL-00312-OF-MC_suppl_1

392

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/