
Best practices in microbial biogeography: The 6W principle
Pengfa Li, Alex J. Dumbrell, Jiandong Jiang
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250310.
Best practices in microbial biogeography: The 6W principle
● The ‘6W principle’ provides a paradigmatic framework for microbial biogeography. | |
● Six key actions such as developing unified theoretical framework were suggested. | |
● The 6W principle should be further refined by the whole community. |
A comprehensive understanding of microbial biogeography is essential to elucidate the mechanisms that regulate microbial diversity and facilitate ecosystem functioning. Here, we present a standardised approach for microbial biogeography research, using the ‘6W principles’ of ‘Who’, ‘What’, ‘Where’, ‘When’, ‘Why’, and ‘How’, to provide a paradigmatic framework for its study. The ‘6W principle’ we developed aimed to address the six fundamental questions in microbial biogeographical researches, including the taxonomic and functional identity, abundance and diversity, distribution patterns, movement or evolutionary trajectory, driving factors, and future changes of microbial communities. Some key corresponding actions were suggested to promote the microbial biogeographical research such as constructing high-resolution taxonomic and functional annotation databases, developing absolute-quantitative high-throughput sequencing, increasing sampling coverage, establishing multidimensional time-series monitoring, developing unified theoretical frameworks and advanced biogeographical modelling approaches, and establishing long-term global networking experiments. We call on the community to jointly enrich the connotation and coverage of the 6W principle, in order to promote the further development and exploitation of microbial biogeography in the context of ongoing global change.
microbial biogeography / 6W principle / soil ecology
[1] |
Abarenkov, K., Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., May, T.W., Frøslev, T.G., Pawlowska, J., Lindahl, B., Põldmaa, K., Truong, C., Vu, D., Hosoya, T., Niskanen, T., Piirmann, T., Ivanov, F., Zirk, A., Peterson, M., Cheeke, T.E., Ishigami, Y., Jansson, A.T., Jeppesen, T.S., Kristiansson, E., Mikryukov, V., Miller, J.T., Oono, R., Ossandon, F.J., Paupério, J., Saar, I., Schigel, D., Suija, A., Tedersoo, L., Kõljalg, U., 2024. The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa and classifications reconsidered. Nucleic Acids Research52, D791–D797.
CrossRef
Google scholar
|
[2] |
Aslani, F., Geisen, S., Ning, D.L., Tedersoo, L., Bahram, M., 2022. Towards revealing the global diversity and community assembly of soil eukaryotes. Ecology Letters25, 65–76.
CrossRef
Google scholar
|
[3] |
Averill, C., Anthony, M.A., Baldrian, P., Finkbeiner, F., van den Hoogen, J., Kiers, T., Kohout, P., Hirt, E., Smith, G.R., Crowther, T.W., 2022. Defending Earth's terrestrial microbiome. Nature Microbiology7, 1717–1725.
CrossRef
Google scholar
|
[4] |
Bahram, M., Hildebrand, F., Forslund, S.K., Anderson, J.L., Soudzilovskaia, N.A., Bodegom, P.M., Bengtsson-Palme, J., Anslan, S., Coelho, L.P., Harend, H., Huerta-Cepas, J., Medema, M.H., Maltz, M.R., Mundra, S., Olsson, P.A., Pent, M., Põlme, S., Sunagawa, S., Ryberg, M., Tedersoo, L., Bork, P., 2018. Structure and function of the global topsoil microbiome. Nature560, 233–237.
CrossRef
Google scholar
|
[5] |
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J.R., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L.J., Kaehler, B.D., Bin Kang, K., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson II, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., vander Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y.H., Wang, M.X., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y.L., Zhu, Q.Y., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology37, 852–857.
CrossRef
Google scholar
|
[6] |
Chu, H.Y., Gao, G.F., Ma, Y.Y., Fan, K.K., Delgado-Baquerizo, M., 2020. Soil microbial biogeography in a changing world: Recent advances and future perspectives. mSystems5, e00803–19.
CrossRef
Google scholar
|
[7] |
Dini-Andreote, F., Stegen, J.C., van Elsas, J.D., Salles, J.F., 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America112, E1326–E1332.
CrossRef
Google scholar
|
[8] |
Drummond, A.J., Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology7, 214.
CrossRef
Google scholar
|
[9] |
Fu, L.M., Niu, B.F., Zhu, Z.W., Wu, S.T., Li, W.Z., 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics28, 3150–3152.
CrossRef
Google scholar
|
[10] |
Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., de Vargas, C., Decelle, J., del Campo, J., Dolan, J.R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W.H.C.F., Lara, E., Le Bescot, N., Logares, R., Mahé, F., Massana, R., Montresor, M., Morard, R., Not, F., Pawlowski, J., Probert, I., Sauvadet, A.L., Siano, R., Stoeck, T., Vaulot, D., Zimmermann, P., Christen, R., 2013. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Research41, D597–D604.
CrossRef
Google scholar
|
[11] |
Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling135, 147–186.
CrossRef
Google scholar
|
[12] |
Ho, S.Y.W., Duchêne, S., 2014. Molecular-clock methods for estimating evolutionary rates and timescales. Molecular Ecology23, 5947–5965.
CrossRef
Google scholar
|
[13] |
Hubbell, S.P., Borda-de-Água, L., 2004. The unified neutral theory of biodiversity and biogeography: reply. Ecology85, 3175–3178.
CrossRef
Google scholar
|
[14] |
Jeffrey, S.J., Carter, J.O., Moodie, K.B., Beswick, A.R., 2001. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental Modelling & Software16, 309–330.
CrossRef
Google scholar
|
[15] |
Jiao, S., Xu, Y.Q., Zhang, J., Lu, Y.H., 2019. Environmental filtering drives distinct continental atlases of soil archaea between dryland and wetland agricultural ecosystems. Microbiome7, 15.
CrossRef
Google scholar
|
[16] |
Kanehisa, M., Goto, S., 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research28, 27–30.
CrossRef
Google scholar
|
[17] |
Langille, M.G.I., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Thurber, R.L.V., Knight, R., Beiko, R.G., Huttenhower, C., 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology31, 814–821.
CrossRef
Google scholar
|
[18] |
Legendre, P., Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species data. Oecologia129, 271–280.
CrossRef
Google scholar
|
[19] |
Li, P.F., Tedersoo, L., Crowther, T.W., Dumbrell, A.J., Dini-Andreote, F., Bahram, M., Kuang, L., Li, T., Wu, M., Jiang, Y.J., Luan, L., Saleem, M., de Vries, F.T., Li, Z.P., Wang, B.Z., Jiang, J.D., 2023b. Fossil-fuel-dependent scenarios could lead to a significant decline of global plant-beneficial bacteria abundance in soils by 2100. Nature Food4, 996–1006.
CrossRef
Google scholar
|
[20] |
Li, P.F., Tedersoo, L., Crowther, T.W., Wang, B.Z., Shi, Y., Kuang, L., Li, T., Wu, M., Liu, M., Luan, L., Liu, J., Li, D.Z., Li, Y.X., Wang, S.H., Saleem, M., Dumbrell, A.J., Li, Z.P., Jiang, J.D., 2023a. Global diversity and biogeography of potential phytopathogenic fungi in a changing world. Nature Communications14, 6482.
CrossRef
Google scholar
|
[21] |
Luan, L., Jiang, Y.J., Cheng, M.H., Dini-Andreote, F., Sui, Y.Y., Xu, Q.S., Geisen, S., Sun, B., 2020. Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nature Communications11, 6406.
CrossRef
Google scholar
|
[22] |
Martiny, J.B.H., Bohannan, B.J.M., Brown, J.H., Colwell, R.K., Fuhrman, J.A., Green, J.L., Horner-Devine, M.C., Kane, M., Krumins, J.A., Kuske, C.R., Morin, P.J., Naeem, S., Øvreås, L., Reysenbach, A.L., Smith, V.H., Staley, J.T., 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology4, 102–112.
CrossRef
Google scholar
|
[23] |
Nguyen, N.H., Song, Z.W., Bates, S.T., Branco, S., Tedersoo, L., Menke, J., Schilling, J.S., Kennedy, P.G., 2016. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology20, 241–248.
CrossRef
Google scholar
|
[24] |
Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling190, 231–259.
CrossRef
Google scholar
|
[25] |
Prasad, A.M., Iverson, L.R., Liaw, A., 2006. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems9, 181–199.
CrossRef
Google scholar
|
[26] |
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research41, D590–D596.
CrossRef
Google scholar
|
[27] |
Sanderson, M.J., 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics19, 301–302.
CrossRef
Google scholar
|
[28] |
Shi, Y., Li, Y.T., Xiang, X.J., Sun, R.B., Yang, T., He, D., Zhang, K.P., Ni, Y.Y., Zhu, Y.G., Adams, J.M., Chu, H.Y., 2018. Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome6, 27.
CrossRef
Google scholar
|
[29] |
Stadler, M., del Giorgio, P.A., 2022. Terrestrial connectivity, upstream aquatic history and seasonality shape bacterial community assembly within a large boreal aquatic network. The ISME Journal16, 937–947.
CrossRef
Google scholar
|
[30] |
Stadler, T., 2011. Simulating trees with a fixed number of extant species. Systematic Biology60, 676–684.
CrossRef
Google scholar
|
[31] |
Stehr, N., 2014. Climate policy: a societal sea change. Nature513, 312.
CrossRef
Google scholar
|
[32] |
Steinegger, M., Söding, J., 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nature Biotechnology35, 1026–1028.
CrossRef
Google scholar
|
[33] |
Vellend, M., Agrawal, A., 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology85, 183–206.
CrossRef
Google scholar
|
[34] |
Volkov, I., Banavar, J.R., Hubbell, S.P., Maritan, A., 2003. Neutral theory and relative species abundance in ecology. Nature424, 1035–1037.
CrossRef
Google scholar
|
[35] |
Wang, J.J., Pan, F.Y., Soininen, J., Heino, J., Shen, J., 2016. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nature Communications7, 13960.
CrossRef
Google scholar
|
[36] |
Wang, J.J., Shen, J., Wu, Y.C., Tu, C., Soininen, J., Stegen, J.C., He, J.Z., Liu, X.Q., Zhang, L., Zhang, E.L., 2013. Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. The ISME Journal7, 1310–1321.
CrossRef
Google scholar
|
[37] |
Wu, L.W., Ning, D.L., Zhang, B., Li, Y., Zhang, P., Shan, X.Y., Zhang, Q.T., Brown, M.R., Li, Z.X., Van Nostrand, J.D., Ling, F.Q., Xiao, N.J., Zhang, Y., Vierheilig, J., Wells, G.F., Yang, Y.F., Deng, Y., Tu, Q.C., Wang, A.J., Zhang, T., He, Z.L., Keller, J., Nielsen, P.H., Alvarez, P.J.J., Criddle, C.S., Wagner, M., Tiedje, J.M., He, Q., Curtis, T.P., Stahl, D.A., Alvarez-Cohen, L., Rittmann, B.E., Wen, X.H., Zhou, J.Z., 2019. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology4, 1183–1195.
CrossRef
Google scholar
|
[38] |
Zhou, J.Z., Ning, D.L., 2017. Stochastic community assembly: does it matter in microbial ecology. Microbiology and Molecular Biology Reviews81, e00002-17.
CrossRef
Google scholar
|
Part of a collection:
/
〈 |
|
〉 |