Microbial life-history strategies mediate temperature effects on organic carbon pools in black soils

Lihui Lyu , Chaoqun Wang , Kunkun Fan , Jiasui Li , Teng Yang , Guifeng Gao , Ru Sun , Jiao Wang , Xiyuan Xu , Yuxiao Zhang , Yuying Ma , Jiabao Zhang , Yakov Kuzyakov , Haiyan Chu

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250306

PDF (4456KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250306 DOI: 10.1007/s42832-025-0306-2
RESEARCH ARTICLE

Microbial life-history strategies mediate temperature effects on organic carbon pools in black soils

Author information +
History +
PDF (4456KB)

Abstract

Partitioning of soil organic matter for particulate organic carbon (POC) and mineral-associated organic carbon (MAOC) is essential to understand carbon (C) storage under climate change, given their distinct properties and response to warming. The mechanisms underlying warming-induced changes in C pools in black soils (Mollisols) remain unknown, owing to the stability of C pools and the complexity of their associated microbial communities. This study elucidates POC and MAOC contents and their microbial controls in black soils along a mean annual temperature (MAT) gradient from 0.6 to 7.3 °C. The POC content (3.3–17 g kg−1) increased with MAT, while MAOC content (33–60 g kg−1) decreased, indicating accelerated C turnover with warming. Higher MAT shifted the bacterial communities from K- to r-strategies, aligning with increased POC content. The dominance of r-strategists facilitated rapid utilization and mineralization of organic compounds (e.g., mainly with low C/N ratio), reducing MAOC and increasing POC through sustained plant residue inputs. This shift towards r-strategists also corresponded with increased abundance of saprotrophic fungi and stronger bacteria–saprotrophic fungi associations. Warming in colder regions may release available organic matter that saprotrophic fungi preferentially utilize over plant residues to minimize energy expenditure, decreasing POC decomposition. Our findings suggest that integrating microbial r-/K-strategies help to elucidate these mechanisms and simplify the interpretation of temperature effects on the dynamics of two main functional pools of soil organic matter.

Graphical abstract

Keywords

microbial community functions / particulate organic carbon / mineral-associated organic carbon / microbial life-history strategies / cross-kingdom interactions / soil organic carbon stabilization

Highlight

● POC content increased and MAOC content decreased with increasing mean annual temperature.

● Bacterial life-history strategies shifted from K- to r -strategists with warming.

r -strategists prevalence induced stronger bacterial-saprotrophic fungi associations.

r -strategists and saprotrophic fungi caused higher POC and lower MAOC content.

Cite this article

Download citation ▾
Lihui Lyu, Chaoqun Wang, Kunkun Fan, Jiasui Li, Teng Yang, Guifeng Gao, Ru Sun, Jiao Wang, Xiyuan Xu, Yuxiao Zhang, Yuying Ma, Jiabao Zhang, Yakov Kuzyakov, Haiyan Chu. Microbial life-history strategies mediate temperature effects on organic carbon pools in black soils. Soil Ecology Letters, 2025, 7(3): 250306 DOI:10.1007/s42832-025-0306-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ainsworth, E.A., Ort, D.R., 2010. How do we improve crop production in a warming world. Plant Physiology154, 526–530.

[2]

Angst, G., Mueller, K.E., Castellano, M.J., Vogel, C., Wiesmeier, M., Mueller, C.W., 2023. Unlocking complex soil systems as carbon sinks: multi-pool management as the key. Nature Communications14, 2967.

[3]

Ballhausen, M.B., de Boer, W., 2016. The sapro-rhizosphere: carbon flow from saprotrophic fungi into fungus-feeding bacteria. Soil Biology and Biochemistry102, 14–17.

[4]

Barnard, S., Van Goethem, M.W., de Scally, S.Z., Cowan, D.A., van Rensburg, P.J., Claassens, S., Makhalanyane, T.P., 2020. Increased temperatures alter viable microbial biomass, ammonia oxidizing bacteria and extracellular enzymatic activities in Antarctic soils. FEMS Microbiology Ecology96, fiaa065.

[5]

Bian, Q., Wang, X.Y., Bao, X.G., Zhu, L.Y., Xie, Z.B., Che, Z.X., Sun, B., 2022. Exogenous substrate quality determines the dominant keystone taxa linked to carbon mineralization: evidence from a 30-year experiment. Soil Biology and Biochemistry169, 108683.

[6]

Birgander, J., Olsson, P.A., Rousk, J., 2018. The responses of microbial temperature relationships to seasonal change and winter warming in a temperate grassland. Global Change Biology24, 3357–3367.

[7]

Boberg, J., Finlay, R.D., Stenlid, J., Näsholm, T., Lindahl, B.D., 2008. Glucose and ammonium additions affect needle decomposition and carbon allocation by the litter degrading fungus Mycena epipterygia. Soil Biology and Biochemistry40, 995–999.

[8]

Bokulich, N.A., Mills, D.A., 2013. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Applied and Environmental Microbiology79, 2519–2526.

[9]

Bol, R., Poirier, N., Balesdent, J., Gleixner, G., 2009. Molecular turnover time of soil organic matter in particle-size fractions of an arable soil. Rapid Communications in Mass Spectrometry23, 2551–2558.

[10]

Cao, T.T., Luo, Y.C., Shi, M., Tian, X.J., Kuzyakov, Y., 2024. Microbial interactions for nutrient acquisition in soil: miners, scavengers, and carriers. Soil Biology and Biochemistry188, 109215.

[11]

Chang, Y., Sokol, N.W., van Groenigen, K.J., Bradford, M.A., Ji, D.C., Crowther, T.W., Liang, C., Luo, Y.Q., Kuzyakov, Y., Wang, J.K., Ding, F., 2024. A stoichiometric approach to estimate sources of mineral-associated soil organic matter. Global Change Biology30, e17092.

[12]

Chatterjee, D., Saha, S., 2018. Response of soil properties and soil microbial communities to the projected climate change. In: Bal, S.K., Mukherjee, J., Choudhury, B.U., Dhawan, A.K., eds. Advances in Crop Environment Interaction. Singapore: Springer87–136.

[13]

Chen, J., Luo, Y.Q., Xia, J.Y., Jiang, L.F., Zhou, X.H., Lu, M., Liang, J.Y., Shi, Z., Shelton, S., Cao, J.J., 2015. Stronger warming effects on microbial abundances in colder regions. Scientific Reports5, 18032.

[14]

Chen, Y.J., Neilson, J.W., Kushwaha, P., Maier, R.M., Barberán, A., 2021. Life-history strategies of soil microbial communities in an arid ecosystem. The ISME Journal15, 649–657.

[15]

Chigineva, N.I., Aleksandrova, A.V., Tiunov, A.V., 2009. The addition of labile carbon alters litter fungal communities and decreases litter decomposition rates. Applied Soil Ecology42, 264–270.

[16]

Condron, L., Stark, C., O’Callaghan, M., Clinton, P., Huang, Z.Q., 2010. The role of microbial communities in the formation and decomposition of soil organic matter. In: Dixon, G.R., Tilston, E.L., eds. Soil Microbiology and Sustainable Crop Production. Dordrecht: Springer81–118.

[17]

Crowther, T.W., Todd-Brown, K.E.O., Rowe, C.W., Wieder, W.R., Carey, J.C., Machmuller, M.B., Snoek, B.L., Fang, S., Zhou, G., Allison, S.D., Blair, J.M., Bridgham, S.D., Burton, A.J., Carrillo, Y., Reich, P.B., Clark, J.S., Classen, A.T., Dijkstra, F.A., Elberling, B., Emmett, B.A., Estiarte, M., Frey, S.D., Guo, J., Harte, J., Jiang, L., Johnson, B.R., Kröel-Dulay, G., Larsen, K.S., Laudon, H., Lavallee, J.M., Luo, Y., Lupascu, M., Ma, L.N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S., Reynolds, L.L., Schmidt, I.K., Sistla, S., Sokol, N.W., Templer, P.H., Treseder, K.K., Welker, J.M., Bradford, M.A., 2016. Quantifying global soil carbon losses in response to warming. Nature540, 104–108.

[18]

Dai, T.J., Wen, D.H., Bates, C.T., Wu, L.W., Guo, X., Liu, S., Su, Y.F., Lei, J.S., Zhou, J.Z., Yang, Y.F., 2022. Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities. Nature Communications13, 175.

[19]

Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature440, 165–173.

[20]

de Menezes, A.B., Richardson, A.E., Thrall, P.H., 2017. Linking fungal–bacterial co-occurrences to soil ecosystem function. Current Opinion in Microbiology37, 135–141.

[21]

Deveau, A., Bonito, G., Uehling, J., Paoletti, M., Becker, M., Bindschedler, S., Hacquard, S., Hervé, V., Labbé, J., Lastovetsky, O.A., Mieszkin, S., Millet, L.J., Vajna, B., Junier, P., Bonfante, P., Krom, B.P., Olsson, S., van Elsas, J.D., Wick, L.Y., 2018. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiology Reviews42, 335–352.

[22]

Fan, K.K., Weisenhorn, P., Gilbert, J.A., Chu, H.Y., 2018. Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biology and Biochemistry125, 251–260.

[23]

Fierer, N., Bradford, M.A., Jackson, R.B., 2007. Toward an ecological classification of soil bacteria. Ecology88, 1354–1364.

[24]

Fischer, H., Ingwersen, J., Kuzyakov, Y., 2010. Microbial uptake of low-molecular-weight organic substances out-competes sorption in soil. European Journal of Soil Science61, 504–513.

[25]

Guan, S., An, N., Zong, N., He, Y.T., Shi, P.L., Zhang, J.J., He, N.P., 2018. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow. Soil Biology and Biochemistry116, 224–236.

[26]

Hagerty, S.B., van Groenigen, K.J., Allison, S.D., Hungate, B.A., Schwartz, E., Koch, G.W., Kolka, R.K., Dijkstra, P., 2014. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nature Climate Change4, 903–906.

[27]

Ho, A., Di Lonardo, D.P., Bodelier, P.L.E., 2017. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiology Ecology93, fix006.

[28]

Hoppe, B., Kahl, T., Karasch, P., Wubet, T., Bauhus, J., Buscot, F., Krüger, D., 2014. Correction: network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi. PLoS One9, e91389.

[29]

Hu, P.L., Zhang, W., Kuzyakov, Y., Xiao, L.M., Xiao, D., Xu, L., Chen, H.S., Zhao, J., Wang, K.L., 2023. Linking bacterial life strategies with soil organic matter accrual by karst vegetation restoration. Soil Biology and Biochemistry177, 108925.

[30]

Jiao, S., Yang, Y.F., Xu, Y.Q., Zhang, J., Lu, Y.H., 2020. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. The ISME Journal14, 202–216.

[31]

Jilling, A., Keiluweit, M., Contosta, A.R., Frey, S., Schimel, J., Schnecker, J., Smith, R.G., Tiemann, L., Grandy, A.S., 2018. Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry139, 103–122.

[32]

Keiluweit, M., Bougoure, J.J., Nico, P.S., Pett-Ridge, J., Weber, P.K., Kleber, M., 2015. Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change5, 588–595.

[33]

Koide, R.T., Sharda, J.N., Herr, J.R., Malcolm, G.M., 2008. Ectomycorrhizal fungi and the biotrophy-saprotrophy continuum. New Phytologist178, 230–233.

[34]

Kristensen, J.A., Svenning, J.C., Georgiou, K., Malhi, Y., 2022. Can large herbivores enhance ecosystem carbon persistence. Trends in Ecology & Evolution37, 117–128.

[35]

Kuzyakov, Y., Bol, R., 2006. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar. Soil Biology and Biochemistry38, 747–758.

[36]

Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science304, 1623–1627.

[37]

Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L., Pace, N.R., 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences of the United States of America82, 6955–6959.

[38]

Lavallee, J.M., Soong, J.L., Cotrufo, M.F., 2020. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology26, 261–273.

[39]

Lebreton, A., Zeng, Q.C., Miyauchi, S., Kohler, A., Dai, Y.C., Martin, F.M., 2021. Evolution of the mode of nutrition in symbiotic and saprotrophic fungi in forest ecosystems. Annual Review of Ecology, Evolution, and Systematics52, 385–404.

[40]

Lehmann, J., Hansel, C.M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S., Nunan, N., Reichstein, M., Schimel, J.P., Torn, M.S., Wieder, W.R., Kögel-Knabner, I., 2020. Persistence of soil organic carbon caused by functional complexity. Nature Geoscience13, 529–534.

[41]

Lei, J., Su, Y., Jian, S., Guo, X., Yuan, M., Bates, C.T., Shi, Z.J., Li, J., Su, Y., Ning, D., Wu, L., Zhou, J., Yang, Y., 2024. Warming effects on grassland soil microbial communities are amplified in cool months. The ISME Journal18, wrae088.

[42]

Li, H., Yang, S., Semenov, M.V., Yao, F., Ye, J., Bu, R., Ma, R., Lin, J., Kurganova, I., Wang, X., Deng, Y., Kravchenko, I., Jiang, Y., Kuzyakov, Y., 2021. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Global Change Biology27, 2763–2779.

[43]

Lian, T., Wang, G., Yu, Z., Li, Y., Liu, X., Jin, J., 2016. Carbon input from 13C-labelled soybean residues in particulate organic carbon fractions in a Mollisol. Biology and Fertility of Soils52, 331–339.

[44]

Ling, N., Wang, T.T., Kuzyakov, Y., 2022. Rhizosphere bacteriome structure and functions. Nature Communications13, 836.

[45]

Liu, F.L., Li, X.N., Hogy, P., Jiang, D., Brestic, M., Liu, B., 2022. Sustainable Crop Productivity and Quality under Climate Change: Responses of Crop Plants to Climate Change. Cambridge: Academic Press.

[46]

Lugato, E., Lavallee, J.M., Haddix, M.L., Panagos, P., Cotrufo, M.F., 2021. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nature Geoscience14, 295–300.

[47]

Malik, A.A., Martiny, J.B.H., Brodie, E.L., Martiny, A.C., Treseder, K.K., Allison, S.D., 2020. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME Journal14, 1–9.

[48]

Mueller, C.W., Brüggemann, N., Pritsch, K., Stoelken, G., Gayler, S., Winkler, J.B., Kögel-Knabner, I., 2009. Initial differentiation of vertical soil organic matter distribution and composition under juvenile beech (Fagus sylvatica L.) trees. Plant and Soil323, 111–123.

[49]

Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grubler, A., Jung, T.Y., Kram, T., La Rovere, E.L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H.M., Price, L., Riahi, K., Roehrl, A., Rogner, H.H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S.J., Swart, R., van Rooijen, S., Victor, N., Zhou, D.D., 2000. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Richland: Pacific Northwest National Laboratory.

[50]

Nemergut, D.R., Schmidt, S.K., Fukami, T., O'Neill, S.P., Bilinski, T.M., Stanish, L.F., Knelman, J.E., Darcy, J.L., Lynch, R.C., Wickey, P., Ferrenberg, S., 2013. Patterns and processes of microbial community assembly. Microbiology and Molecular Biology Reviews77, 342–356.

[51]

Paul, E.A., 2016. The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry98, 109–126.

[52]

Pausch, J., Kuzyakov, Y., 2018. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Global Change Biology24, 1–12.

[53]

Põlme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B.D., Clemmensen, K.E., Kauserud, H., Nguyen, N., Kjøller, R., Bates, S.T., Baldrian, P., 2020. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity105, 1–16.

[54]

Qin, S.Q., Chen, L.Y., Fang, K., Zhang, Q.W., Wang, J., Liu, F.J., Yu, J.C., Yang, Y.H., 2019. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Science Advances5, eaau1218.

[55]

Roller, B.R.K., Stoddard, S.F., Schmidt, T.M., 2016. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nature Microbiology1, 16160.

[56]

Six, J., Frey, S.D., Thiet, R.K., Batten, K.M., 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal70, 555–569.

[57]

Stoddard, S.F., Smith, B.J., Hein, R., Roller, B.R.K., Schmidt, T.M., 2015. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Research43, D593–D598.

[58]

Stone, B.W.G., Dijkstra, P., Finley, B.K., Fitzpatrick, R., Foley, M.M., Hayer, M., Hofmockel, K.S., Koch, B.J., Li, J.H., Liu, X.J.A., Martinez, A., Mau, R.L., Marks, J., Monsaint-Queeney, V., Morrissey, E.M., Propster, J., Pett-Ridge, J., Purcell, A.M., Schwartz, E., Hungate, B.A., 2023. Life history strategies among soil bacteria-dichotomy for few, continuum for many. The ISME Journal17, 611–619.

[59]

Trivedi, P., Anderson, I.C., Singh, B.K., 2013. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends in Microbiology21, 641–651.

[60]

Van Gestel, N., Shi, Z., Van Groenigen, K.J., Osenberg, C.W., Andresen, L.C., Dukes, J.S., Hovenden, M.J., Luo, Y.Q., Michelsen, A., Pendall, E., Reich, P.B., Schuur, E.A.G., Hungate, B.A., 2018. Predicting soil carbon loss with warming. Nature554, E4–E5.

[61]

Villarino, S.H., Pinto, P., Jackson, R.B., Piñeiro, G., 2021. Plant rhizodeposition: a key factor for soil organic matter formation in stable fractions. Science Advances7, eabd3176.

[62]

von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B., 2007. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry39, 2183–2207.

[63]

Wan, S.Q., Hui, D.F., Wallace, L., Luo, Y.Q., 2005. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles19, GB2014.

[64]

Wang, C.Q., Kuzyakov, Y., 2023. Energy use efficiency of soil microorganisms: driven by carbon recycling and reduction. Global Change Biology29, 6170–6187.

[65]

Wang, C.Q., Kuzyakov, Y., 2024. Mechanisms and implications of bacterial-fungal competition for soil resources. The ISME Journal18, wrae073.

[66]

Wang, S.C., Zhao, Y.W., Wang, J.Z., Gao, J.J., Zhu, P., Cui, X.A., Xu, M.G., Zhou, B.K., Lu, C.G., 2020. Estimation of soil organic carbon losses and counter approaches from organic materials in black soils of northeastern China. Journal of Soils and Sediments20, 1241–1252.

[67]

Zhang, X.Z., Shen, Z.X., Fu, G., 2015. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology87, 32–38.

[68]

Zhou, J.Z., Ning, D.L., 2017. Stochastic community assembly: does it matter in microbial ecology. Microbiology and Molecular Biology Reviews81, e00002.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4456KB)

Supplementary files

SEL-00306-of-HYC_suppl_1

850

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/