
Impact of Spartina alterniflora invasion and aquaculture reclamation on soil aggregate stability and carbon sequestration in Chinese coastal wetlands
Yanxun Xu, Wenjing Liu, Yule Lin, Hong Yang, Ping Yang, Guanpeng Chen, Dongyao Sun, Chuan Tong, Linhai Zhang, Wanyi Zhu, Kam W. Tang
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250305.
Impact of Spartina alterniflora invasion and aquaculture reclamation on soil aggregate stability and carbon sequestration in Chinese coastal wetlands
● Silt+clay was the dominant soil aggregate fraction in coastal wetlands. | |
● The invasion of mudflats by Spartina increased macroaggregate fraction and associated carbon. | |
● Aquaculture reclamation reduced aggregate size and stability. | |
● Macro- and micro-aggregates were important for soil carbon storage. |
Soil aggregates are essential to the long-term sequestration of soil organic carbon (SOC) in coastal wetlands. Coastal wetlands in China have undergone profound transformation by the invasion of Spartina alterniflora and subsequent aquaculture reclamation, but the effects on soil aggregates remain unclear. This study examined the distribution of soil aggregate size, stability and organic carbon content across 21 coastal wetlands in China that had undergone a similar transformation, from native mudflats (MFs) to S. alterniflora marshes (SAs), and subsequent conversion to aquaculture ponds (APs). The results showed that silt+clay was the dominant fraction of soil aggregates (78.7%–83.1%), followed by micro-aggregates (12.8%–13.9%) and macroaggregates (4.1%–6.6%). Transition from MFs to SAs led to an increase in macroaggregate and microaggregate contents and the aggregate stability index (MWD, MGD and DR0.25), but a reduction in silt+clay content. Subsequent conversion of SAs to APs led to a reduction in macroaggregate content and aggregate stability index, and an increase in silt+clay and microaggregate contents. Change from MFs to SAs increased SOC by 69.6% in the silt+clay fraction, 29.4% in the microaggregate fraction, and 22.4% in the macroaggregate fraction. Conversely, converting SAs to APs decreased SOC content by 11.4% in the silt+clay fraction and 16.3% in the macroaggregate fractions, but an 8.5% increase in the microaggregate fraction. The results underscore the crucial role of soil aggregate formation in sequestration and storage of SOC under varying land cover change scenarios.
soil aggregates / physical protection / soil organic carbon / coastal wetland / land cover change
[1] |
Abiven, S., Menasseri, S., Chenu, C., 2009. The effects of organic inputs over time on soil aggregate stability-A literature analysis. Soil Biology and Biochemistry41, 1–12.
CrossRef
Google scholar
|
[2] |
Andreetta, A., Huertas, A.D., Lotti, M., Cerise, S., 2016. Land use changes affecting soil organic carbon storage along a mangrove swamp rice chronosequence in the Cacheu and Oio regions (northern Guinea-Bissau). Agriculture, Ecosystems & Environment216, 314–321.
|
[3] |
Andruschkewitsch, R., Koch, H.J., Ludwig, B., 2014. Effect of long-term tillage treatments on the temporal dynamics of water-stable aggregates and on macro-aggregate turnover at three German sites. Geoderma 217–218, 217–218.
|
[4] |
Avnimelech, Y., Ritvo, G., 2003. Shrimp and fish pond soils: processes and management. Aquaculture220, 549–567.
CrossRef
Google scholar
|
[5] |
Babur, E., Kara, O., Fathi, R.A., Susam, Y.E., Riaz, M., Arif, M., Akhtar, K., 2021. Wattle fencing improved soil aggregate stability, organic carbon stocks and biochemical quality by restoring highly eroded mountain region soil. Journal of Environmental Management288, 112489.
CrossRef
Google scholar
|
[6] |
Bai, Y.X., Zhou, Y.C., He, H.Z., 2020. Effects of rehabilitation through afforestation on soil aggregate stability and aggregate-associated carbon after forest fires in subtropical China. Geoderma376, 114548.
CrossRef
Google scholar
|
[7] |
Bauer, J.E., Cai, W.J., Raymond, P.A., Bianchi, T.S., Hopkinson, C.S., Regnier, P.A.G., 2013. The changing carbon cycle of the coastal ocean. Nature504, 61–70.
CrossRef
Google scholar
|
[8] |
Bedini, S., Pellegrino, E., Avio, L., Pellegrini, S., Bazzoffi, P., Argese, E., Giovannetti, M., 2009. Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biology and Biochemistry41, 1491–1496.
CrossRef
Google scholar
|
[9] |
Bossuyt, H., Six, J., Hendrix, P.F., 2005. Protection of soil carbon by microaggregates within earthworm casts. Soil Biology and Biochemistry37, 251–258.
CrossRef
Google scholar
|
[10] |
Cheng, Z.B., Wang, J.Y., Gale, W.J., Yang, H.C., Zhang, F.H., 2020. Soil aggregation and aggregate-associated organic carbon under typical natural halophyte communities in arid saline areas of Northwest China. Pedosphere30, 236–243.
CrossRef
Google scholar
|
[11] |
Davidson, N.C., Fluet-Chouinard, E., Finlayson, C.M., 2018. Global extent and distribution of wetlands: trends and issues. Marine and Freshwater Research69, 620–627.
CrossRef
Google scholar
|
[12] |
Debasish-Saha, Kukal, S.S., Bawa, S.S., 2014. Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded Shiwaliks hills of lower Himalayas. Land Degradation & Development25, 407–416.
|
[13] |
Deng, L., Kim, D.G., Peng, C.H., Shangguan, Z.P., 2018. Controls of soil and aggregate-associated organic carbon variations following natural vegetation restoration on the Loess Plateau in China. Land Degradation & Development29, 3974–3984.
|
[14] |
Dheri, G.S., Lal, R., Moonilall, N.I., 2022. Soil carbon stocks and water stable aggregates under annual and perennial biofuel crops in Central Ohio. Agriculture, Ecosystems & Environment324, 107715.
|
[15] |
Duan, Y.Q., Li, X., Zhang, L.P., Chen, D., Liu, S.A., Ji, H.Y., 2020. Mapping national-scale aquaculture ponds based on the Google Earth Engine in the Chinese coastal zone. Aquaculture520, 734666.
CrossRef
Google scholar
|
[16] |
Duarte, C.M., Losada, I.J., Hendriks, I.E., Mazarrasa, I., Marbà, N., 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change3, 961–968.
CrossRef
Google scholar
|
[17] |
Duchicela, J., Vogelsang, K.M., Schultz, P.A., Kaonongbua, W., Middleton, E.L., Bever, J.D., 2012. Non-native plants and soil microbes: potential contributors to the consistent reduction in soil aggregate stability caused by the disturbance of North American grasslands. New Phytologist196, 212–222.
CrossRef
Google scholar
|
[18] |
Eid, E.M., Arshad, M., Shaltout, K.H., El-Sheikh, M.A., Alfarhan, A.H., Picó, Y., Barcelo, D., 2019. Effect of the conversion of mangroves into shrimp farms on carbon stock in the sediment along the southern Red Sea coast, Saudi Arabia. Environmental Research176, 108536.
CrossRef
Google scholar
|
[19] |
Fluet-Chouinard, E., Stocker, B.D., Zhang, Z., Malhotra, A., Melton, J.R., Poulter, B., Kaplan, J.O., Goldewijk, K.K., Siebert, S., Minayeva, T., Hugelius, G., Joosten, H., Barthelmes, A., Prigent, C., Aires, F., Hoyt, A.M., Davidson, N., Finlayson, C.M., Lehner, B., Jackson, R.B., McIntyre, P.B., 2023. Extensive global wetland loss over the past three centuries. Nature614, 281–286.
CrossRef
Google scholar
|
[20] |
Fluet-Chouinard, E., Stocker, B.D., Zhang, Z., Malhotra, A., Melton, J.R., Poulter, B., Kaplan, J.O., Goldewijk, K.K., Siebert, S., Minayeva, T., Hugelius, G., Joosten, H., Barthelmes, A., Prigent, C., Aires, F., Hoyt, A.M., Davidson, N., Finlayson, C.M., Lehner, B., Jackson, R.B., McIntyre, P.B., 2023. Extensive global wetland loss over the past three centuries. Nature 614, 281–286.
|
[21] |
Friedlingstein, P., Jones, M.W., O’Sullivan, M., Andrew, R.M., Hauck, J., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D.C.E., Canadell, J.G., Ciais, P., Jackson, R.B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L.P., Currie, K.I., Feely, R.A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D.S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R.A., Hurtt, G., Ilyina, T., Jain, A.K., Joetzjer, E., Kaplan, J.O., Kato, E., Klein Goldewijk, K., Korsbakken, J.I., Landschützer, P., Lauvset, S.K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., Mcguire, P.C., Melton, J.R., Metzl, N., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S.I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H.Q., Tilbrook, B., Tubiello, F.N., Van Der Werf, G.R., Wiltshire, A.J., Zaehle, S., 2019. Global carbon budget 2019. Earth System Science Data11, 1783–1838.
CrossRef
Google scholar
|
[22] |
Garcia-Franco, N., Martínez-Mena, M., Goberna, M., Albaladejo, J., 2015. Changes in soil aggregation and microbial community structure control carbon sequestration after afforestation of semiarid shrublands. Soil Biology and Biochemistry87, 110–121.
CrossRef
Google scholar
|
[23] |
Gu, J.L., Wu, J.P., 2023. Blue carbon effects of mangrove restoration in subtropics where Spartina alterniflora invaded. Ecological Engineering186, 106822.
CrossRef
Google scholar
|
[24] |
Haynes, R.J., 1993. Effect of sample pretreatment on aggregate stability measured by wet sieving or turbidimetry on soils of different cropping history. Journal of Soil Science44, 261–270.
CrossRef
Google scholar
|
[25] |
He, Y.H., Zhou, X.H., Cheng, W.S., Zhou, L.Y., Zhang, G.D., Zhou, G.Y., Liu, R.Q., Shao, J.J., Zhu, K., Cheng, W.X., 2019. Linking improvement of soil structure to soil carbon storage following invasion by a C4 plant Spartina alterniflora. Ecosystems22, 859–872.
CrossRef
Google scholar
|
[26] |
Hennings, N., Becker, J.N., Guillaume, T., Damris, M., Dippold, M.A., Kuzyakov, Y., 2021. Riparian wetland properties counter the effect of land-use change on soil carbon stocks after rainforest conversion to plantations. CATENA196, 104941.
CrossRef
Google scholar
|
[27] |
Hong, Y., Zhang, L.H., Yang, P., Tong, C., Lin, Y.X., Lai, D.Y.F., Yang, H., Tian, Y.L., Zhu, W.Y., Tang, K.W., 2023. Responses of coastal sediment organic and inorganic carbon to habitat modification across a wide latitudinal range in southeastern China. CATENA225, 107034.
CrossRef
Google scholar
|
[28] |
Hu, Y.K., Tian, B., Yuan, L., Li, X.Z., Huang, Y., Shi, R.H., Jiang, X.Y., Wang, L.H., Sun, C., 2021. Mapping coastal salt marshes in China using time series of Sentinel-1 SAR. ISPRS Journal of Photogrammetry and Remote Sensing173, 122–134.
CrossRef
Google scholar
|
[29] |
Jain, A., Ramakrishnan, R., Thomaskutty, A.V., Agrawal, R., Rajawat, A.S., Solanki, H., 2022. Topography and morphodynamic study of intertidal mudflats along the eastern coast of the Gulf of Khambhat, India using remote sensing techniques. Remote Sensing Applications: Society and Environment27, 100798.
CrossRef
Google scholar
|
[30] |
Jastrow, J.D., 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biology and Biochemistry28, 665–676.
CrossRef
Google scholar
|
[31] |
Jastrow, J.D., Miller, R.M., Lussenhop, J., 1998. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biology and Biochemistry30, 905–916.
CrossRef
Google scholar
|
[32] |
Kayranli, B., Scholz, M., Mustafa, A., Hedmark, Å., 2010. Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands30, 111–124.
CrossRef
Google scholar
|
[33] |
Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Klute, A., ed. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5.1. 2nd ed. Madison: American Society of Agronomy, 837–871.
|
[34] |
Lal, R., 2008. Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences363, 815–830.
CrossRef
Google scholar
|
[35] |
Lan, J.C., Long, Q.X., Huang, M.Z., Jiang, Y.X., Hu, N., 2022. Afforestation-induced large macroaggregate formation promotes soil organic carbon accumulation in degraded karst area. Forest Ecology and Management505, 119884.
CrossRef
Google scholar
|
[36] |
Leifeld, J., Wüst-Galley, C., Page, S., 2019. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nature Climate Change9, 945–947.
CrossRef
Google scholar
|
[37] |
Li, H.Y., Mao, D.H., Wang, Z.M., Huang, X., Li, L., Jia, M.M., 2022. Invasion of Spartina alterniflora in the coastal zone of mainland China: control achievements from 2015 to 2020 towards the Sustainable Development Goals. Journal of Environmental Management323, 116242.
CrossRef
Google scholar
|
[38] |
Li, J.G., Wang, S.L., Tang, Y.Q., Du, Y.Q., Xu, L., Hu, J., Zhu, C.M., 2024a. Coastal reclamation alters soil organic carbon dynamics: a meta-analysis in China. CATENA240, 107975.
CrossRef
Google scholar
|
[39] |
Li, L.X., Xu, H.B., Zhang, Q., Zhan, Z.S., Liang, X.W., Xing, J., 2024b. Estimation methods of wetland carbon sink and factors influencing wetland carbon cycle: a review. Carbon Research3, 50.
CrossRef
Google scholar
|
[40] |
Li, N., Nie, M., Li, B., Wu, J.H., Zhao, J.Y., 2021. Contrasting effects of the aboveground litter of native Phragmites australis and invasive Spartina alterniflora on nitrification and denitrification. Science of the Total Environment764, 144283.
CrossRef
Google scholar
|
[41] |
Li, Y.L., Lv, B.W., Chen, Z.D., Xue, J.M., Wu, L., He, X.M., Yang, L., 2024c. PFOA and PFOS induces mineralization of soil organic carbon by accelerating the consumption of dissolved organic carbon. Carbon Research3, 16.
CrossRef
Google scholar
|
[42] |
Liao, C.Z., Luo, Y.Q., Jiang, L.F., Zhou, X.H., Wu, X.W., Fang, C.M., Chen, J.K., Li, B., 2007. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems10, 1351–1361.
CrossRef
Google scholar
|
[43] |
Lin, X., Yang, Y.L., Yang, P., Hong, Y., Zhang, L.H., Tong, C., Lai, D.Y.F., Lin, Y.X., Tan, L.S., Tian, Y.L., Tang, K.W., 2023. Soil organic nitrogen content and composition in different wetland habitat types along the south-east coast of China. CATENA232, 107457.
CrossRef
Google scholar
|
[44] |
Liu, C., Wu, Z.N., He, C.H., Huang, B., Zhang, Y.H., Li, P., Huang, W.J., 2024a. Effect of land use conversion on the soil aggregate-associated microbial necromass carbon in estuarine wetland of the Pearl River in China. CATENA236, 107761.
CrossRef
Google scholar
|
[45] |
Liu, M.Y., Mao, D.H., Wang, Z.M., Li, L., Man, W.D., Jia, M.M., Ren, C.Y., Zhang, Y.Z., 2018. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: new observations from landsat OLI images. Remote Sensing10, 1933.
CrossRef
Google scholar
|
[46] |
Liu, S.W., Wang, R.T., Yang, Y., Shi, W.Y., Jiang, K., Jia, L.Y., Zhang, F., Liu, X., Ma, L., Li, C., Yu, P.J., 2024b. Changes in soil aggregate stability and aggregate-associated carbon under different slope positions in a karst region of Southwest China. Science of the Total Environment928, 172534.
CrossRef
Google scholar
|
[47] |
Liu, X.Y., Wang, W.Q., Peñuelas, J., Sardans, J., Chen, X.X., Fang, Y.Y., Alrefaei, A.F., Zeng, F.J., Tariq, A., 2022. Effects of nitrogen-enriched biochar on subtropical paddy soil organic carbon pool dynamics. Science of the Total Environment851, 158322.
CrossRef
Google scholar
|
[48] |
Lu, M.Z., Yang, M.Y., Yang, Y.R., Wang, D.L., Sheng, L.X., 2019. Soil carbon and nutrient sequestration linking to soil aggregate in a temperate fen in Northeast China. Ecological Indicators98, 869–878.
CrossRef
Google scholar
|
[49] |
Lu, T., Xu, N.H., Lei, C.T., Zhang, Q., Zhang, Z.Y., Sun, L.W., He, F., Zhou, N.Y., Peñuelas, J., Zhu, Y.G., Qian, H.F., 2023. Bacterial biogeography in China and its association to land use and soil organic carbon. Soil Ecology Letters5, 230172.
CrossRef
Google scholar
|
[50] |
Ma, Z.W., Bai, J.H., Xiao, R., Wang, C., Cui, Y., Wu, J., Xu, J., Zhang, Z.M., Zhang, M.X., 2021. Incorporating soil aggregate-associated indicators into evaluating ecological responses of degraded estuarine wetlands to freshwater replenishment at different intensity: a case study from the Yellow River Delta, China. Ecological Indicators121, 107039.
CrossRef
Google scholar
|
[51] |
Mao, D.H., Liu, M.Y., Wang, Z.M., Li, L., Man, W.D., Jia, M.M., Zhang, Y.Z., 2019. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: spatiotemporal patterns and human prevention. Sensors19, 2308.
CrossRef
Google scholar
|
[52] |
Mcleod, E., Chmura, G.L., Bouillon, S., Salm, R., Björk, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.S., Silliman, B.R., 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment9, 552–560.
CrossRef
Google scholar
|
[53] |
Morel, J.L., Habib, L., Plantureux, S., Guckert, A., 1991. Influence of maize root mucilage on soil aggregate stability. Plant and Soil136, 111–119.
CrossRef
Google scholar
|
[54] |
Nahlik, A.M., Fennessy, M.S., 2016. Carbon storage in US wetlands. Nature Communications7, 13835.
CrossRef
Google scholar
|
[55] |
Okolo, C.C., Gebresamuel, G., Zenebe, A., Haile, M., Eze, P.N., 2020. Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semi-arid environment. Agriculture, Ecosystems & Environment297, 106924.
|
[56] |
Paul, B.K., Vanlauwe, B., Ayuke, F., Gassner, A., Hoogmoed, M., Hurisso, T.T., Koala, S., Lelei, D., Ndabamenye, T., Six, J., Pulleman, M.M., 2013. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity. Agriculture, Ecosystems & Environment164, 14–22.
|
[57] |
Pu, Y.L., Lang, S.X., Wang, A.B., Zhang, S.R., Li, T., Qian, H.Y., Wang, G., Jia, Y.X., Xu, X.X., Yuan, D.G., Li, Y., 2022. Distribution and functional groups of soil aggregate-associated organic carbon along a marsh degradation gradient on the Zoige Plateau, China. CATENA209, 105811.
CrossRef
Google scholar
|
[58] |
Qi, X.Z., Chmura, G.L., 2023. Invasive Spartina alterniflora marshes in China: a blue carbon sink at the expense of other ecosystem services. Frontiers in Ecology and the Environment,21, 182–190.
CrossRef
Google scholar
|
[59] |
Ren, G.B., Zhao, Y.J., Wang, J.B., Wu, P.Q., Ma, Y., 2021. Ecological effects analysis of Spartina alterniflora invasion within Yellow River delta using long time series remote sensing imagery. Estuarine, Coastal and Shelf Science 249, 107111.
|
[60] |
Sasmito, S.D., Taillardat, P., Clendenning, J.N., Cameron, C., Friess, D.A., Murdiyarso, D., Hutley, L.B., 2019. Effect of land-use and land-cover change on mangrove blue carbon: a systematic review. Global Change Biology25, 4291–4302.
CrossRef
Google scholar
|
[61] |
Shen, D.Y., Ye, C.L., Hu, Z.K., Chen, X.Y., Guo, H., Li, J.Y., Du, G.Z., Adl, S., Liu, M.Q., 2018. Increased chemical stability but decreased physical protection of soil organic carbon in response to nutrient amendment in a Tibetan alpine meadow. Soil Biology and Biochemistry126, 11–21.
CrossRef
Google scholar
|
[62] |
Shen, R.C., Yang, H., Rinklebe, J., Bolan, N., Hu, Q.W., Huang, X.Y., Wen, X.T., Zheng, B.F., Shi, L., 2022. Seasonal flooding wetland expansion would strongly affect soil and sediment organic carbon storage and carbon-nutrient stoichiometry. Science of the Total Environment828, 154427.
CrossRef
Google scholar
|
[63] |
Sithole, N.J., Magwaza, L.S., Thibaud, G.R., 2019. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil and Tillage Research190, 147–156.
CrossRef
Google scholar
|
[64] |
Six, J., Bossuyt, H., Degryze, S., Denef, K., 2024. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research79, 7–31.
|
[65] |
Six, J., Elliott, E.T., Paustian, K., 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry32, 2099–2103.
CrossRef
Google scholar
|
[66] |
Su, Z.N., Qiu, G.L., Yang, P., Yang, H., Liu, W.J., Tan, L.S., Zhang, L.H., Sun, D.Y., Huang, J.F., Tang, K.W., 2025. Conversion of earthen aquaculture ponds to integrated mangrove-aquaculture systems significantly reduced the emissions of CH4 and N2O. Journal of Hydrology652, 132692.
CrossRef
Google scholar
|
[67] |
Tan, L.S., Ge, Z.M., Li, S.H., Zhou, K., Lai, D.Y.F., Temmerman, S., Dai, Z.J., 2023. Impacts of land-use change on carbon dynamics in China's coastal wetlands. Science of the Total Environment890, 164206.
CrossRef
Google scholar
|
[68] |
Utomo, H.S., Wenefrida, I., Materne, M.D., Linscombe, J.T., 2010. Polycross seed of genetically diverse Smooth Cordgrass (Spartina alterniflora) for erosion control and habitat restoration. Restoration Ecology18, 170–172.
CrossRef
Google scholar
|
[69] |
Walia, M.K., Dick, W.A., 2018. Selected soil physical properties and aggregate-associated carbon and nitrogen as influenced by gypsum, crop residue, and glucose. Geoderma320, 67–73.
CrossRef
Google scholar
|
[70] |
Wang, H., Guan, D.S., Zhang, R.D., Chen, Y.J., Hu, Y.T., Xiao, L., 2014. Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field. Ecological Engineering70, 206–211.
CrossRef
Google scholar
|
[71] |
Wang, L.H., Liu, W.J., Zhou, X.Y., Fu, S.L., Yang, P., Tong, C., Yang, H., Sun, D.Y., Zhang, L.H., Zhu, W.Y., Tang, K.W., 2025. Effects of plant invasion and land use change on soil labile organic carbon in southern China’s coastal wetlands. Soil Ecology Letters7, 240275.
CrossRef
Google scholar
|
[72] |
Wang, M., Mao, D.H., Xiao, X.M., Song, K.S., Jia, M.M., Ren, C.Y., Wang, Z.M., 2023. Interannual changes of coastal aquaculture ponds in China at 10-m spatial resolution during 2016–2021. Remote Sensing of Environment284, 113347.
CrossRef
Google scholar
|
[73] |
Wang, W.Q., Sardans, J., Wang, C., Zeng, C.S., Tong, C., Chen, G.X., Huang, J.F., Pan, H.R., Peguero, G., Vallicrosa, H., Peñuelas, J., 2019. The response of stocks of C, N, and P to plant invasion in the coastal wetlands of China. Global Change Biology25, 733–743.
CrossRef
Google scholar
|
[74] |
Xia, S.P., Wang, W.Q., Song, Z.L., Kuzyakov, Y., Guo, L.D., Van Zwieten, L., Li, Q., Hartley, I.P., Yang, Y.H., Wang, Y.D., Andrew Quine, T., Liu, C.Q., Wang, H.L., 2021. Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics. Global Change Biology27, 1627–1644.
CrossRef
Google scholar
|
[75] |
Yan, R., Feng, J.X., Fu, T., Chen, Q.Q., Wang, Z.Y., Kang, F., Fang, J., Huang, G.M., Yang, Q.S., 2024. Spatial variation of organic carbon storage and aggregate sizes in the sediment of the Zhangjiang mangrove ecosystem. CATENA234, 107545.
CrossRef
Google scholar
|
[76] |
Yang, L., Chi, Y.B., Lu, H., Sun, G.J., Lu, Y., Li, H.P., Luo, Y.J., 2024a. Effects of the comprehensive elimination of Spartina alterniflora along China's coast on blue carbon and scenario prediction after ecological restoration. Journal of Environmental Management369, 122283.
CrossRef
Google scholar
|
[77] |
Yang, P., Chen, G.P., Zhang, L.H., Tong, C., Yang, H., Zhu, W.Y., Sun, D.Y., Tan, L.S., Hong, Y., Tang, K.W., 2024b. Variable responses of mineral-bound soil organic carbon to land cover change in southern China’s coastal wetlands. CATENA242, 108129.
CrossRef
Google scholar
|
[78] |
Yang, P., Lai, D.Y.F., Huang, J.F., Tong, C., 2018. Effect of drainage on CO2, CH4, and N2O fluxes from aquaculture ponds during winter in a subtropical estuary of China. Journal of Environmental Sciences65, 72–82.
CrossRef
Google scholar
|
[79] |
Yang, P., Yang, H., Hong, Y., Lin, X., Zhang, L.H., Tong, C., Lai, D.Y.F., Tan, L.S., Lin, Y.X., Tian, Y.L., Tang, K.W., 2024b. Soil organic nitrogen mineralization and N2O production driven by changes in coastal wetlands. Global Biogeochemical Cycles38, e2024GB008154.
CrossRef
Google scholar
|
[80] |
Yang, P., Zhang, L.H., Lai, D.Y.F., Yang, H., Tan, L.S., Luo, L.J., Tong, C., Hong, Y., Zhu, W.Y., Tang, K.W., 2022. Landscape change affects soil organic carbon mineralization and greenhouse gas production in coastal wetlands. Global Biogeochemical Cycles36, e2022GB007469.
CrossRef
Google scholar
|
[81] |
Yu, P.J., Li, Y.X., Liu, S.W., Liu, J.L., Ding, Z., Ma, M.G., Tang, X.G., 2022. Afforestation influences soil organic carbon and its fractions associated with aggregates in a karst region of Southwest China. Science of the Total Environment814, 152710.
CrossRef
Google scholar
|
[82] |
Yu, P.J., Liu, J.L., Tang, H.Y., Ci, E., Tang, X.G., Liu, S.W., Ding, Z., Ma, M.G., 2023. The increased soil aggregate stability and aggregate-associated carbon by farmland use change in a karst region of Southwest China. CATENA231, 107284.
CrossRef
Google scholar
|
[83] |
Zhang, J., Zhang, F.H., Yang, L., 2024a. Continuous straw returning enhances the carbon sequestration potential of soil aggregates by altering the quality and stability of organic carbon. Journal of Environmental Management358, 120903.
CrossRef
Google scholar
|
[84] |
Zhang, S.W., Gong, W., Wan, X., Li, J.Y., Li, Z.G., Chen, P., Xing, S.L., Li, Z.Y., Liu, Y., 2024b. Influence of organic matter input and temperature change on soil aggregate-associated respiration and microbial carbon use efficiency in alpine agricultural soils. Soil Ecology Letters6, 230220.
CrossRef
Google scholar
|
[85] |
Zhang, Y.H., Ding, W.X., Luo, J.F., Donnison, A., 2010. Changes in soil organic carbon dynamics in an eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora. Soil Biology and Biochemistry42, 1712–1720.
CrossRef
Google scholar
|
[86] |
Zhao, F.Z., Fan, X.D., Ren, C.J., Zhang, L., Han, X.H., Yang, G.H., Wang, J., Doughty, R., 2018. Changes of the organic carbon content and stability of soil aggregates affected by soil bacterial community after afforestation. CATENA171, 622–631.
CrossRef
Google scholar
|
[87] |
Zheng, H., Ni, S., Tan, X.M., Wang, C.L., 2022. In situ purification experiment of a mangrove–aquaculture coupling system: a case study of a crab pond in Wanning, Hainan Province. Journal of the World Aquaculture Society53, 1169–1182.
CrossRef
Google scholar
|
[88] |
Zhong, Z.K., Han, X.H., Xu, Y.D., Zhang, W., Fu, S.Y., Liu, W.C., Ren, C.J., Yang, G.H., Ren, G.X., 2019. Effects of land use change on organic carbon dynamics associated with soil aggregate fractions on the Loess Plateau, China. Land Degradation & Development30, 1070–1082.
|
[89] |
Zhu, M.K., Kong, F.L., Li, Y., Xian, X.X., Xi, M., 2019. Indoor simulated experiment on soil water-stable aggregates in Phragmites australis saltmarsh in Jiaozhou under different soil moistures and salinities. Wetland Science17, 228–236.
|
/
〈 |
|
〉 |