Impact of Spartina alterniflora invasion and aquaculture reclamation on soil aggregate stability and carbon sequestration in Chinese coastal wetlands

Yanxun Xu , Wenjing Liu , Yule Lin , Hong Yang , Ping Yang , Guanpeng Chen , Dongyao Sun , Chuan Tong , Linhai Zhang , Wanyi Zhu , Kam W. Tang

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250305

PDF (3310KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (3) : 250305 DOI: 10.1007/s42832-025-0305-3
RESEARCH ARTICLE

Impact of Spartina alterniflora invasion and aquaculture reclamation on soil aggregate stability and carbon sequestration in Chinese coastal wetlands

Author information +
History +
PDF (3310KB)

Abstract

Soil aggregates are essential to the long-term sequestration of soil organic carbon (SOC) in coastal wetlands. Coastal wetlands in China have undergone profound transformation by the invasion of Spartina alterniflora and subsequent aquaculture reclamation, but the effects on soil aggregates remain unclear. This study examined the distribution of soil aggregate size, stability and organic carbon content across 21 coastal wetlands in China that had undergone a similar transformation, from native mudflats (MFs) to S. alterniflora marshes (SAs), and subsequent conversion to aquaculture ponds (APs). The results showed that silt+clay was the dominant fraction of soil aggregates (78.7%–83.1%), followed by micro-aggregates (12.8%–13.9%) and macroaggregates (4.1%–6.6%). Transition from MFs to SAs led to an increase in macroaggregate and microaggregate contents and the aggregate stability index (MWD, MGD and DR0.25), but a reduction in silt+clay content. Subsequent conversion of SAs to APs led to a reduction in macroaggregate content and aggregate stability index, and an increase in silt+clay and microaggregate contents. Change from MFs to SAs increased SOC by 69.6% in the silt+clay fraction, 29.4% in the microaggregate fraction, and 22.4% in the macroaggregate fraction. Conversely, converting SAs to APs decreased SOC content by 11.4% in the silt+clay fraction and 16.3% in the macroaggregate fractions, but an 8.5% increase in the microaggregate fraction. The results underscore the crucial role of soil aggregate formation in sequestration and storage of SOC under varying land cover change scenarios.

Graphical abstract

Keywords

soil aggregates / physical protection / soil organic carbon / coastal wetland / land cover change

Highlight

● Silt+clay was the dominant soil aggregate fraction in coastal wetlands.

● The invasion of mudflats by Spartina increased macroaggregate fraction and associated carbon.

● Aquaculture reclamation reduced aggregate size and stability.

● Macro- and micro-aggregates were important for soil carbon storage.

Cite this article

Download citation ▾
Yanxun Xu, Wenjing Liu, Yule Lin, Hong Yang, Ping Yang, Guanpeng Chen, Dongyao Sun, Chuan Tong, Linhai Zhang, Wanyi Zhu, Kam W. Tang. Impact of Spartina alterniflora invasion and aquaculture reclamation on soil aggregate stability and carbon sequestration in Chinese coastal wetlands. Soil Ecology Letters, 2025, 7(3): 250305 DOI:10.1007/s42832-025-0305-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abiven, S., Menasseri, S., Chenu, C., 2009. The effects of organic inputs over time on soil aggregate stability-A literature analysis. Soil Biology and Biochemistry41, 1–12.

[2]

Andreetta, A., Huertas, A.D., Lotti, M., Cerise, S., 2016. Land use changes affecting soil organic carbon storage along a mangrove swamp rice chronosequence in the Cacheu and Oio regions (northern Guinea-Bissau). Agriculture, Ecosystems & Environment216, 314–321.

[3]

Andruschkewitsch, R., Koch, H.J., Ludwig, B., 2014. Effect of long-term tillage treatments on the temporal dynamics of water-stable aggregates and on macro-aggregate turnover at three German sites. Geoderma 217–218, 217–218.

[4]

Avnimelech, Y., Ritvo, G., 2003. Shrimp and fish pond soils: processes and management. Aquaculture220, 549–567.

[5]

Babur, E., Kara, O., Fathi, R.A., Susam, Y.E., Riaz, M., Arif, M., Akhtar, K., 2021. Wattle fencing improved soil aggregate stability, organic carbon stocks and biochemical quality by restoring highly eroded mountain region soil. Journal of Environmental Management288, 112489.

[6]

Bai, Y.X., Zhou, Y.C., He, H.Z., 2020. Effects of rehabilitation through afforestation on soil aggregate stability and aggregate-associated carbon after forest fires in subtropical China. Geoderma376, 114548.

[7]

Bauer, J.E., Cai, W.J., Raymond, P.A., Bianchi, T.S., Hopkinson, C.S., Regnier, P.A.G., 2013. The changing carbon cycle of the coastal ocean. Nature504, 61–70.

[8]

Bedini, S., Pellegrino, E., Avio, L., Pellegrini, S., Bazzoffi, P., Argese, E., Giovannetti, M., 2009. Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biology and Biochemistry41, 1491–1496.

[9]

Bossuyt, H., Six, J., Hendrix, P.F., 2005. Protection of soil carbon by microaggregates within earthworm casts. Soil Biology and Biochemistry37, 251–258.

[10]

Cheng, Z.B., Wang, J.Y., Gale, W.J., Yang, H.C., Zhang, F.H., 2020. Soil aggregation and aggregate-associated organic carbon under typical natural halophyte communities in arid saline areas of Northwest China. Pedosphere30, 236–243.

[11]

Davidson, N.C., Fluet-Chouinard, E., Finlayson, C.M., 2018. Global extent and distribution of wetlands: trends and issues. Marine and Freshwater Research69, 620–627.

[12]

Debasish-Saha, Kukal, S.S., Bawa, S.S., 2014. Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded Shiwaliks hills of lower Himalayas. Land Degradation & Development25, 407–416.

[13]

Deng, L., Kim, D.G., Peng, C.H., Shangguan, Z.P., 2018. Controls of soil and aggregate-associated organic carbon variations following natural vegetation restoration on the Loess Plateau in China. Land Degradation & Development29, 3974–3984.

[14]

Dheri, G.S., Lal, R., Moonilall, N.I., 2022. Soil carbon stocks and water stable aggregates under annual and perennial biofuel crops in Central Ohio. Agriculture, Ecosystems & Environment324, 107715.

[15]

Duan, Y.Q., Li, X., Zhang, L.P., Chen, D., Liu, S.A., Ji, H.Y., 2020. Mapping national-scale aquaculture ponds based on the Google Earth Engine in the Chinese coastal zone. Aquaculture520, 734666.

[16]

Duarte, C.M., Losada, I.J., Hendriks, I.E., Mazarrasa, I., Marbà, N., 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change3, 961–968.

[17]

Duchicela, J., Vogelsang, K.M., Schultz, P.A., Kaonongbua, W., Middleton, E.L., Bever, J.D., 2012. Non-native plants and soil microbes: potential contributors to the consistent reduction in soil aggregate stability caused by the disturbance of North American grasslands. New Phytologist196, 212–222.

[18]

Eid, E.M., Arshad, M., Shaltout, K.H., El-Sheikh, M.A., Alfarhan, A.H., Picó, Y., Barcelo, D., 2019. Effect of the conversion of mangroves into shrimp farms on carbon stock in the sediment along the southern Red Sea coast, Saudi Arabia. Environmental Research176, 108536.

[19]

Fluet-Chouinard, E., Stocker, B.D., Zhang, Z., Malhotra, A., Melton, J.R., Poulter, B., Kaplan, J.O., Goldewijk, K.K., Siebert, S., Minayeva, T., Hugelius, G., Joosten, H., Barthelmes, A., Prigent, C., Aires, F., Hoyt, A.M., Davidson, N., Finlayson, C.M., Lehner, B., Jackson, R.B., McIntyre, P.B., 2023. Extensive global wetland loss over the past three centuries. Nature614, 281–286.

[20]

Fluet-Chouinard, E., Stocker, B.D., Zhang, Z., Malhotra, A., Melton, J.R., Poulter, B., Kaplan, J.O., Goldewijk, K.K., Siebert, S., Minayeva, T., Hugelius, G., Joosten, H., Barthelmes, A., Prigent, C., Aires, F., Hoyt, A.M., Davidson, N., Finlayson, C.M., Lehner, B., Jackson, R.B., McIntyre, P.B., 2023. Extensive global wetland loss over the past three centuries. Nature 614, 281–286.

[21]

Friedlingstein, P., Jones, M.W., O’Sullivan, M., Andrew, R.M., Hauck, J., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D.C.E., Canadell, J.G., Ciais, P., Jackson, R.B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L.P., Currie, K.I., Feely, R.A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D.S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R.A., Hurtt, G., Ilyina, T., Jain, A.K., Joetzjer, E., Kaplan, J.O., Kato, E., Klein Goldewijk, K., Korsbakken, J.I., Landschützer, P., Lauvset, S.K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., Mcguire, P.C., Melton, J.R., Metzl, N., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S.I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H.Q., Tilbrook, B., Tubiello, F.N., Van Der Werf, G.R., Wiltshire, A.J., Zaehle, S., 2019. Global carbon budget 2019. Earth System Science Data11, 1783–1838.

[22]

Garcia-Franco, N., Martínez-Mena, M., Goberna, M., Albaladejo, J., 2015. Changes in soil aggregation and microbial community structure control carbon sequestration after afforestation of semiarid shrublands. Soil Biology and Biochemistry87, 110–121.

[23]

Gu, J.L., Wu, J.P., 2023. Blue carbon effects of mangrove restoration in subtropics where Spartina alterniflora invaded. Ecological Engineering186, 106822.

[24]

Haynes, R.J., 1993. Effect of sample pretreatment on aggregate stability measured by wet sieving or turbidimetry on soils of different cropping history. Journal of Soil Science44, 261–270.

[25]

He, Y.H., Zhou, X.H., Cheng, W.S., Zhou, L.Y., Zhang, G.D., Zhou, G.Y., Liu, R.Q., Shao, J.J., Zhu, K., Cheng, W.X., 2019. Linking improvement of soil structure to soil carbon storage following invasion by a C4 plant Spartina alterniflora. Ecosystems22, 859–872.

[26]

Hennings, N., Becker, J.N., Guillaume, T., Damris, M., Dippold, M.A., Kuzyakov, Y., 2021. Riparian wetland properties counter the effect of land-use change on soil carbon stocks after rainforest conversion to plantations. CATENA196, 104941.

[27]

Hong, Y., Zhang, L.H., Yang, P., Tong, C., Lin, Y.X., Lai, D.Y.F., Yang, H., Tian, Y.L., Zhu, W.Y., Tang, K.W., 2023. Responses of coastal sediment organic and inorganic carbon to habitat modification across a wide latitudinal range in southeastern China. CATENA225, 107034.

[28]

Hu, Y.K., Tian, B., Yuan, L., Li, X.Z., Huang, Y., Shi, R.H., Jiang, X.Y., Wang, L.H., Sun, C., 2021. Mapping coastal salt marshes in China using time series of Sentinel-1 SAR. ISPRS Journal of Photogrammetry and Remote Sensing173, 122–134.

[29]

Jain, A., Ramakrishnan, R., Thomaskutty, A.V., Agrawal, R., Rajawat, A.S., Solanki, H., 2022. Topography and morphodynamic study of intertidal mudflats along the eastern coast of the Gulf of Khambhat, India using remote sensing techniques. Remote Sensing Applications: Society and Environment27, 100798.

[30]

Jastrow, J.D., 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biology and Biochemistry28, 665–676.

[31]

Jastrow, J.D., Miller, R.M., Lussenhop, J., 1998. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biology and Biochemistry30, 905–916.

[32]

Kayranli, B., Scholz, M., Mustafa, A., Hedmark, Å., 2010. Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands30, 111–124.

[33]

Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Klute, A., ed. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5.1. 2nd ed. Madison: American Society of Agronomy, 837–871.

[34]

Lal, R., 2008. Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences363, 815–830.

[35]

Lan, J.C., Long, Q.X., Huang, M.Z., Jiang, Y.X., Hu, N., 2022. Afforestation-induced large macroaggregate formation promotes soil organic carbon accumulation in degraded karst area. Forest Ecology and Management505, 119884.

[36]

Leifeld, J., Wüst-Galley, C., Page, S., 2019. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nature Climate Change9, 945–947.

[37]

Li, H.Y., Mao, D.H., Wang, Z.M., Huang, X., Li, L., Jia, M.M., 2022. Invasion of Spartina alterniflora in the coastal zone of mainland China: control achievements from 2015 to 2020 towards the Sustainable Development Goals. Journal of Environmental Management323, 116242.

[38]

Li, J.G., Wang, S.L., Tang, Y.Q., Du, Y.Q., Xu, L., Hu, J., Zhu, C.M., 2024a. Coastal reclamation alters soil organic carbon dynamics: a meta-analysis in China. CATENA240, 107975.

[39]

Li, L.X., Xu, H.B., Zhang, Q., Zhan, Z.S., Liang, X.W., Xing, J., 2024b. Estimation methods of wetland carbon sink and factors influencing wetland carbon cycle: a review. Carbon Research3, 50.

[40]

Li, N., Nie, M., Li, B., Wu, J.H., Zhao, J.Y., 2021. Contrasting effects of the aboveground litter of native Phragmites australis and invasive Spartina alterniflora on nitrification and denitrification. Science of the Total Environment764, 144283.

[41]

Li, Y.L., Lv, B.W., Chen, Z.D., Xue, J.M., Wu, L., He, X.M., Yang, L., 2024c. PFOA and PFOS induces mineralization of soil organic carbon by accelerating the consumption of dissolved organic carbon. Carbon Research3, 16.

[42]

Liao, C.Z., Luo, Y.Q., Jiang, L.F., Zhou, X.H., Wu, X.W., Fang, C.M., Chen, J.K., Li, B., 2007. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems10, 1351–1361.

[43]

Lin, X., Yang, Y.L., Yang, P., Hong, Y., Zhang, L.H., Tong, C., Lai, D.Y.F., Lin, Y.X., Tan, L.S., Tian, Y.L., Tang, K.W., 2023. Soil organic nitrogen content and composition in different wetland habitat types along the south-east coast of China. CATENA232, 107457.

[44]

Liu, C., Wu, Z.N., He, C.H., Huang, B., Zhang, Y.H., Li, P., Huang, W.J., 2024a. Effect of land use conversion on the soil aggregate-associated microbial necromass carbon in estuarine wetland of the Pearl River in China. CATENA236, 107761.

[45]

Liu, M.Y., Mao, D.H., Wang, Z.M., Li, L., Man, W.D., Jia, M.M., Ren, C.Y., Zhang, Y.Z., 2018. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: new observations from landsat OLI images. Remote Sensing10, 1933.

[46]

Liu, S.W., Wang, R.T., Yang, Y., Shi, W.Y., Jiang, K., Jia, L.Y., Zhang, F., Liu, X., Ma, L., Li, C., Yu, P.J., 2024b. Changes in soil aggregate stability and aggregate-associated carbon under different slope positions in a karst region of Southwest China. Science of the Total Environment928, 172534.

[47]

Liu, X.Y., Wang, W.Q., Peñuelas, J., Sardans, J., Chen, X.X., Fang, Y.Y., Alrefaei, A.F., Zeng, F.J., Tariq, A., 2022. Effects of nitrogen-enriched biochar on subtropical paddy soil organic carbon pool dynamics. Science of the Total Environment851, 158322.

[48]

Lu, M.Z., Yang, M.Y., Yang, Y.R., Wang, D.L., Sheng, L.X., 2019. Soil carbon and nutrient sequestration linking to soil aggregate in a temperate fen in Northeast China. Ecological Indicators98, 869–878.

[49]

Lu, T., Xu, N.H., Lei, C.T., Zhang, Q., Zhang, Z.Y., Sun, L.W., He, F., Zhou, N.Y., Peñuelas, J., Zhu, Y.G., Qian, H.F., 2023. Bacterial biogeography in China and its association to land use and soil organic carbon. Soil Ecology Letters5, 230172.

[50]

Ma, Z.W., Bai, J.H., Xiao, R., Wang, C., Cui, Y., Wu, J., Xu, J., Zhang, Z.M., Zhang, M.X., 2021. Incorporating soil aggregate-associated indicators into evaluating ecological responses of degraded estuarine wetlands to freshwater replenishment at different intensity: a case study from the Yellow River Delta, China. Ecological Indicators121, 107039.

[51]

Mao, D.H., Liu, M.Y., Wang, Z.M., Li, L., Man, W.D., Jia, M.M., Zhang, Y.Z., 2019. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: spatiotemporal patterns and human prevention. Sensors19, 2308.

[52]

Mcleod, E., Chmura, G.L., Bouillon, S., Salm, R., Björk, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.S., Silliman, B.R., 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment9, 552–560.

[53]

Morel, J.L., Habib, L., Plantureux, S., Guckert, A., 1991. Influence of maize root mucilage on soil aggregate stability. Plant and Soil136, 111–119.

[54]

Nahlik, A.M., Fennessy, M.S., 2016. Carbon storage in US wetlands. Nature Communications7, 13835.

[55]

Okolo, C.C., Gebresamuel, G., Zenebe, A., Haile, M., Eze, P.N., 2020. Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semi-arid environment. Agriculture, Ecosystems & Environment297, 106924.

[56]

Paul, B.K., Vanlauwe, B., Ayuke, F., Gassner, A., Hoogmoed, M., Hurisso, T.T., Koala, S., Lelei, D., Ndabamenye, T., Six, J., Pulleman, M.M., 2013. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity. Agriculture, Ecosystems & Environment164, 14–22.

[57]

Pu, Y.L., Lang, S.X., Wang, A.B., Zhang, S.R., Li, T., Qian, H.Y., Wang, G., Jia, Y.X., Xu, X.X., Yuan, D.G., Li, Y., 2022. Distribution and functional groups of soil aggregate-associated organic carbon along a marsh degradation gradient on the Zoige Plateau, China. CATENA209, 105811.

[58]

Qi, X.Z., Chmura, G.L., 2023. Invasive Spartina alterniflora marshes in China: a blue carbon sink at the expense of other ecosystem services. Frontiers in Ecology and the Environment,21, 182–190.

[59]

Ren, G.B., Zhao, Y.J., Wang, J.B., Wu, P.Q., Ma, Y., 2021. Ecological effects analysis of Spartina alterniflora invasion within Yellow River delta using long time series remote sensing imagery. Estuarine, Coastal and Shelf Science 249, 107111.

[60]

Sasmito, S.D., Taillardat, P., Clendenning, J.N., Cameron, C., Friess, D.A., Murdiyarso, D., Hutley, L.B., 2019. Effect of land-use and land-cover change on mangrove blue carbon: a systematic review. Global Change Biology25, 4291–4302.

[61]

Shen, D.Y., Ye, C.L., Hu, Z.K., Chen, X.Y., Guo, H., Li, J.Y., Du, G.Z., Adl, S., Liu, M.Q., 2018. Increased chemical stability but decreased physical protection of soil organic carbon in response to nutrient amendment in a Tibetan alpine meadow. Soil Biology and Biochemistry126, 11–21.

[62]

Shen, R.C., Yang, H., Rinklebe, J., Bolan, N., Hu, Q.W., Huang, X.Y., Wen, X.T., Zheng, B.F., Shi, L., 2022. Seasonal flooding wetland expansion would strongly affect soil and sediment organic carbon storage and carbon-nutrient stoichiometry. Science of the Total Environment828, 154427.

[63]

Sithole, N.J., Magwaza, L.S., Thibaud, G.R., 2019. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil and Tillage Research190, 147–156.

[64]

Six, J., Bossuyt, H., Degryze, S., Denef, K., 2024. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research79, 7–31.

[65]

Six, J., Elliott, E.T., Paustian, K., 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry32, 2099–2103.

[66]

Su, Z.N., Qiu, G.L., Yang, P., Yang, H., Liu, W.J., Tan, L.S., Zhang, L.H., Sun, D.Y., Huang, J.F., Tang, K.W., 2025. Conversion of earthen aquaculture ponds to integrated mangrove-aquaculture systems significantly reduced the emissions of CH4 and N2O. Journal of Hydrology652, 132692.

[67]

Tan, L.S., Ge, Z.M., Li, S.H., Zhou, K., Lai, D.Y.F., Temmerman, S., Dai, Z.J., 2023. Impacts of land-use change on carbon dynamics in China's coastal wetlands. Science of the Total Environment890, 164206.

[68]

Utomo, H.S., Wenefrida, I., Materne, M.D., Linscombe, J.T., 2010. Polycross seed of genetically diverse Smooth Cordgrass (Spartina alterniflora) for erosion control and habitat restoration. Restoration Ecology18, 170–172.

[69]

Walia, M.K., Dick, W.A., 2018. Selected soil physical properties and aggregate-associated carbon and nitrogen as influenced by gypsum, crop residue, and glucose. Geoderma320, 67–73.

[70]

Wang, H., Guan, D.S., Zhang, R.D., Chen, Y.J., Hu, Y.T., Xiao, L., 2014. Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field. Ecological Engineering70, 206–211.

[71]

Wang, L.H., Liu, W.J., Zhou, X.Y., Fu, S.L., Yang, P., Tong, C., Yang, H., Sun, D.Y., Zhang, L.H., Zhu, W.Y., Tang, K.W., 2025. Effects of plant invasion and land use change on soil labile organic carbon in southern China’s coastal wetlands. Soil Ecology Letters7, 240275.

[72]

Wang, M., Mao, D.H., Xiao, X.M., Song, K.S., Jia, M.M., Ren, C.Y., Wang, Z.M., 2023. Interannual changes of coastal aquaculture ponds in China at 10-m spatial resolution during 2016–2021. Remote Sensing of Environment284, 113347.

[73]

Wang, W.Q., Sardans, J., Wang, C., Zeng, C.S., Tong, C., Chen, G.X., Huang, J.F., Pan, H.R., Peguero, G., Vallicrosa, H., Peñuelas, J., 2019. The response of stocks of C, N, and P to plant invasion in the coastal wetlands of China. Global Change Biology25, 733–743.

[74]

Xia, S.P., Wang, W.Q., Song, Z.L., Kuzyakov, Y., Guo, L.D., Van Zwieten, L., Li, Q., Hartley, I.P., Yang, Y.H., Wang, Y.D., Andrew Quine, T., Liu, C.Q., Wang, H.L., 2021. Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics. Global Change Biology27, 1627–1644.

[75]

Yan, R., Feng, J.X., Fu, T., Chen, Q.Q., Wang, Z.Y., Kang, F., Fang, J., Huang, G.M., Yang, Q.S., 2024. Spatial variation of organic carbon storage and aggregate sizes in the sediment of the Zhangjiang mangrove ecosystem. CATENA234, 107545.

[76]

Yang, L., Chi, Y.B., Lu, H., Sun, G.J., Lu, Y., Li, H.P., Luo, Y.J., 2024a. Effects of the comprehensive elimination of Spartina alterniflora along China's coast on blue carbon and scenario prediction after ecological restoration. Journal of Environmental Management369, 122283.

[77]

Yang, P., Chen, G.P., Zhang, L.H., Tong, C., Yang, H., Zhu, W.Y., Sun, D.Y., Tan, L.S., Hong, Y., Tang, K.W., 2024b. Variable responses of mineral-bound soil organic carbon to land cover change in southern China’s coastal wetlands. CATENA242, 108129.

[78]

Yang, P., Lai, D.Y.F., Huang, J.F., Tong, C., 2018. Effect of drainage on CO2, CH4, and N2O fluxes from aquaculture ponds during winter in a subtropical estuary of China. Journal of Environmental Sciences65, 72–82.

[79]

Yang, P., Yang, H., Hong, Y., Lin, X., Zhang, L.H., Tong, C., Lai, D.Y.F., Tan, L.S., Lin, Y.X., Tian, Y.L., Tang, K.W., 2024b. Soil organic nitrogen mineralization and N2O production driven by changes in coastal wetlands. Global Biogeochemical Cycles38, e2024GB008154.

[80]

Yang, P., Zhang, L.H., Lai, D.Y.F., Yang, H., Tan, L.S., Luo, L.J., Tong, C., Hong, Y., Zhu, W.Y., Tang, K.W., 2022. Landscape change affects soil organic carbon mineralization and greenhouse gas production in coastal wetlands. Global Biogeochemical Cycles36, e2022GB007469.

[81]

Yu, P.J., Li, Y.X., Liu, S.W., Liu, J.L., Ding, Z., Ma, M.G., Tang, X.G., 2022. Afforestation influences soil organic carbon and its fractions associated with aggregates in a karst region of Southwest China. Science of the Total Environment814, 152710.

[82]

Yu, P.J., Liu, J.L., Tang, H.Y., Ci, E., Tang, X.G., Liu, S.W., Ding, Z., Ma, M.G., 2023. The increased soil aggregate stability and aggregate-associated carbon by farmland use change in a karst region of Southwest China. CATENA231, 107284.

[83]

Zhang, J., Zhang, F.H., Yang, L., 2024a. Continuous straw returning enhances the carbon sequestration potential of soil aggregates by altering the quality and stability of organic carbon. Journal of Environmental Management358, 120903.

[84]

Zhang, S.W., Gong, W., Wan, X., Li, J.Y., Li, Z.G., Chen, P., Xing, S.L., Li, Z.Y., Liu, Y., 2024b. Influence of organic matter input and temperature change on soil aggregate-associated respiration and microbial carbon use efficiency in alpine agricultural soils. Soil Ecology Letters6, 230220.

[85]

Zhang, Y.H., Ding, W.X., Luo, J.F., Donnison, A., 2010. Changes in soil organic carbon dynamics in an eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora. Soil Biology and Biochemistry42, 1712–1720.

[86]

Zhao, F.Z., Fan, X.D., Ren, C.J., Zhang, L., Han, X.H., Yang, G.H., Wang, J., Doughty, R., 2018. Changes of the organic carbon content and stability of soil aggregates affected by soil bacterial community after afforestation. CATENA171, 622–631.

[87]

Zheng, H., Ni, S., Tan, X.M., Wang, C.L., 2022. In situ purification experiment of a mangrove–aquaculture coupling system: a case study of a crab pond in Wanning, Hainan Province. Journal of the World Aquaculture Society53, 1169–1182.

[88]

Zhong, Z.K., Han, X.H., Xu, Y.D., Zhang, W., Fu, S.Y., Liu, W.C., Ren, C.J., Yang, G.H., Ren, G.X., 2019. Effects of land use change on organic carbon dynamics associated with soil aggregate fractions on the Loess Plateau, China. Land Degradation & Development30, 1070–1082.

[89]

Zhu, M.K., Kong, F.L., Li, Y., Xian, X.X., Xi, M., 2019. Indoor simulated experiment on soil water-stable aggregates in Phragmites australis saltmarsh in Jiaozhou under different soil moistures and salinities. Wetland Science17, 228–236.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3310KB)

Supplementary files

SEL-00305-OF-PY_suppl_1

475

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/