Land-use types impact soil ecosystem functions by altering the soil multitrophic biodiversity and interactions

Tian-Lun Zhang , Shao-Yang Zhang , Lu Wang , Da Lin , Bang Ni , Tian-Gui Cai , Shuai Du , Dong Zhu

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (2) : 250301

PDF (3244KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (2) : 250301 DOI: 10.1007/s42832-025-0301-7
RESEARCH ARTICLE

Land-use types impact soil ecosystem functions by altering the soil multitrophic biodiversity and interactions

Author information +
History +
PDF (3244KB)

Abstract

Although the contribution of biodiversity to supporting ecosystem functions is well established in soil ecosystems, previous studies have often overlooked the importance of potential multitrophic interactions in supporting ecosystem functions. This study analyzed the effects of land uses on potential multitrophic interactions and their impacts on soil ecosystem functions, using soil environmental DNA samples from five land-use types. Results showed that land use can influence soil ecosystem functions by altering the soil multitrophic biodiversity and interactions. Keystone species are crucial in shaping the soil microbial composition, mediating network interactions, and supporting the ecosystem function. This study promotes the understanding of the mechanisms behind changes in biodiversity and ecosystem services resulting from land-use changes and is beneficial to making informed trade-offs in urban planning.

Graphical abstract

Keywords

soil biodiversity / ecosystem functions / multitrophic interactions / land uses / environmental DNA / keystone species

Highlight

● Soil biodiversity and ecosystem functions were examined using eDNA technologies.

● Multitrophic guilds display distinct community structures in five land-use types.

● Keystone species shape microbial composition and support ecosystem functions.

● Land-use types affect ecosystem functions by altering multitrophic interactions.

Cite this article

Download citation ▾
Tian-Lun Zhang, Shao-Yang Zhang, Lu Wang, Da Lin, Bang Ni, Tian-Gui Cai, Shuai Du, Dong Zhu. Land-use types impact soil ecosystem functions by altering the soil multitrophic biodiversity and interactions. Soil Ecology Letters, 2025, 7(2): 250301 DOI:10.1007/s42832-025-0301-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bahram, M., Hildebrand, F., Forslund, S.K., Anderson, J.L., Soudzilovskaia, N.A., Bodegom, P.M., Bengtsson-Palme, J., Anslan, S., Coelho, L.P., Harend, H., Huerta-Cepas, J., Medema, M.H., Maltz, M.R., Mundra, S., Olsson, P.A., Pent, M., Põlme, S., Sunagawa, S., Ryberg, M., Tedersoo, L., Bork, P., 2018. Structure and function of the global topsoil microbiome. Nature560, 233–237.

[2]

Bainard, L.D., Hamel, C., Gan, Y.T., 2016. Edaphic properties override the influence of crops on the composition of the soil bacterial community in a semiarid agroecosystem. Applied Soil Ecology105, 160–168.

[3]

Banerjee, S., Schlaeppi, K., van der Heijden, M.G.A., 2018. Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology16, 567–576.

[4]

Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A.Y., Gattinger, A., Keller, T., Charles, R., van der Heijden, M.G.A., 2019. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. The ISME Journal13, 1722–1736.

[5]

Bardgett, R.D., Caruso, T., 2020. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philosophical Transactions of the Royal Society B: Biological Sciences375, 20190112.

[6]

Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight, R., Huttley, G.A., Gregory Caporaso, J., 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2′s q2-feature-classifier plugin. Microbiome6, 90.

[7]

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J.R., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L.J., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson II, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., Van Der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y.H., Wang, M.X., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y.L., Zhu, Q.Y., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology37, 852–857.

[8]

Charlop-Powers, Z., Pregitzer, C.C., Lemetre, C., Ternei, M.A., Maniko, J., Hover, B.M., Calle, P.Y., McGuire, K.L., Garbarino, J., Forgione, H.M., Charlop-Powers, S., Brady, S.F., 2016. Urban park soil microbiomes are a rich reservoir of natural product biosynthetic diversity. Proceedings of the National Academy of Sciences of the United States of America113, 14811–14816.

[9]

Chen, C., Li, S.L., Chen, Q.L., Delgado-Baquerizo, M., Guo, Z.F., Wang, F.H., Xu, Y.Y., Zhu, Y.G., 2024. Fertilization regulates global thresholds in soil bacteria. Global Change Biology30, e17466.

[10]

Chen, W.Q., Wang, J.Y., Chen, X., Meng, Z.X., Xu, R., Duoji, D.Z., Zhang, J.H., He, J., Wang, Z.G., Chen, J., Liu, K.X., Hu, T.M., Zhang, Y.J., 2022. Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau. Soil Biology and Biochemistry172, 108766.

[11]

Cornell, C.R., Zhang, Y., Ning, D.L., Xiao, N.J., Wagle, P., Xiao, X.M., Zhou, J.Z., 2023. Land use conversion increases network complexity and stability of soil microbial communities in a temperate grassland. The ISME Journal17, 2210–2220.

[12]

de Vries, F.T., Griffiths, R.I., Bailey, M., Craig, H., Girlanda, M., Gweon, H.S., Hallin, S., Kaisermann, A., Keith, A.M., Kretzschmar, M., Lemanceau, P., Lumini, E., Mason, K.E., Oliver, A., Ostle, N., Prosser, J.I., Thion, C., Thomson, B., Bardgett, R.D., 2018. Soil bacterial networks are less stable under drought than fungal networks. Nature Communications9, 3033.

[13]

Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., Singh, B.K., 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications7, 10541.

[14]

Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro, F.D., Bastida, F., Berhe, A.A., Cutler, N.A., Gallardo, A., García-Velázquez, L., Hart, S.C., Hayes, P.E., He, J.Z., Hseu, Z.Y., Hu, H.W., Kirchmair, M., Neuhauser, S., Pérez, C.A., Reed, S.C., Santos, F., Sullivan, B.W., Trivedi, P., Wang, J.T., Weber-Grullon, L., Williams, M.A., Singh, B.K., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution4, 210–220.

[15]

Fan, K.K., Chu, H.Y., Eldridge, D.J., Gaitan, J.J., Liu, Y.R., Sokoya, B., Wang, J.T., Hu, H.W., He, J.Z., Sun, W., Cui, H.Y., Alfaro, F.D., Abades, S., Bastida, F., Díaz-López, M., Bamigboye, A.R., Berdugo, M., Blanco-Pastor, J.L., Grebenc, T., Duran, J., Illán, J.G., Makhalanyane, T.P., Mukherjee, A., Nahberger, T.U., Peñaloza-Bojacá, G.F., Plaza, C., Verma, J.P., Rey, A., Rodríguez, A., Siebe, C., Teixido, A.L., Trivedi, P., Wang, L., Wang, J.Y., Yang, T.X., Zhou, X.Q., Zhou, X.B., Zaady, E., Tedersoo, L., Delgado-Baquerizo, M., 2023. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nature Ecology & Evolution7, 113–126.

[16]

Fanin, N., Gundale, M.J., Farrell, M., Ciobanu, M., Baldock, J.A., Nilsson, M.C., Kardol, P., Wardle, D.A., 2018. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nature Ecology & Evolution2, 269–278.

[17]

Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nature Reviews Microbiology10, 538–550.

[18]

Garland, G., Banerjee, S., Edlinger, A., Miranda Oliveira, E., Herzog, C., Wittwer, R., Philippot, L., Maestre, F.T., van der Heijden, M.G.A., 2021. A closer look at the functions behind ecosystem multifunctionality: a review. Journal of Ecology109, 600–613.

[19]

Gong, S., Feng, B., Jian, S.P., Wang, G.S., Ge, Z.W., Yang, Z.L., 2022. Elevation matters more than season in shaping the heterogeneity of soil and root associated ectomycorrhizal fungal community. Microbiology Spectrum10, e0195021.

[20]

Gong, X., Sun, X., Thakur, M.P., Qiao, Z.H., Yao, H.F., Liu, M.Q., Scheu, S., Zhu, Y.G., 2023. Climate and edaphic factors drive soil nematode diversity and community composition in urban ecosystems. Soil Biology and Biochemistry180, 109010.

[21]

Grace, J.B., 2006. Structural Equation Modeling and Natural Systems. Cambridge: Cambridge University Press.

[22]

Guimerà, R., Nunes Amaral, L.A., 2005. Functional cartography of complex metabolic networks. Nature433, 895–900.

[23]

Guseva, K., Darcy, S., Simon, E., Alteio, L.V., Montesinos-Navarro, A., Kaiser, C., 2022. From diversity to complexity: Microbial networks in soils. Soil Biology and Biochemistry169, 108604.

[24]

Han, Z.Q., Xu, P.S., Li, Z.T., Lin, H.Y., Zhu, C., Wang, J.Y., Zou, J.W., 2022. Microbial diversity and the abundance of keystone species drive the response of soil multifunctionality to organic substitution and biochar amendment in a tea plantation. Global Change Biology Bioenergy14, 481–495.

[25]

Hu, M.J., Sardans, J., Sun, D.Y., Yan, R.B., Wu, H., Ni, R.X., Peñuelas, J., 2024. Microbial diversity and keystone species drive soil nutrient cycling and multifunctionality following mangrove restoration. Environmental Research251, 118715.

[26]

Hu, W.Q., Ran, J.Z., Dong, L.W., Du, Q.J., Ji, M.F., Yao, S.R., Sun, Y., Gong, C.M., Hou, Q.Q., Gong, H.Y., Chen, R.F., Lu, J.L., Xie, S.B., Wang, Z.Q., Huang, H., Li, X.W., Xiong, J.L., Xia, R., Wei, M.H., Zhao, D.M., Zhang, Y.H., Li, J.H., Yang, H.X., Wang, X.T., Deng, Y., Sun, Y., Li, H.L., Zhang, L., Chu, Q.P., Li, X.W., Aqeel, M., Manan, A., Akram, M.A., Liu, X.H., Li, R., Li, F., Hou, C., Liu, J.Q., He, J.S., An, L.Z., Bardgett, R.D., Schmid, B., Deng, J.M., 2021. Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nature Communications12, 5350.

[27]

Hua, F.Y., Wang, W.Y., Nakagawa, S., Liu, S.Q., Miao, X.R., Yu, L., Du, Z.R., Abrahamczyk, S., Arias-Sosa, L.A., Buda, K., Budka, M., Carrière, S.M., Chandler, R.B., Chiatante, G., Chiawo, D.O., Cresswell, W., Echeverri, A., Goodale, E., Huang, G.L., Hulme, M.F., Hutto, R.L., Imboma, T.S., Jarrett, C., Jiang, Z.G., Kati, V.I., King, D.I., Kmecl, P., Li, N., Lövei, G.L., Macchi, L., MacGregor-Fors, I., Martin, E.A., Mira, A., Morelli, F., Ortega-Álvarez, R., Quan, R.C., Salgueiro, P.A., Santos, S.M., Shahabuddin, G., Socolar, J.B., Soh, M.C.K., Sreekar, R., Srinivasan, U., Wilcove, D.S., Yamaura, Y., Zhou, L.P., Elsen, P.R., 2024. Ecological filtering shapes the impacts of agricultural deforestation on biodiversity. Nature Ecology & Evolution8, 251–266.

[28]

Huang, X.R., Neilson, R., Yang, L.Y., Deng, J.J., Zhou, S.Y.D., Li, H., Zhu, Y.G., Yang, X.R., 2023. Urban greenspace types influence the microbial community assembly and antibiotic resistome more in the phyllosphere than in the soil. Chemosphere338, 139533.

[29]

Jiao, S., Peng, Z.H., Qi, J.J., Gao, J.M., Wei, G.H., 2021. Linking bacterial-fungal relationships to microbial diversity and soil nutrient cycling. Msystems6, e01052–20.

[30]

Lacerda-Júnior, G.V., Noronha, M.F., Cabral, L., Delforno, T.P., de Sousa, S.T.P., Fernandes-Junior, P.I., Melo, T.S., Oliveira, V.M., 2019. Land use and seasonal effects on the soil microbiome of a Brazilian dry forest. Frontiers in Microbiology10, 648.

[31]

Lai, J.S., Zou, Y., Zhang, J.L., Peres-Neto, P.R., 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp R package. Methods in Ecology and Evolution13, 782–788.

[32]

Langfelder, P., Horvath, S., 2012. Fast R functions for robust correlations and hierarchical clustering. Journal of Statistical Software46, 1–17.

[33]

Li, F.L., Altermatt, F., Yang, J.H., An, S.Q., Li, A.M., Zhang, X.W., 2020. Human activities' fingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. Global Change Biology26, 6867–6879.

[34]

Li, J., Delgado-Baquerizo, M., Wang, J.T., Hu, H.W., Cai, Z.J., Zhu, Y.N., Singh, B.K., 2019. Fungal richness contributes to multifunctionality in boreal forest soil. Soil Biology and Biochemistry136, 107526.

[35]

Li, Z.P., Shangguan, H.Y., Yao, H.F., Yang, X.R., Mazei, Y., Zhu, B., Scheu, S., Sun, X., 2024. Colonization ability and uniformity of resources and environmental factors determine biological homogenization of soil protists in human land-use systems. Global Change Biology30, e17411.

[36]

Liu, X., Chu, H.Y., Godoy, O., Fan, K.K., Gao, G.F., Yang, T., Ma, Y.Y., Delgado-Baquerizo, M., 2024. Positive associations fuel soil biodiversity and ecological networks worldwide. Proceedings of the National Academy of Sciences of the United States of America121, e2308769121.

[37]

Liu, Y.R., Delgado-Baquerizo, M., Wang, J.T., Hu, H.W., Yang, Z.M., He, J.Z., 2018. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biology and Biochemistry118, 35–41.

[38]

Luo, Y.H., Cadotte, M.W., Liu, J., Burgess, K.S., Tan, S.L., Ye, L.J., Zou, J.Y., Chen, Z.Z., Jiang, X.L., Li, J., Xu, K., Li, D.Z., Gao, L.M., 2022. Multitrophic diversity and biotic associations influence subalpine forest ecosystem multifunctionality. Ecology103, e3745.

[39]

Neilson, R., Caul, S., Fraser, F.C., King, D., Mitchell, S.M., Roberts, D.M., Giles, M.E., 2020. Microbial community size is a potential predictor of nematode functional group in limed grasslands. Applied Soil Ecology156, 103702.

[40]

Ni, B., Zhang, T.L., Cai, T.G., Xiang, Q., Zhu, D., 2024. Effects of heavy metal and disinfectant on antibiotic resistance genes and virulence factor genes in the plastisphere from diverse soil ecosystems. Journal of Hazardous Materials465, 133335.

[41]

Peng, Z.H., Qian, X., Liu, Y., Li, X.M., Gao, H., An, Y.N., Qi, J.J., Jiang, L., Zhang, Y.R., Chen, S., Pan, H.B., Chen, B.B., Liang, C.L., van der Heijden, M.G.A., Wei, G.H., Jiao, S., 2024. Land conversion to agriculture induces taxonomic homogenization of soil microbial communities globally. Nature Communications15, 3624.

[42]

Pfaffl, M.W., 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research29, e45.

[43]

Philippot, L., Chenu, C., Kappler, A., Rillig, M.C., Fierer, N., 2024. The interplay between microbial communities and soil properties. Nature Reviews Microbiology22, 226–239.

[44]

Schuldt, A., Assmann, T., Brezzi, M., Buscot, F., Eichenberg, D., Gutknecht, J., Härdtle, W., He, J.S., Klein, A.M., Kühn, P., Liu, X.J., Ma, K.P., Niklaus, P.A., Pietsch, K.A., Purahong, W., Scherer-Lorenzen, M., Schmid, B., Scholten, T., Staab, M., Tang, Z.Y., Trogisch, S., von Oheimb, G., Wirth, C., Wubet, T., Zhu, C.D., Bruelheide, H., 2018. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications9, 2989.

[45]

Shaw, E.A., Boot, C.M., Moore, J.C., Wall, D.H., Baron, J.S., 2019. Long-term nitrogen addition shifts the soil nematode community to bacterivore-dominated and reduces its ecological maturity in a subalpine forest. Soil Biology and Biochemistry130, 177–184.

[46]

Soliveres, S., van der Plas, F., Manning, P., Prati, D., Gossner, M.M., Renner, S.C., Alt, F., Arndt, H., Baumgartner, V., Binkenstein, J., Birkhofer, K., Blaser, S., Blüthgen, N., Boch, S., Böhm, S., Börschig, C., Buscot, F., Diekötter, T., Heinze, J., Hölzel, N., Jung, K., Klaus, V.H., Kleinebecker, T., Klemmer, S., Krauss, J., Lange, M., Morris, E.K., Müller, J., Oelmann, Y., Overmann, J., Pašalić, E., Rillig, M.C., Schaefer, H.M., Schloter, M., Schmitt, B., Schöning, I., Schrumpf, M., Sikorski, J., Socher, S.A., Solly, E.F., Sonnemann, I., Sorkau, E., Steckel, J., Steffan-Dewenter, I., Stempfhuber, B., Tschapka, M., Türke, M., Venter, P.C., Weiner, C.N., Weisser, W.W., Werner, M., Westphal, C., Wilcke, W., Wolters, V., Wubet, T., Wurst, S., Fischer, M., Allan, E., 2016. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature536, 456–459.

[47]

Song, D.G., Pan, K.W., Tariq, A., Sun, F., Li, Z.L., Sun, X.M., Zhang, L., Olusanya, O.A., Wu, X.G., 2017. Large-scale patterns of distribution and diversity of terrestrial nematodes. Applied Soil Ecology114, 161–169.

[48]

Sun, R.B., Chen, Y., Han, W.X., Dong, W.X., Zhang, Y.M., Hu, C.S., Liu, B.B., Wang, F.H., 2020. Different contribution of species sorting and exogenous species immigration from manure to soil fungal diversity and community assemblage under long-term fertilization. Soil Biology and Biochemistry151, 108049.

[49]

Telatin, A., 2021. Qiime Artifact eXtractor (qax): a fast and versatile tool to interact with qiime2 archives. Biotech (Basel)10, 5.

[50]

Trivedi, P., Delgado-Baquerizo, M., Anderson, I.C., Singh, B.K., 2016. Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Frontiers in Plant Science7, 990.

[51]

Tsiafouli, M.A., Thébault, E., Sgardelis, S.P., de Ruiter, P.C., van der Putten, W.H., Birkhofer, K., Hemerik, L., de Vries, F.T., Bardgett, R.D., Brady, M.V., Bjornlund, L., Jørgensen, H.B., Christensen, S., D'Hertefeldt, T., Hotes, S., Hol, W.H.G., Frouz, J., Liiri, M., Mortimer, S.R., Setälä, H., Tzanopoulos, J., Uteseny, K., Pižl, V., Stary, J., Wolters, V., Hedlund, K., 2015. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology21, 973–985.

[52]

Valencia, E., Gross, N., Quero, J.L., Carmona, C.P., Ochoa, V., Gozalo, B., Delgado-Baquerizo, M., Dumack, K., Hamonts, K., Singh, B.K., Bonkowski, M., Maestre, F.T., 2018. Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality. Global Change Biology24, 5642–5654.

[53]

Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E., van der Heijden, M.G.A., 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications10, 4841.

[54]

Wang, B., Zhang, S.C., Qiao, Z.H., Yan, Q.B., Scheu, S., Sun, X., 2023. Small urban fragments maintain complex food webs of litter-dwelling arthropods in a subtropical city in China. Soil Biology and Biochemistry185, 109150.

[55]

Wang, L., Zhang, T.L., Cai, T.G., Xiang, Q., Liu, X.H., Zhu, D., 2024a. The pH-specific response of soil resistome to triclocarban and arsenic co-contamination. Journal of Hazardous Materials464, 132952.

[56]

Wang, S.J., Zhao, S., Yang, B., Zhang, K.F., Fan, Y.X., Zhang, L.L., Yang, X.D., 2022. The carbon and nitrogen stoichiometry in litter-soil-microbe continuum rather than plant diversity primarily shapes the changes in bacterial communities along a tropical forest restoration chronosequence. CATENA213, 106202.

[57]

Wang, X.Y., Li, F.Y., Wang, Y.A., Liu, X.M., Cheng, J.W., Zhang, J.Z., Baoyin, T.G.T., Bardgett, R.D., 2020. High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi-arid steppe grassland. Plant and Soil448, 265–276.

[58]

Wang, Y.F., Xu, J.Y., Liu, Z.L., Cui, H.L., Chen, P., Cai, T.G., Li, G., Ding, L.J., Qiao, M., Zhu, Y.G., Zhu, D., 2024b. Biological interactions mediate soil functions by altering rare microbial communities. Environmental Science & Technology58, 5866–5877.

[59]

Xiao, X., Liang, Y.T., Zhou, S., Zhuang, S.Y., Sun, B., 2018. Fungal community reveals less dispersal limitation and potentially more connected network than that of bacteria in bamboo forest soils. Molecular Ecology27, 550–563.

[60]

Xun, W.B., Liu, Y.P., Li, W., Ren, Y., Xiong, W., Xu, Z.H., Zhang, N., Miao, Y.Z., Shen, Q.R., Zhang, R.F., 2021. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome9, 35.

[61]

Zabel, F., Delzeit, R., Schneider, J.M., Seppelt, R., Mauser, W., Václavík, T., 2019. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nature Communications10, 2844.

[62]

Zhang, C., Lei, S.L., Wu, H.Y., Liao, L.R., Wang, X.T., Zhang, L., Liu, G.B., Wang, G.L., Fang, L.C., Song, Z.L., 2024. Simplified microbial network reduced microbial structure stability and soil functionality in alpine grassland along a natural aridity gradient. Soil Biology and Biochemistry191, 109366.

[63]

Zhou, X., Cai, J.S., Xu, J.W., Liu, S.E., Wang, B., Zhang, H.L., Yue, L.Y., Wu, L.J., Wu, Y., Chen, D.M., 2024. Climate regulates the effect of land-use change on the diversity of soil microbial functional groups and soil multifunctionality. Journal of Applied Ecology61, 2087–2099.

[64]

Zhu, L.Y., Chen, Y., Sun, R.B., Zhang, J.B., Hale, L., Dumack, K., Geisen, S., Deng, Y., Duan, Y.H., Zhu, B., Li, Y., Liu, W.Z., Wang, X.Y., Griffiths, B.S., Bonkowski, M., Zhou, J.Z., Sun, B., 2023. Resource-dependent biodiversity and potential multi-trophic interactions determine belowground functional trait stability. Microbiome11, 95.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3244KB)

Supplementary files

SEL-00301-of-SD_suppl_1

SEL-00301-of-SD_suppl_2

452

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/