Metagenomic insights into the carbon decomposition of plant and microbial biomass in forests across biomes

Xinyu Cha , Shuohong Zhang , Meixuan Wang , Zhenghu Zhou , Jian Deng , Gang He , Fazhu Zhao , Gaihe Yang , Xinhui Han , Chengjie Ren

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (2) : 250300

PDF (4641KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (2) : 250300 DOI: 10.1007/s42832-025-0300-8
RESEARCH ARTICLE

Metagenomic insights into the carbon decomposition of plant and microbial biomass in forests across biomes

Author information +
History +
PDF (4641KB)

Abstract

Forest soil carbon (C) accumulates predominantly from the decomposition of plant litter, with most plant-derived C being processed by soil microbes. However, the microbial mechanisms associated with C decomposition in forests across biomes remain elusive. Using metagenomic sequencing, we explored the topsoil microbial functional group of decomposer microbial carbohydrate-active enzymes (CAZyme) and studied the C decomposition of plant- and microbial-derived components in forests across biomesfrom tropical to temperate regions. The results showed that the composition of soil microbial CAZyme families, which degrade plant- and microbial-derived components, significantly varied from warmer to colder forest biomes. Soils with higher annual temperatures and lower organic matter (OM) recalcitrance (indicated by Alky-C/O-alkyl-C: A/O) in subtropical/tropical forests supported higher proportions of CAZyme genes fundamental for the decomposition of complex plant and fungal derived biomass. In contrast, soils with lower annual temperatures and higher OM recalcitrance (e.g., A/O, organic carbon, microbial biomass) in cold temperate forests exhibited higher proportions of CAZyme genes for the degradation of bacterial-derived peptidoglycan. Such trends of microbial CAZyme families were largely explained by the relative abundance of bacterial dominant phylum members (i.e., Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes). Collectively, our study demonstrated the importance of functional microbiome responsible for the decomposition of plant and microbial inputs, providing a solid mechanism to understand the often-reported responses of soil organic matter decomposition and C sequestration to warming. These results are integral to understanding the contribution of soil microbiome to C fluxes under on-going climate change.

Graphical abstract

Keywords

climate change / forest soil / microbial CAZyme families / microbial-derived components / plant-derived components

Highlight

● Soil microbial CAZyme families vary from warmer to colder forest biomes.

● Temperature controls the decomposition of plant- and microbial-derived components.

● Bacterial communities are more involved than fungi in degrading derived components.

Cite this article

Download citation ▾
Xinyu Cha, Shuohong Zhang, Meixuan Wang, Zhenghu Zhou, Jian Deng, Gang He, Fazhu Zhao, Gaihe Yang, Xinhui Han, Chengjie Ren. Metagenomic insights into the carbon decomposition of plant and microbial biomass in forests across biomes. Soil Ecology Letters, 2025, 7(2): 250300 DOI:10.1007/s42832-025-0300-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Angst, G., Mueller, K.E., Nierop, K.G.J., Simpson, M.J., 2021. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry156, 108189.

[2]

Bailey, V.L., Fansler, S.J., Stegen, J.C., McCue, L.A., 2013. Linking microbial community structure to β-glucosidic function in soil aggregates. The ISME Journal7, 2044–2053.

[3]

Baldock, J.A., Masiello, C.A., Gélinas, Y., Hedges, J.I., 2004. Cycling and composition of organic matter in terrestrial and marine ecosystems. Marine Chemistry92, 39–64.

[4]

Bardgett, R.D., Freeman, C., Ostle, N.J., 2008. Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal2, 805–814.

[5]

Berlemont, R., Martiny, A.C., 2015. Genomic potential for polysaccharide deconstruction in bacteria. Applied and Environmental Microbiology81, 1513–1519.

[6]

Blagodatskaya, E., Kuzyakov, Y., 2013. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biology and Biochemistry67, 192–211.

[7]

Chen, J., Elsgaard, L., van Groenigen, K.J., Olesen, J.E., Liang, Z., Jiang, Y., Lærke, P.E., Zhang, Y.F., Luo, Y.Q., Hungate, B.A., Sinsabaugh, R.L., Jørgensen, U., 2020. Soil carbon loss with warming: new evidence from carbon-degrading enzymes. Global Change Biology26, 1944–1952.

[8]

Chen, J., Luo, Y.Q., García-Palacios, P., Cao, J.J., Dacal, M., Zhou, X.H., Li, J.W., Xia, J.Y., Niu, S.L., Yang, H.Y., Shelton, S., Guo, W., van Groenigen, K.J., 2018a. Differential responses of carbon-degrading enzyme activities to warming: implications for soil respiration. Global Change Biology24, 4816–4826.

[9]

Chen, J., Sinsabaugh, R.L., 2021. Linking microbial functional gene abundance and soil extracellular enzyme activity: implications for soil carbon dynamics. Global Change Biology27, 1322–1325.

[10]

Chen, S.F., Zhou, Y.Q., Chen, Y.R., Gu, J., 2018b. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics34, i884–i890.

[11]

Dai, Z.M., Zang, H.D., Chen, J., Fu, Y.Y., Wang, X.H., Liu, H.T., Shen, C.C., Wang, J.J., Kuzyakov, Y., Becker, J.N., Hemp, A., Barberán, A., Gunina, A., Chen, H.H., Luo, Y., Xu, J.M., 2021. Metagenomic insights into soil microbial communities involved in carbon cycling along an elevation climosequences. Environmental Microbiology23, 4631–4645.

[12]

Dao, T.T., Mikutta, R., Wild, B., Sauheitl, L., Gentsch, N., Shibistova, O., Schnecker, J., Lashchinskiy, N., Richter, A., Guggenberger, G., 2023. How temperature and aridity drive lignin decomposition along a latitudinal transect in western Siberia. European Journal of Soil Science74, e13408.

[13]

Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature440, 165–173.

[14]

Di Bene, C., Pellegrino, E., Debolini, M., Silvestri, N., Bonari, E., 2013. Short- and long-term effects of olive mill wastewater land spreading on soil chemical and biological properties. Soil Biology and Biochemistry56, 21–30.

[15]

Fry, E.L., De Long, J.R., Bardgett, R.D., 2018. Chapter 2 - plant communities as modulators of soil carbon storage. In: Singh, B.K., ed. Soil Carbon Storage: Modulators, Mechanisms and Modeling. Amsterdam: Elsevier29–71.

[16]

García-Palacios, P., Crowther, T.W., Dacal, M., Hartley, I.P., Reinsch, S., Rinnan, R., Rousk, J., van den Hoogen, J., Ye, J.S., Bradford, M.A., 2021. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nature Reviews Earth & Environment2, 507–517.

[17]

Goodale, C.L., Apps, M.J., Birdsey, R.A., Field, C.B., Heath, L.S., Houghton, R.A., Jenkins, J.C., Kohlmaier, G.H., Kurz, W., Liu, S.R., Nabuurs, G.J., Nilsson, S., Shvidenko, A.Z., 2002. Forest carbon sinks in the Northern Hemisphere. Ecological Applications12, 891–899.

[18]

Han, Y.F., Qu, C.C., Hu, X.P., Wang, P., Wan, D., Cai, P., Rong, X.M., Chen, W.L., Huang, Q.Y., 2022. Warming and humidification mediated changes of DOM composition in an Alfisol. Science of the Total Environment805, 150198.

[19]

Hu, Y.T., Zheng, Q., Noll, L., Zhang, S.S., Wanek, W., 2020. Direct measurement of the in situ decomposition of microbial-derived soil organic matter. Soil Biology and Biochemistry141, 107660.

[20]

Karin, E.L., Mirdita, M., Söeding, J., 2020. MetaEuk-sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome8, 48.

[21]

Keiluweit, M., Bougoure, J.J., Nico, P.S., Pett-Ridge, J., Weber, P.K., Kleber, M., 2015. Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change5, 588–595.

[22]

Kokou, F., Sasson, G., Friedman, J., Eyal, S., Ovadia, O., Harpaz, S., Cnaani, A., Mizrahi, I., 2019. Core gut microbial communities are maintained by beneficial interactions and strain variability in fish. Nature Microbiology4, 2456–2465.

[23]

Lehmann, J., Kleber, M., 2015. The contentious nature of soil organic matter. Nature528, 60–68.

[24]

Li, D.H., Liu, C.M., Luo, R.B., Sadakane, K., Lam, T.W., 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics31, 1674–1676.

[25]

Liang, C., Schimel, J.P., Jastrow, J.D., 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology2, 17105.

[26]

Lin, Q.L., Tian, Q.X., Liao, C., Yuan, X.D., Lu, M.Z., Liu, F., 2024. Persistence of soil microbial residuals and lignin phenols in forest ecosystems along the latitude gradient. Journal of Soils and Sediments24, 2425–2436.

[27]

Lombard, V., Ramulu, H.G., Drula, E., Coutinho, P.M., Henrissat, B., 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research42, D490–D495.

[28]

López-Mondéjar, R., Brabcová, V., Štursová, M., Davidová, A., Jansa, J., Cajthaml, T., Baldrian, P., 2018. Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. The ISME Journal12, 1768–1778.

[29]

López-Mondéjar, R., Tláskal, V., Větrovský, T., Štursová, M., Toscan, R., Da Rocha, U.N., Baldrian, P., 2020. Metagenomics and stable isotope probing reveal the complementary contribution of fungal and bacterial communities in the recycling of dead biomass in forest soil. Soil Biology and Biochemistry148, 107875.

[30]

López-Mondéjar, R., Zühlke, D., Becher, D., Riedel, K., Baldrian, P., 2016. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Scientific Reports6, 25279.

[31]

Ma, T., Zhu, S.S., Wang, Z.H., Chen, D.M., Dai, G.H., Feng, B.W., Su, X.Y., Hu, H.F., Li, K.H., Han, W.X., Liang, C., Bai, Y.F., Feng, X.J., 2018. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications9, 3480.

[32]

Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal17, 10–12.

[33]

Menzel, P., Ng, K.L., Krogh, A., 2016. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nature Communications7, 11257.

[34]

Meschewski, E., Holm, N., Sharma, B.K., Spokas, K., Minalt, N., Kelly, J.J., 2019. Pyrolysis biochar has negligible effects on soil greenhouse gas production, microbial communities, plant germination, and initial seedling growth. Chemosphere228, 565–576.

[35]

Nouioui, I., Carro, L., García-López, M., Meier-Kolthoff, J.P., Woyke, T., Kyrpides, N.C., Pukall, R., Klenk, H.P., Goodfellow, M., Göker, M., 2018. Genome-based taxonomic classification of the phylum Actinobacteria. Frontiers in Microbiology9, 2007.

[36]

Pan, Y.D., Birdsey, R.A., Fang, J.Y., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S., Rautiainen, A., Sitch, S., Hayes, D., 2011. A large and persistent carbon sink in the world's forests. Science333, 988–993.

[37]

Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C., 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods14, 417–419.

[38]

Pold, G., Billings, A.F., Blanchard, J.L., Burkhardt, D.B., Frey, S.D., Melillo, J.M., Schnabel, J., van Diepen, L.T.A., DeAngelis, K.M., 2016. Long-term warming alters carbohydrate degradation potential in temperate forest soils. Applied and Environmental Microbiology82, 6518–6530.

[39]

Ren, C.J., Wang, J.Y., Bastida, F., Delgado-Baquerizo, M., Yang, Y.H., Wang, J., Zhong, Z.K., Zhou, Z.H., Zhang, S.H., Guo, Y.X., Zhou, S., Wei, G.H., Han, X.H., Yang, G.H., Zhao, F.Z., 2022. Microbial traits determine soil C emission in response to fresh carbon inputs in forests across biomes. Global Change Biology28, 1516–1528.

[40]

Ren, C.J., Zhang, W., Zhong, Z.K., Han, X.H., Yang, G.H., Feng, Y.Z., Ren, G.X., 2018. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Science of the Total Environment610–611, 750–758.

[41]

Ren, C.J., Zhang, X.Y., Zhang, S.H., Wang, J.Y., Xu, M.P., Guo, Y.X., Wang, J., Han, X.H., Zhao, F.Z., Yang, G.H., Doughty, R., 2021. Altered microbial CAZyme families indicated dead biomass decomposition following afforestation. Soil Biology and Biochemistry160, 108362.

[42]

Rovira, P., Vallejo, V.R., 2002. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma107, 109–141.

[43]

Sinsabaugh, R.L., 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry42, 391–404.

[44]

Steinegger, M., Söding, J., 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nature Biotechnology35, 1026–1028.

[45]

Štursová, M., Žifčáková, L., Leigh, M.B., Burgess, R., Baldrian, P., 2012. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiology Ecology80, 735–746.

[46]

Tao, X.Y., Feng, J.J., Yang, Y.F., Wang, G.S., Tian, R.M., Fan, F.L., Ning, D.L., Bates, C.T., Hale, L., Yuan, M.M., Wu, L.W., Gao, Q., Lei, J.S., Schuur, E.A.G., Yu, J.L., Bracho, R., Luo, Y.Q., Konstantinidis, K.T., Johnston, E.R., Cole, J.R., Penton, C.R., Tiedje, J.M., Zhou, J.Z., 2020. Winter warming in Alaska accelerates lignin decomposition contributed by Proteobacteria. Microbiome8, 84.

[47]

Thurner, M., Beer, C., Santoro, M., Carvalhais, N., Wutzler, T., Schepaschenko, D., Shvidenko, A., Kompter, E., Ahrens, B., Levick, S.R., Schmullius, C., 2014. Carbon stock and density of northern boreal and temperate forests. Global Ecology and Biogeography23, 297–310.

[48]

van der Heijden, M.G.A., Bardgett, R.D., van Straalen, N.M., 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters11, 296–310.

[49]

Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry19, 703–707.

[50]

Voříšková, J., Brabcová, V., Cajthaml, T., Baldrian, P., 2014. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytologist201, 269–278.

[51]

Wilhelm, R.C., Singh, R., Eltis, L.D., Mohn, W.W., 2019. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. The ISME Journal13, 413–429.

[52]

Woodcroft, B.J., Singleton, C.M., Boyd, J.A., Evans, P.N., Emerson, J.B., Zayed, A.A.F., Hoelzle, R.D., Lamberton, T.O., McCalley, C.K., Hodgkins, S.B., Wilson, R.M., Purvine, S.O., Nicora, C.D., Li, C.S., Frolking, S., Chanton, J.P., Crill, P.M., Saleska, S.R., Rich, V.I., Tyson, G.W., 2018. Genome-centric view of carbon processing in thawing permafrost. Nature560, 49–54.

[53]

Yin, Y.B., Mao, X.Z., Yang, J.C., Chen, X., Mao, F.L., Xu, Y., 2012. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Research40, W445–W451.

[54]

Zechmeister-Boltenstern, S., Keiblinger, K.M., Mooshammer, M., Peñuelas, J., Richter, A., Sardans, J., Wanek, W., 2015. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecological Monographs85, 133–155.

[55]

Zhang, C., Xue, S., Liu, G.B., Song, Z.L., 2011. A comparison of soil qualities of different revegetation types in the Loess Plateau, China. Plant and Soil347, 163–178.

[56]

Zhong, Z.K., Li, W.J., Lu, X.Q., Gu, Y.Q., Wu, S.J., Shen, Z.Y., Han, X.H., Yang, G.H., Ren, C.J., 2020. Adaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the Loess Plateau, China. Soil Biology and Biochemistry151, 108048.

[57]

Zhu, W.H., Lomsadze, A., Borodovsky, M., 2010. Ab initio gene identification in metagenomic sequences. Nucleic Acids Research38, e132.

[58]

Žifčáková, L., Větrovský, T., Lombard, V., Henrissat, B., Howe, A., Baldrian, P., 2017. Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome5, 122.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4641KB)

Supplementary files

Supplementary materials

424

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/