Nitrogen deposition exhibits limited influence on soil nematode energy fluxes and soil carbon and nitrogen mineralization in a typical karst ecosystem

Jiangnan Li , Jie Zhao , Xionghui Liao , Wenyu Wang , Xianwen Long , Yixuan Liu , Jun Xiao , Wei Zhang , Kelin Wang

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (2) : 250298

PDF (7490KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (2) : 250298 DOI: 10.1007/s42832-025-0298-y
RESEARCH ARTICLE

Nitrogen deposition exhibits limited influence on soil nematode energy fluxes and soil carbon and nitrogen mineralization in a typical karst ecosystem

Author information +
History +
PDF (7490KB)

Abstract

Human-driven nitrogen (N) deposition profoundly affects the functional composition and energetic structure of soil food webs, which are crucial for maintaining ecosystem stability and nutrient cycling. Karst landscapes, occupying about 15% of the Earth’s surface, are particularly fragile due to shallow soils, nutrient deficiency, and well-developed underground drainage systems. In these regions, deposited N may be readily absorbed by plants and/or rapidly leached with rains; its effects on karst ecosystem processes and functions may be different from non-karst regions. Here, the effects of N deposition on the community structure and energy dynamics of soil nematodes and nutrient cycling processes, and their relationships were explored. A canopy N deposition experiment was conducted with three levels of N addition: control (0 kg N ha−1 yr−1), low (50 kg N ha−1 yr−1), and high (100 kg N ha−1 yr−1). Both low and high N additions increased plant litter production but did not alter litter stoichiometry or soil properties. High N addition significant reduced total nematode abundance and energy fluxes through bacterivores in the dry season, while in the wet season showed no significant effects, likely due to rapid nutrient leaching in karst soils. Additionally, soil carbon and nitrogen mineralization rates under N addition were more closely linked to nematode abundance than energy fluxes. This study provides valuable insights into how future changes in N deposition affecting below-ground communities and nutrient cycling in the karst region, and enhancing our understanding of the responses of this environment to global changes.

Graphical abstract

Keywords

nitrogen deposition / soil nematode / energy flow / soil carbon and nitrogen mineralization / karst ecosystem

Highlight

● N deposition increased litter production but did not affect litter stoichiometric ratios and soil mineralization rates.

● High N deposition decreased total nematode abundance and energy fluxes of bacterivores and total nematode in the dry season.

● Soil C and N mineralization rates were more closely linked to nematode abundance than energy fluxes.

● The abundances of total nematodes and bacterivore were positively correlated to soil N mineralization rates.

Cite this article

Download citation ▾
Jiangnan Li, Jie Zhao, Xionghui Liao, Wenyu Wang, Xianwen Long, Yixuan Liu, Jun Xiao, Wei Zhang, Kelin Wang. Nitrogen deposition exhibits limited influence on soil nematode energy fluxes and soil carbon and nitrogen mineralization in a typical karst ecosystem. Soil Ecology Letters, 2025, 7(2): 250298 DOI:10.1007/s42832-025-0298-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature515, 505–511.

[2]

Barnes, A.D., Jochum, M., Lefcheck, J.S., Eisenhauer, N., Scherber, C., O'Connor, M.I., de Ruiter, P., Brose, U., 2018. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends in Ecology & Evolution33, 186–197.

[3]

Barnes, A.D., Jochum, M., Mumme, S., Haneda, N.F., Farajallah, A., Widarto, T.H., Brose, U., 2014. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nature Communications5, 5351.

[4]

Berthrong, S.T., Yeager, C.M., Gallegos-Graves, L., Steven, B., Eichorst, S.A., Jackson, R.B., Kuske, C.R., 2014. Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. Applied and Environmental Microbiology80, 3103–3112.

[5]

Bongers, T., 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia83, 14–19.

[6]

Bongers, T., Bongers, M., 1998. Functional diversity of nematodes. Applied Soil Ecology10, 239–251.

[7]

Camenzind, T., Mason-Jones, K., Mansour, I., Rillig, M.C., Lehmann, J., 2023. Formation of necromass-derived soil organic carbon determined by microbial death pathways. Nature Geoscience16, 115–122.

[8]

Chen, D.M., Lan, Z.C., Hu, S.J., Bai, Y.F., 2015. Effects of nitrogen enrichment on belowground communities in grassland: relative role of soil nitrogen availability vs. soil acidification. Soil Biology and Biochemistry89, 99–108.

[9]

Chen, D.M., Xing, W., Lan, Z.C., Saleem, M., Wu, Y.Q.Q.G., Hu, S.J., Bai, Y.F., 2019a. Direct and indirect effects of nitrogen enrichment on soil organisms and carbon and nitrogen mineralization in a semi-arid grassland. Functional Ecology33, 175–187.

[10]

Chen, H., Li, D.J., Mao, Q.G., Xiao, K.C., Wang, K.L., 2019b. Resource limitation of soil microbes in karst ecosystems. Science of the Total Environment650, 241–248.

[11]

Chen, H., Li, D.J., Zhao, J., Zhang, W., Xiao, K.C., Wang, K.L., 2018. Nitrogen addition aggravates microbial carbon limitation: evidence from ecoenzymatic stoichiometry. Geoderma329, 61–64.

[12]

Chen, J., Ferris, H., 1999. The effects of nematode grazing on nitrogen mineralization during fungal decomposition of organic matter. Soil Biology and Biochemistry31, 1265–1279.

[13]

Chen, X.L., Chen, H.Y.H., 2018. Global effects of plant litter alterations on soil CO2 to the atmosphere. Global Change Biology24, 3462–3471.

[14]

Creamer, C.A., de Menezes, A.B., Krull, E.S., Sanderman, J., Newton-Walters, R., Farrell, M., 2015. Microbial community structure mediates response of soil C decomposition to litter addition and warming. Soil Biology and Biochemistry80, 175–188.

[15]

De Ruiter, P.C., Van Veen, J.A., Moore, J.C., Brussaard, L., Hunt, H.W., 1993. Calculation of nitrogen mineralization in soil food webs. Plant and Soil157, 263–273.

[16]

de Vries, W., Du, E.Z., Butterbach-Bahl, K., 2014. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Current Opinion in Environmental Sustainability9–10, 90–104.

[17]

Dijkstra, F.A., He, M.Z., Johansen, M.P., Harrison, J.J., Keitel, C., 2015. Plant and microbial uptake of nitrogen and phosphorus affected by drought using 15N and 32P tracers. Soil Biology and Biochemistry82, 135–142.

[18]

Feng, J.G., He, K.Y., Zhang, Q.F., Han, M.G., Zhu, B., 2022. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Global Change Biology28, 3426–3440.

[19]

Ferris, H., 2010. Form and function: Metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology46, 97–104.

[20]

Ferris, H., Bongers, T., de Goede, R.G.M., 2001. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology18, 13–29.

[21]

Ferris, H., Tuomisto, H., 2015. Unearthing the role of biological diversity in soil health. Soil Biology and Biochemistry85, 101–109.

[22]

Ferris, H., Venette, R.C., Lau, S.S., 1996. Dynamics of nematode communities in tomatoes grown in conventional and organic farming systems, and their impact on soil fertility. Applied Soil Ecology3, 161–175.

[23]

Ferris, H., Venette, R.C., Scow, K.M., 2004. Soil management to enhance bacterivore and fungivore nematode populations and their nitrogen mineralisation function. Applied Soil Ecology25, 19–35.

[24]

Forsmark, B., Nordin, A., Maaroufi, N.I., Lundmark, T., Gundale, M.J., 2020. Low and high nitrogen deposition rates in northern coniferous forests have different impacts on aboveground litter production, soil respiration, and soil carbon stocks. Ecosystems23, 1423–1436.

[25]

Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z.C., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., Sutton, M.A., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science320, 889–892.

[26]

Gan, H.J., Wickings, K., 2020. Root herbivory and soil carbon cycling: shedding “green” light onto a “brown” world. Soil Biology and Biochemistry150, 107972.

[27]

Gebremikael, M.T., Steel, H., Buchan, D., Bert, W., De Neve, S., 2016. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions. Scientific Reports6, 32862.

[28]

Gunina, A., Kuzyakov, Y., 2022. From energy to (soil organic) matter. Global Change Biology28, 2169–2182.

[29]

Hu, C.X., Wang, X.R., Li, J., Luo, L., Liu, F., Wu, W.H., Xu, Y., Li, H.Y., Tan, B.C., Zhang, G.L., 2024. Trends in the research on soil nitrogen leaching from farmland: a bibliometric analysis (2014–2023). Climate Smart Agriculture1, 100026.

[30]

Hu, P.L., Zhang, W., Chen, H.S., Li, D.J., Zhao, Y., Zhao, J., Xiao, J., Wu, F.J., He, X.Y., Luo, Y.Q., Wang, K.L., 2021. Soil carbon accumulation with increasing temperature under both managed and natural vegetation restoration in calcareous soils. Science of the Total Environment767, 145298.

[31]

Huang, H., 2021. linkET: Everything is Linkable. Available at the website of GitHub.

[32]

Jiang, Y.J., Liu, M.Q., Zhang, J.B., Chen, Y., Chen, X.Y., Chen, L.J., Li, H.X., Zhang, X.X., Sun, B., 2017. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level. The ISME Journal11, 2705–2717.

[33]

Jiang, Y.J., Qian, H.Y., Wang, X.Y., Chen, L.J., Liu, M.Q., Li, H.X., Sun, B., 2018. Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates. Soil Biology and Biochemistry119, 22–31.

[34]

Jiang, Z.C., Lian, Y.Q., Qin, X.Q., 2014. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Science Reviews132, 1–12.

[35]

Li, J.N., Zhao, J., Liao, X.H., Yi, Q., Zhang, W., Lin, H.F., Liu, K.P., Peng, P.Q., Wang, K.L., 2023. Long-term returning agricultural residues increases soil microbe-nematode network complexity and ecosystem multifunctionality. Geoderma430, 116340.

[36]

Li, Y.B., Bezemer, T.M., Yang, J.J., Lü, X.T., Li, X.Y., Liang, W.J., Han, X.G., Li, Q., 2019. Changes in litter quality induced by N deposition alter soil microbial communities. Soil Biology and Biochemistry130, 33–42.

[37]

Liao, X.H., Fu, S.L., Zhao, J., 2023. Altered energy dynamics of multitrophic groups modify the patterns of soil CO2 emissions in planted forest. Soil Biology and Biochemistry178, 108953.

[38]

Liu, G.S., 1996. Soil Physical and Chemical Analysis & Description of Soil Profiles. Beijing: Standard Press of China.

[39]

Liu, L., Wen, Z., Liu, S., Zhang, X.Y., Liu, X.J., 2024. Decline in atmospheric nitrogen deposition in China between 2010 and 2020. Nature Geoscience17, 733–736.

[40]

Liu, S.J., Behm, J.E., Meng, Y.Y., Zhang, W., Xia, S.W., Yang, X.D., Fu, S.L., 2022. Nitrogen addition enhances the bottom-up effects in the detrital food web. Global Ecology and Conservation39, e02299.

[41]

Liu, T., Mao, P., Shi, L.L., Eisenhauer, N., Liu, S.J., Wang, X.L., He, X.X., Wang, Z.Y., Zhang, W., Liu, Z.F., Zhou, L.X., Shao, Y.H., Fu, S.L., 2020a. Forest canopy maintains the soil community composition under elevated nitrogen deposition. Soil Biology and Biochemistry143, 107733.

[42]

Liu, T., Mao, P., Shi, L.L., Wang, Z.Y., Wang, X.L., He, X.X., Tao, L.B., Liu, Z.F., Zhou, L.X., Shao, Y.H., Fu, S.L., 2020b. Contrasting effects of nitrogen deposition and increased precipitation on soil nematode communities in a temperate forest. Soil Biology and Biochemistry148, 107869.

[43]

Liu, X.J., Fu, Z.Y., Zhang, W., Xiao, S.S., Chen, H.S., Wang, K.L., 2023. Soluble carbon loss through multiple runoff components in the shallow subsurface of a karst hillslope: Impact of critical zone structure and land use. CATENA222, 106868.

[44]

Liu, Y.G., Liu, C.C., Rubinato, M., Guo, K., Zhou, J.X., Cui, M., 2020c. An assessment of soil’s nutrient deficiencies and their influence on the restoration of degraded karst vegetation in Southwest China. Forests11, 797.

[45]

Long, X.W., Zhao, J., Li, J.N., Liao, X.H., Wang, J.C., Fu, Z.Y., Zhang, W., Liu, X.J., Wang, K.L., 2024. Disturbance intensity shapes the soil micro-food web compositions and energy fluxes during seven-year land use changes. Soil Biology and Biochemistry194, 109424.

[46]

Lu, X.K., Mao, Q.G., Gilliam, F.S., Luo, Y.Q., Mo, J.M., 2014. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology20, 3790–3801.

[47]

Lu, X.K., Vitousek, P.M., Mao, Q.G., Gilliam, F.S., Luo, Y.Q., Zhou, G.Y., Zou, X.M., Bai, E., Scanlon, T.M., Hou, E.Q., Mo, J.M., 2018. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proceedings of the National Academy of Sciences of the United States of America115, 5187–5192.

[48]

Nair, R.K.F., Perks, M.P., Weatherall, A., Baggs, E.M., Mencuccini, M., 2016. Does canopy nitrogen uptake enhance carbon sequestration by trees?. Global Change Biology22, 875–888.

[49]

Neher, D.A., 2001. Role of nematodes in soil health and their use as indicators. Journal of Nematology33, 161–168.

[50]

Neher, D.A., 2010. Ecology of plant and free-living nematodes in natural and agricultural soil. Annual Review of Phytopathology48, 371–394.

[51]

Peng, T., Wang, S.J., 2012. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in Southwest China. CATENA90, 53–62.

[52]

Revelle, W., 2022. psych: Procedures for Psychological, Psychometric, and Personality Research. Software.

[53]

Rip, J.M.K., McCann, K.S., 2011. Cross-ecosystem differences in stability and the principle of energy flux. Ecology Letters14, 733–740.

[54]

Sardans, J., Grau, O., Chen, H.Y.H., Janssens, I.A., Ciais, P., Piao, S., Peñuelas, J., 2017. Changes in nutrient concentrations of leaves and roots in response to global change factors. Global Change Biology23, 3849–3856.

[55]

Schwarz, B., Barnes, A.D., Thakur, M.P., Brose, U., Ciobanu, M., Reich, P.B., Rich, R.L., Rosenbaum, B., Stefanski, A., Eisenhauer, N., 2017. Warming alters energetic structure and function but not resilience of soil food webs. Nature Climate Change7, 895–900.

[56]

Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K., Salazar, G., Djahanschiri, B., Zeller, G., Mende, D.R., Alberti, A., Cornejo-Castillo, F.M., Costea, P.I., Cruaud, C., d'Ovidio, F., Engelen, S., Ferrera, I., Gasol, J.M., Guidi, L., Hildebrand, F., Kokoszka, F., Lepoivre, C., Lima-Mendez, G., Poulain, J., Poulos, B.T., Royo-Llonch, M., Sarmento, H., Vieira-Silva, S., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Tara Oceans Coordinators, Bowler, C., de Vargas, C., Gorsky, G., Grimsley, N., Hingamp, P., Iudicone, D., Jaillon, O., Not, F., Ogata, H., Pesant, S., Speich, S., Stemmann, L., Sullivan, M.B., Weissenbach, J., Wincker, P., Karsenti, E., Raes, J., Acinas, S.G., Bork, P., Boss, E., Bowler, C., Follows, M., Karp-Boss, L., Krzic, U., Reynaud, E.G., Sardet, C., Sieracki, M., Velayoudon, D., 2015. Structure and function of the global ocean microbiome. Science348, 1261359.

[57]

Tegeder, M., Masclaux-Daubresse, C., 2018. Source and sink mechanisms of nitrogen transport and use. New Phytologist217, 35–53.

[58]

Tenuta, M., Ferris, H., 2004. Sensitivity of nematode life-history groups to ions and osmotic tensions of nitrogenous solutions. Journal of Nematology36, 85–84.

[59]

Trap, J., Bonkowski, M., Plassard, C., Villenave, C., Blanchart, E., 2016. Ecological importance of soil bacterivores for ecosystem functions. Plant and Soil398, 1–24.

[60]

Vallicrosa, H., Sardans, J., Maspons, J., Peñuelas, J., 2022. Global distribution and drivers of forest biome foliar nitrogen to phosphorus ratios (N:P). Global Ecology and Biogeography31, 861–871.

[61]

van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D.A., de Goede, R.G.M., Adams, B.J., Ahmad, W., Andriuzzi, W.S., Bardgett, R.D., Bonkowski, M., Campos-Herrera, R., Cares, J.E., Caruso, T., de Brito Caixeta, L., Chen, X.Y., Costa, S.R., Creamer, R., da Cunha Castro, J.M., Dam, M., Djigal, D., Escuer, M., Griffiths, B.S., Gutiérrez, C., Hohberg, K., Kalinkina, D., Kardol, P., Kergunteuil, A., Korthals, G., Krashevska, V., Kudrin, A.A., Li, Q., Liang, W.J., Magilton, M., Marais, M., Martín, J.A.R., Matveeva, E., Mayad, E.H., Mulder, C., Mullin, P., Neilson, R., Nguyen, T.A.D., Nielsen, U.N., Okada, H., Rius, J.E.P., Pan, K.W., Peneva, V., Pellissier, L., da Silva, J.C.P., Pitteloud, C., Powers, T.O., Powers, K., Quist, C.W., Rasmann, S., Moreno, S.S., Scheu, S., Setälä, H., Sushchuk, A., Tiunov, A.V., Trap, J., van der Putten, W., Vestergård, M., Villenave, C., Waeyenberge, L., Wall, D.H., Wilschut, R., Wright, D.G., Yang, J.I., Crowther, T.W., 2019. Soil nematode abundance and functional group composition at a global scale. Nature572, 194–198.

[62]

Verschoor, B.C., 2002. Carbon and nitrogen budgets of plant-feeding nematodes in grasslands of different productivity. Applied Soil Ecology20, 15–25.

[63]

Wan, B.B., Barnes, A.D., Potapov, A., Yang, J.N., Zhu, M.Y., Chen, X.Y., Hu, F., Liu, M.Q., 2024. Altered litter stoichiometry drives energy dynamics of food webs through changing multiple facets of soil biodiversity. Soil Biology and Biochemistry191, 109331.

[64]

Wan, B.B., Liu, T., Gong, X., Zhang, Y., Li, C.J., Chen, X.Y., Hu, F., Griffiths, B.S., Liu, M.Q., 2022. Energy flux across multitrophic levels drives ecosystem multifunctionality: evidence from nematode food webs. Soil Biology and Biochemistry169, 108656.

[65]

Wang, C., Liu, D.W., Bai, E., 2018. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry120, 126–133.

[66]

Wang, C., Shi, Z.Y., Li, A.G., Geng, T.Y., Liu, L.L., Liu, W.X., 2024a. Long-term nitrogen input reduces soil bacterial network complexity by shifts in life history strategy in temperate grassland. iMeta3, e194.

[67]

Wang, H.L., Xing, Y.J., Yan, G.Y., Liu, G.C., Wang, Q.G., 2024b. Nitrogen addition and precipitation reduction alter ecosystem multifunctionality and decrease soil nematode abundance and trophic energy fluxes in a temperate forest. Applied Soil Ecology201, 105489.

[68]

Wang, K.L., Zhang, C.H., Chen, H.S., Yue, Y.M., Zhang, W., Zhang, M.Y., Qi, X.K., Fu, Z.Y., 2019. Karst landscapes of China: patterns, ecosystem processes and services. Landscape Ecology34, 2743–2763.

[69]

Wang, S.J., Li, R.L., Sun, C.X., Zhang, D.F., Li, F.Q., Zhou, D.Q., Xiong, K.N., Zhou, Z.F., 2004. How types of carbonate rock assemblages constrain the distribution of karst rocky desertified land in Guizhou Province, PR China: phenomena and mechanisms. Land Degradation & Development15, 123–131.

[70]

Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setälä, H., van der Putten, W.H., Wall, D.H., 2004. Ecological linkages between aboveground and belowground biota. Science304, 1629–1633.

[71]

Wei, C.Z., Zheng, H.F., Li, Q., Lü, X.T., Yu, Q., Zhang, H.Y., Chen, Q.S., He, N.P., Kardol, P., Liang, W.J., Han, X.G., 2012. Nitrogen addition regulates soil nematode community composition through ammonium suppression. PLoS One7, e43384.

[72]

Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. New York: Springer.

[73]

Wickham, H., François, R., Henry, L., Müller, K., Vaughan, D., Posit Software, P., 2023. dplyr: A Grammar of Data Manipulation. Available at the website of dplyr.

[74]

Wilschut, R.A., Geisen, S., 2021. Nematodes as drivers of plant performance in natural systems. Trends in Plant Science26, 237–247.

[75]

Xia, J.Y., Wan, S.Q., 2008. Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist179, 428–439.

[76]

Xiao, D., Gai, S.S., He, X.Y., Zhang, W., Hu, P.L., Soromotin, A.V., Kuzyakov, Y., Wang, K.L., 2023. Habitat heterogeneity drives arbuscular mycorrhizal fungi and shrub communities in karst ecosystems. CATENA233, 107513.

[77]

Xing, W., Hu, N., Li, Z.F., Feng, L.S., Zhang, W.D., Du Preez, G., Zhang, H.M., Li, D.C., Lu, S.B., Chang, S.X., Zhang, Q.W., Lou, Y.L., 2024. Soil enzyme profile analysis for indicating decomposer micro-food web. iMeta3, e161.

[78]

Xing, W., Lu, X.M., Geng, S.B., Ding, J.Y., Bai, Y.F., 2023. Mechanisms underlying the negative effects of nitrogen addition on soil nematode communities in global grassland ecosystems. Geoderma436, 116564.

[79]

Xu, H.W., Qu, Q., Li, G.W., Liu, G.B., Geissen, V., Ritsema, C.J., Xue, S., 2022. Impact of nitrogen addition on plant-soil-enzyme C–N–P stoichiometry and microbial nutrient limitation. Soil Biology and Biochemistry170, 108714.

[80]

Yang, A., Song, B., Zhang, W.X., Zhang, T.N., Li, X.W., Wang, H.T., Zhu, D., Zhao, J., Fu, S.L., 2024a. Chronic enhanced nitrogen deposition and elevated precipitation jointly benefit soil microbial community in a temperate forest. Soil Biology and Biochemistry193, 109397.

[81]

Yang, A., Zhu, D., Zhang, W.X., Shao, Y.H., Shi, Y., Liu, X., Lu, Z.L., Zhu, Y.G., Wang, H.T., Fu, S.L., 2024b. Canopy nitrogen deposition enhances soil ecosystem multifunctionality in a temperate forest. Global Change Biology30, e17250.

[82]

Yang, X.L., Wang, X.T., Xiao, S., Liu, Z.Y., Zhou, X.H., Du, G.Z., Liu, K., Wang, Y.J., Chen, S.Y., Nielsen, U.N., 2021. Dominant plants affect litter decomposition mainly through modifications of the soil microbial community. Soil Biology and Biochemistry161, 108399.

[83]

Yeates, G.W., 2003. Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils37, 199–210.

[84]

Yeates, G.W., Bongers, T., De Goede, R.G., Freckman, D.W., Georgieva, S.S., 1993. Feeding habits in soil nematode families and genera-an outline for soil ecologists. Journal of Nematology25, 315–331.

[85]

Yin, R., Liu, Q., Tian, S.Y., Potapov, A., Zhu, B., Yang, K.J., Li, Z.J., Zhuang, L.Y., Tan, B., Zhang, L., Xu, Z.F., Kardol, P., Schädler, M., Eisenhauer, N., 2022. Nitrogen deposition stimulates decomposition via changes in the structure and function of litter food webs. Soil Biology and Biochemistry166, 108522.

[86]

Zhang, C.Z., Wright, I.J., Nielsen, U.N., Geisen, S., Liu, M.Q., 2024a. Linking nematodes and ecosystem function: a trait-based framework. Trends in Ecology & Evolution39, 644–653.

[87]

Zhang, J.N., Li, S.Y., Morriën, E., McLaughlin, N.B., Zhang, S.X., 2024b. Advancements in assessing soil health through functional traits and energy flow analysis of soil nematodes. Soil Ecology Letters6, 240228.

[88]

Zhang, W., Zhao, J., Pan, F.J., Li, D.J., Chen, H.S., Wang, K.L., 2015. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in Southwest China. Plant and Soil391, 77–91.

[89]

Zhao, J., Wang, F.M., Li, J., Zou, B., Wang, X.L., Li, Z.A., Fu, S.L., 2014. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biology and Biochemistry75, 1–10.

[90]

Zhao, J., Wang, K.L., 2022. Methods for cleaning turbid nematode suspensions collected from different land-use types and soil types. Soil Ecology Letters4, 429–434.

[91]

Zhao, J., Xun, R., He, X.Y., Zhang, W., Fu, W., Wang, K.L., 2015. Size spectra of soil nematode assemblages under different land use types. Soil Biology and Biochemistry85, 130–136.

[92]

Zhao, L.N., Yu, B.B., Wang, M.M., Zhang, J., Shen, Z.F., Cui, Y., Li, J.Y., Ye, J., Zu, W.Z., Liu, X.J., Fan, Z.J., Fu, S.L., Shao, Y.H., 2021. The effects of plant resource inputs on the energy flux of soil nematodes are affected by climate and plant resource type. Soil Ecology Letters3, 134–144.

[93]

Zhou, N., Han, X., Hu, N., Han, S., Yuan, M., Li, Z.F., Wang, S.J., Li, Y.C., Li, H.B., Rengel, Z., Jiang, Y.J., Lou, Y.L., 2024. The crop mined phosphorus nutrition via modifying root traits and rhizosphere micro-food web to meet the increased growth demand under elevated CO2. iMeta3, e245.

[94]

Zhou, Q.Q., Xiang, Y.Z., Li, D.B., Luo, X.Z., Wu, J.P., 2021. Global patterns and controls of soil nematode responses to nitrogen enrichment: a meta-analysis. Soil Biology and Biochemistry163, 108433.

[95]

Zhu, J.X., He, N.P., Wang, Q.F., Yuan, G.F., Wen, D., Yu, G.R., Jia, Y.L., 2015. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. Science of the Total Environment511, 777–785.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (7490KB)

Supplementary files

SEL-00298-OF-ZJ_suppl_1

363

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/