Inter-trophic networks reveal the central role of methanogens in deposited estuarine soils

Linlin Wang , Xiongfeng Du , Wenli Shen , Songsong Gu , Zhaojing Zhang , Zheng Zhang , Baohua Xie , Guangxuan Han , Ye Deng

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (2) : 250295

PDF (3622KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (2) : 250295 DOI: 10.1007/s42832-025-0295-1
RESEARCH ARTICLE

Inter-trophic networks reveal the central role of methanogens in deposited estuarine soils

Author information +
History +
PDF (3622KB)

Abstract

Exploring methane-metabolizing microorganisms' distribution patterns and driving factors is significant for estimating the global methane budget, but our current knowledge is limited. In this study, we took a systematic soil and microbial survey along the coast of river channels in the Yellow River Delta, which included the most rapidly deposited sedimentation globally. The prokaryotes, fungi, and protists had more significant changes between two regions with distinct deposition ages than across soil depths, while the accumulation of soil organic matter was the most critical external driving force for the succession of microbial communities. The deposition ages of sedimentary soils also altered the methanogenic and methanotrophic communities, with methanogens showing a greater response to environmental gradient changes than methanotrophs. The distribution of methanogens was mainly influenced by the direct regulation of biological factors represented by fungi and indirectly regulated by environmental stresses along the sedimentation gradient. Our self-developed inter-domain ecological network platform has further investigated the inter-trophic relationships between methane-metabolizing microorganisms and other microbes. Methanogens and methanotrophs form the core species of a highly interconnected network, and there is a strong interdependence between them and fungi and protists, while other prokaryotic species are relatively independent, in addition, methanogens play a central role in species interactions as modular hubs, they tended to be associated with saprotrophic fungi in the older sedimentation region, while in the newer sedimentation region, they were more associated with bacterial groups. This study enhances our understanding of the microbial hierarchical web in coastal wetland ecosystems.

Graphical abstract

Keywords

interdomain network / deposited estuarine soils / methanogens / methanotrophs

Highlight

● Microbial communities changed more significantly with sedimentation age than soil depth.

● Methanotrophs were less sensitive to environmental changes than methanogens.

● The distribution of methanogens was mainly influenced by the direct regulation of biological factors represented by fungi.

● Methanogens play a central role in species interactions as modular hubs.

Cite this article

Download citation ▾
Linlin Wang, Xiongfeng Du, Wenli Shen, Songsong Gu, Zhaojing Zhang, Zheng Zhang, Baohua Xie, Guangxuan Han, Ye Deng. Inter-trophic networks reveal the central role of methanogens in deposited estuarine soils. Soil Ecology Letters, 2025, 7(2): 250295 DOI:10.1007/s42832-025-0295-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Angel, R., Claus, P., Conrad, R., 2012. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. The ISME Journal6, 847–862.

[2]

Becher, B., Müller, V., Gottschalk, G., 1992. N5-methyl-tetrahydromethanopterin: coenzyme M methyltransferase of Methanosarcina strain göl is an Na+-translocating membrane protein. Journal of Bacteriology174, 7656–7660.

[3]

Bräuer, S.L., Basiliko, N., Siljanen, H.M.P., Zinder, S.H., 2020. Methanogenic archaea in peatlands. FEMS Microbiology Letters367, fnaa172.

[4]

Brochier, C., Forterre, P., Gribaldo, S., 2004. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biology5, R17.

[5]

Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America108, 4516–4522.

[6]

Daisuke, M., Hanako, M., Hideyuki, T., Kyosuke, Y., Hideyoshi, Y., Yuichiro, S., Yoichi, K., Susumu, S., 2016. Methane production from coal by a single methanogen. Science354, 222–225.

[7]

De Menezes, A.B., Prendergast-Miller, M.T., Richardson, A.E., Toscas, P., Farrell, M., Macdonald, L.M., Baker, G., Wark, T., Thrall, P.H., 2015. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters. Environmental Microbiology17, 2677–2689.

[8]

Deng, Y., Jiang, Y.H., Yang, Y.F., He, Z.L., Luo, F., Zhou, J.Z., 2012. Molecular ecological network analyses. BMC Bioinformatics13, 113.

[9]

Du, X.F., Gu, S.S., Zhang, Z., Li, S.Z., Zhou, Y.Q., Zhang, Z.J., Zhang, Q., Wang, L.L., Ju, Z.C., Yan, C.L., Li, T., Wang, D.R., Yang, X.S., Peng, X., Deng, Y., 2023. Spatial distribution patterns across multiple microbial taxonomic groups. Environmental Research15, 115470.

[10]

Evans, P.N., Parks, D.H., Chadwick, G.L., Robbins, S.J., Orphan, V.J., Golding, S.D., Tyson, G.W., 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science350, 434–438.

[11]

Fang, H.L., Liu, G.H., Kearney, M., 2005. Georelational analysis of soil type, soil salt content, landform, and land use in the Yellow River Delta, China. Environmental Management35, 72–83.

[12]

Feng, K., Peng, X., Zhang, Z., Gu, S.S., He, Q., Shen, W.L., Wang, Z.J., Wang, D.R., Hu, Q.L., Li, Y., Wang, S., Deng, Y., 2022. iNAP: an integrated network analysis pipeline for microbiome studies. iMeta1, e13.

[13]

Feng, K., Wang, S., He, Q., Bonkowski, M., Bahram, M., Yergeau, E., Wang, Z.J., Peng, X., Wang, D.R., Li, S.Z., Wang, Y.C., Ju, Z.C., Du, X.F., Yan, C.L., Gu, S.S., Li, T., Yang, X.X., Shen, W.L., Wei, Z.Y., Hu, Q.L., Li, P.F., Zhu, Y.M., Lu, G.X., Qin, C., Zhang, G.X., Xiao, C.W., Yang, Y.F., Zhou, J.Z., Deng, Y., 2024. CoBacFM: core bacteria forecast model for global grassland pH dynamics under future climate warming scenarios. One Earth7, 1275–1287.

[14]

Feng, K., Zhang, Z.J., Cai, W.W., Liu, W.Z., Xu, M.Y., Yin, H.Q., Wang, A.J., He, Z.L., Deng, Y., 2017. Biodiversity and species competition regulate the resilience of microbial biofilm community. Molecular Ecology26, 6170–6182.

[15]

Fiore-Donno, A.M., Rixen, C., Rippin, M., Glaser, K., Samolov, E., Karsten, U., Becker, B., Bonkowski, M., 2018. New barcoded primers for efficient retrieval of cercozoan sequences in high-throughput environmental diversity surveys, with emphasis on worldwide biological soil crusts. Molecular Ecology Resources18, 229–239.

[16]

Galperin, M.Y., 2013. Genome Diversity of Spore-forming Firmicutes. Microbiology Spectrum 1. TBS-0015-2012.

[17]

Gedney, N., Cox, P.M., Huntingford, C., 2004. Climate feedback from wetland methane emissions. Geophysical Research Letters31, L20503.

[18]

Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., de Vargas, C., Decelle, J., del Campo, J., Dolan, J.R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W.H.C.F., Lara, E., Le Bescot, N., Logares, R., Mahé, F., Massana, R., Montresor, M., Morard, R., Not, F., Pawlowski, J., Probert, I., Sauvadet, A.L., Siano, R., Stoeck, T., Vaulot, D., Zimmermann, P., Christen, R., 2013. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Research41, D597–D604.

[19]

He, S.M., Malfatti, S.A., McFarland, J.W., Anderson, F.E., Pati, A., Huntemann, M., Tremblay, J., de Rio, T.G., Waldrop, M.P., Windham-Myers, L., Tringe, S.G., 2015. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions. mBio6, e00066–15.

[20]

Jansson, J.K., Hofmockel, K.S., 2020. Soil microbiomes and climate change. Nature Reviews Microbiology18, 35–46.

[21]

Kallistova, A.Y., Merkel, A.Y., Tarnovetskii, I.Y., Pimenov, N.V., 2017. Methane formation and oxidation by prokaryotes. Microbiology86, 671–691.

[22]

Knief, C., 2015. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Frontiers in Microbiology6, 1346.

[23]

Kong, Y., 2011. Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics98, 152–153.

[24]

Le Mer, J., Roger, P., 2001. Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology37, 25–50.

[25]

Li, S.Z., Deng, Y., Wang, Z.J., Zhang, Z.J., Kong, X., Zhou, W.J., Yi, Y.Y., Qu, Y.Y., 2020. Exploring the accuracy of amplicon-based internal transcribed spacer markers for a fungal community. Molecular Ecology Resources20, 170–184.

[26]

Li, S.Z., Du, X.F., Feng, K., Wu, Y.N., He, Q., Wang, Z.J., Liu, Y.Y., Wang, D.R., Peng, X., Zhang, Z.J., Escalas, A., Qu, Y.Y., Deng, Y., 2022. Assessment of microbial α-diversity in one meter squared topsoil. Soil Ecology Letters4, 224–236.

[27]

Liu, L.J., Wang, D.Q., Chen, S., Yu, Z.J., Xu, Y.K., Li, Y., Ge, Z.M., Chen, Z.L., 2019. Methane emissions from estuarine coastal wetlands: implications for global change effect. Soil Science Society of America Journal83, 1368–1377.

[28]

Liu, Y.C., Whitman, W.B., 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences1125, 171–189.

[29]

Louca, S., Parfrey, L.W., Doebeli, M., 2016. Decoupling function and taxonomy in the global ocean microbiome. Science353, 1272–1277.

[30]

Lyu, Z., Shao, N.N., Akinyemi, T., Whitman, W.B., 2018. Methanogenesis. Current Biology28, R727–R732.

[31]

Magoč, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics27, 2957–2963.

[32]

Mayumi, D., Mochimaru, H., Tamaki, H., Yamamoto, K., Yoshioka, H., Suzuki, Y., Kamagata, Y., Sakata, S., 2016. Methane production from coal by a single methanogen. Science354, 222–225.

[33]

Mcinerney, M.J., Bryant, M.P., Pfennig, N., 1979. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Archives of Microbiology122, 129–135.

[34]

McNorton, J., Chipperfield, M.P., Gloor, M., Wilson, C., Feng, W.H., Hayman, G.D., Rigby, M., Krummel, P.B., O’Doherty, S., Prinn, R.G., Weiss, R.F., Young, D., Dlugokencky, E., Montzka, S.A., 2016. Role of OH variability in the stalling of the global atmospheric CH4 growth rate from 1999 to 2006. Atmospheric Chemistry and Physics16, 7943–7956.

[35]

Moore, J.C., McCann, K., Setälä, H., de Ruiter, P.C., 2003. Top-down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology 84, 846–857.

[36]

Murrell, P., 2009. R graphics. WIREs Computational Statistics1, 216–220.

[37]

Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F.O., Tedersoo, L., Saar, I., Kõljalg, U., Abarenkov, K., 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research47, D259–D264.

[38]

Nobu, M.K., Narihiro, T., Kuroda, K., Mei, R., Liu, W.T., 2016. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. The ISME Journal10, 2478–2487.

[39]

Ou, Y.F., Dong, H.P., McIlroy, S.J., Crowe, S.A., Hallam, S.J., Han, P., Kallmeyer, J., Simister, R.L., Vuillemin, A., Leu, A.O., Liu, Z.F., Zheng, Y.L., Sun, Q.L., Liu, M., Tyson, G.W., Hou, L.J., 2022. Expanding the phylogenetic distribution of cytochrome b-containing methanogenic archaea sheds light on the evolution of methanogenesis. The ISME Journal16, 2373–2387.

[40]

Rigby, M., Montzka, S.A., Prinn, R.G., White, J.W.C., Young, D., O’Doherty, S., Lunt, M.F., Ganesan, A.L., Manning, A.J., Simmonds, P.G., Salameh, P.K., Harth, C.M., Mühle, J., Weiss, R.F., Fraser, P.J., Steele, L.P., Krummel, P.B., McCulloch, A., Park, S., 2017. Role of atmospheric oxidation in recent methane growth. Proceedings of the National Academy of Sciences of the United States of America114, 5373–5377.

[41]

Sackett, T.E., Classen, A.T., Sanders, N.J., 2010. Linking soil food web structure to above- and belowground ecosystem processes: a meta-analysis. Oikos119, 1984–1992.

[42]

Sauvadet, M., Chauvat, M., Cluzeau, D., Maron, P.A., Villenave, C., Bertrand, I., 2016. The dynamics of soil micro-food web structure and functions vary according to litter quality. Soil Biology and Biochemistry95, 262–274.

[43]

Siniscalchi, L.A.B., Leite, L.R., Oliveira, G., Chernicharo, C.A.L., de Araújo, J.C., 2017. Illumina sequencing-based analysis of a microbial community enriched under anaerobic methane oxidation condition coupled to denitrification revealed coexistence of aerobic and anaerobic methanotrophs. Environmental Science and Pollution Research24, 16751–16764.

[44]

Sorokin, D.Y., Makarova, K.S., Abbas, B., Ferrer, M., Golyshin, P.N., Galinski, E.A., Ciordia, S., Mena, M.C., Merkel, A.Y., Wolf, Y.I., van Loosdrecht, M.C.M., Koonin, E.V., 2017. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nature Microbiology2, 17081.

[45]

Steinberg, L.M., Regan, J.M., 2008. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Applied and Environmental Microbiology74, 6663–6671.

[46]

Taylor, D.L., Walters, W.A., Lennon, N.J., Bochicchio, J., Krohn, A., Caporaso, J.G., Pennanen, T., 2016. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Applied and Environmental Microbiology82, 7217–7226.

[47]

Umaña, M.N., Zhang, C.C., Cao, M., Lin, L.X., Swenson, N.G., 2017. A core-transient framework for trait-based community ecology: an example from a tropical tree seedling community. Ecology Letters20, 619–628.

[48]

Vizza, C., West, W.E., Jones, S.E., Hart, J.A., Lamberti, G.A., 2017. Regulators of coastal wetland methane production and responses to simulated global change. Biogeosciences14, 431–446.

[49]

Wang, H.J., Wu, X., Bi, N.S., Li, S., Yuan, P., Wang, A.M., Syvitski, J.P.M., Saito, Y., Yang, Z.S., Liu, S.M., Nittrouer, J., 2017. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): a review. Global and Planetary Change157, 93–113.

[50]

Wang, L.L., Zhao, M.L., Du, X.F., Feng, K., Gu, S.S., Zhou, Y.Q., Yang, X.S., Zhang, Z.J., Wang, Y.C., Zhang, Z., Zhang, Q., Xie, B.H., Han, G.X., Deng, Y., 2023. Fungi and cercozoa regulate methane-associated prokaryotes in wetland methane emissions. Frontiers in Microbiology13, 1076610.

[51]

Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology73, 5261–5267.

[52]

Wang, Y.Z., Feng, X.Y., Natarajan, V.P., Xiao, X., Wang, F.P., 2019. Diverse anaerobic methane- and multi-carbon alkane-metabolizing archaea coexist and show activity in Guaymas Basin hydrothermal sediment. Environmental Microbiology21, 1344–1355.

[53]

Wilmoth, J.L., Schaefer, J.K., Schlesinger, D.R., Roth, S.W., Hatcher, P.G., Shoemaker, J.K., Zhang, X.N., 2021. The role of oxygen in stimulating methane production in wetlands. Global Change Biology27, 5831–5847.

[54]

Yang, X.S., Feng, K., Wang, S., Yuan, M.M., Peng, X., He, Q., Wang, D.R., Shen, W.L., Zhao, B., Du, X.F., Wang, Y.C., Wang, L.L., Cao, D., Liu, W.Z., Wang, J.J., Deng, Y., 2024. Unveiling the deterministic dynamics of microbial meta-metabolism: a multi-omics investigation of anaerobic biodegradation. Microbiome12, 166.

[55]

Zhang, T.T., Zeng, S.L., Gao, Y., Ouyang, Z.T., Li, B., Fang, C.M., Zhao, B., 2011. Assessing impact of land uses on land salinization in the Yellow River Delta, China using an integrated and spatial statistical model. Land Use Policy28, 857–866.

[56]

Zhang, X.X., Zhang, R.J., Gao, J.S., Wang, X.C., Fan, F.L., Ma, X.T., Yin, H.Q., Zhang, C.W., Feng, K., Deng, Y., 2017. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biology and Biochemistry104, 208–217.

[57]

Zheng, S., Wu, B.S., Wang, K.R., Tan, G.M., Han, S.S., Thorne, C.R., 2017. Evolution of the Yellow River delta, China: impacts of channel avulsion and progradation. International Journal of Sediment Research32, 34–44.

[58]

Zhou, Y.Q., Sun, B.Y., Xie, B.H., Feng, K., Zhang, Z.J., Zhang, Z., Li, S.Z., Du, X.F., Zhang, Q., Gu, S.S., Song, W., Wang, L.L., Xia, J.Y., Han, G.X., Deng, Y., 2021. Warming reshaped the microbial hierarchical interactions. Global Change Biology27, 6331–6347.

[59]

Zhou, Z., Zhang, C.J., Liu, P.F., Fu, L., Laso-Pérez, R., Yang, L., Bai, L.P., Li, J., Yang, M., Lin, J.Z., Wang, W.D., Wegener, G., Li, M., Cheng, L., 2022. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. Nature601, 257–262.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3622KB)

Supplementary files

SEL-00295-of-DY_suppl_1

428

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/