Does the mycorrhizal mediation hypothesis capture biogeographical patterns in plant-soil feedback? the case of conspecific negative density dependencies

Stavros D. Veresoglou , Hans Lambers

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (2) : 250293

PDF (1171KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (2) : 250293 DOI: 10.1007/s42832-025-0293-3
PERSPECTIVE

Does the mycorrhizal mediation hypothesis capture biogeographical patterns in plant-soil feedback? the case of conspecific negative density dependencies

Author information +
History +
PDF (1171KB)

Abstract

Conspecific negative density dependencies (CNDDs) foster biodiversity through reducing the chances of competitive exclusion in plant communities and have therefore fascinated ecologists. A major driver of CNDDs is plant-soil feedback, and a lot of the literature assumes that the triggers of CNDDs concur with those for plant-soil feedback. Here, we suggest that a core assumption of a lot of the literature on CNDDs, that CNDDs are stronger in AM-associated than ECM-associated trees, is not quite as well supported as widely claimed. We think that dismissing this very important consideration prevents us from identifying a major gap in the literature on CNDDs. The vast majority of the literature on mycorrhiza-induced CNDDs originates from temperate systems, but the findings are extrapolated across divergent ecosystems. We then develop the argument that likely propagule limitations for arbuscular mycorrhizal trees in temperate forests might be inducing stronger CNDDs than they do at propagule sufficiency, which arbuscular mycorrhizal trees usually experience in other systems. We are thus contributing a new hypothesis in the field of mycorrhizal ecology with the potential to unify observations across scales and biomes.

Graphical abstract

Keywords

conspecific negative density dependencies / conspecific spatial aggregation / mycorrhizal types / plant soil feedback / subtropical forests

Highlight

● CNDDs are thought to be stronger in AM-associating than ECM-associating trees.

● Most of the studies on CNDNs have been carried out in temperate systems.

● Mycorrhizal propagule constraints could exacerbate CNDNs of AM-trees at high latitudes.

● As a result overgeneralizations of existing findings on CNDNs could be precarious.

Cite this article

Download citation ▾
Stavros D. Veresoglou, Hans Lambers. Does the mycorrhizal mediation hypothesis capture biogeographical patterns in plant-soil feedback? the case of conspecific negative density dependencies. Soil Ecology Letters, 2025, 7(2): 250293 DOI:10.1007/s42832-025-0293-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albornoz, F.E., Dixon, K.W., Lambers, H., 2021. Revisiting mycorrhizal dogmas: Are mycorrhizas really functioning as they are widely believed to do? Soil Ecology Letters 3, 73–82.

[2]

Chen, L., Swenson, N.G., Ji, N.N., Mi, X.C., Ren, H.B., Guo, L.D., Ma, K.P., 2019. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science366, 124–128.

[3]

Connell, J.H., 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: den Boer, P.J., Gradwell, G.R., eds. Dynamics of Populations. Wageningen: Centre for Agricultural Publishing and Documentation, 298–312.

[4]

Delavaux, C.S., LaManna, J.A., Myers, J.A., Phillips, R.P., Aguilar, S., Allen, D., Alonso, A., Anderson-Teixeira, K.J., Baker, M.E., Baltzer, J.L., Bissiengou, P., Bonfim, M., Bourg, N.A., Brockelman, W.Y., Burslem, D.F.R.P., Chang, L.W., Chen, Y., Chiang, J.M., Chu, C.J., Clay, K., Cordell, S., Cortese, M., Den Ouden, J., Dick, C., Ediriweera, S., Ellis, E.C., Feistner, A., Freestone, A.L., Giambelluca, T., Giardina, C.P., Gilbert, G.S., He, F.L., Holík, J., Howe, R.W., Huaraca Huasca, W., Hubbell, S.P., Inman, F., Jansen, P.A., Johnson, D.J., Kral, K., Larson, A.J., Litton, C.M., Lutz, J.A., Malhi, Y., Mcguire, K., Mcmahon, S.M., Mcshea, W.J., Memiaghe, H., Nathalang, A., Norden, N., Novotny, V., O’brien, M.J., Orwig, D.A., Ostertag, R., Parker, G.G., Pérez, R., Reynolds, G., Russo, S.E., Sack, L., Šamonil, P., Sun, I.F., Swanson, M.E., Thompson, J., Uriarte, M., Vandermeer, J., Wang, X.H., Ware, I., Weiblen, G.D., Wolf, A., Wu, S.H., Zimmerman, J.K., Lauber, T., Maynard, D.S., Crowther, T.W., Averill, C., 2023. Mycorrhizal feedbacks influence global forest structure and diversity. Communications Biology6, 1066.

[5]

Eagar, A.C., Abu, P.H., Brown, M.A., Moledor, S.M., Smemo, K.A., Phillips, R.P., Case, A.L., Blackwood, C.B., 2024. Setting the stage for plant–soil feedback: Mycorrhizal influences over conspecific recruitment, plant and fungal communities, and coevolution. Journal of Ecology 00, 1–18.

[6]

Eagar, A.C., Cosgrove, C.R., Kershner, M.W., Blackwood, C.B., 2020. Dominant community mycorrhizal types influence local spatial structure between adult and juvenile temperate forest tree communities. Functional Ecology34, 2571–2583.

[7]

Furniss, T.J., Larson, A.J., Lutz, J.A., 2017. Reconciling niches and neutrality in a subalpine temperate forest. Ecosphere8, e01847.

[8]

Grünfeld, L., Skias, G., Rillig, M.C., Veresoglou, S.D., 2022. Arbuscular mycorrhizal root colonization depends on the spatial distribution of the host plants. Mycorrhiza32, 387–395.

[9]

Grünfeld, L., Wulf, M., Rillig, M.C., Manntschke, A., Veresoglou, S.D., 2020. Neighbours of arbuscular-mycorrhiza associating trees are colonized more extensively by arbuscular mycorrhizal fungi than their conspecifics in ectomycorrhiza dominated stands. New Phytologist227, 10–13.

[10]

Guy, P., Sibly, R., Smart, S.M., Tibbett, M., Pickles, B.J., 2022. Mycorrhizal type of woody plants influences understory species richness in British broadleaved woodlands. New Phytologist235, 2046–2053.

[11]

Janzen, D.H., 1970. Herbivores and the number of tree species in tropical forests. The American Naturalist104, 501–528.

[12]

Koga, W., Sasaki, T., Matsukura, K., Masaka, K., Seiwa, K., 2023. Roles of pathogens and mycorrhizae in conspecific negative distance dependency and replacement of tree species in a temperate forest. Forest Ecology and Management544, 121177.

[13]

Kulmatiski, A., Beard, K.H., Stevens, J.R., Cobbold, S.M., 2008. Plant–soil feedbacks: a meta-analytical review. Ecology Letters11, 980–992.

[14]

Li, G.C., Lambers, H., Veresoglou, S.D., 2023. Mycorrhizal ecology would benefit from region-specific hypotheses. Pedobiologia101, 150908.

[15]

Liang, M.X., Johnson, D., Burslem, D.F.R.P., Yu, S.X., Fang, M., Taylor, J.D., Taylor, A.F.S., Helgason, T., Liu, X.B., 2020. Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nature Communications11, 2636.

[16]

Liang, M.X., Shi, L.Q., Burslem, D.F.R.P., Johnson, D., Fang, M., Zhang, X.Y., Yu, S.X., 2021. Soil fungal networks moderate density-dependent survival and growth of seedlings. New Phytologist230, 2061–2071.

[17]

Liu, R.Q., Zhou, X.H., He, Y.H., Du, Z.G., Chen, H.Y., Fu, Y.L., Guo, L.Q., Zhou, G.Y., Zhou, L.Y., Li, J., Chai, H., Huang, C.J., Delgado-Baquerizo, M., 2024. A transition from arbuscular to ectomycorrhizal forests halts soil carbon sequestration during subtropical forest rewilding. Science of the Total Environment946, 174330.

[18]

Lutz, J.A., Larson, A.J., Swanson, M.E., Freund, J.A., 2012. Ecological importance of large-diameter trees in a temperate mixed-conifer forest. PLoS One7, e36131.

[19]

Pan, Y.M., Wang, Y.H., He, X.B., Zhang, S.R., Song, X.Z., Zhang, N.L., 2024. Plant–soil feedback is dependent on tree mycorrhizal types and tree species richness in a subtropical forest. Geoderma442, 116780.

[20]

Phillips, R.P., Brzostek, E., Midgley, M.G., 2013. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytologist199, 41–51.

[21]

Sasaki, T., Konno, M., Hasegawa, Y., Imaji, A., Terabaru, M., Nakamura, R., Ohira, N., Matsukura, K., Seiwa, K., 2019. Role of mycorrhizal associations in tree spatial distribution patterns based on size class in an old-growth forest. Oecologia189, 971–980.

[22]

Tedersoo, L., Bahram, M., Zobel, M., 2020. How mycorrhizal associations drive plant population and community biology. Science367, eaba1223.

[23]

Veresoglou, S.D., Rillig, M.C., 2012. Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biology Letters8, 214–217.

[24]

Veresoglou, S.D., Rillig, M.C., 2014. Challenging cherished ideas in mycorrhizal ecology: the Baylis postulate. New Phytologist204, 1–3.

[25]

Veresoglou, S.D., Wulf, M., Rillig, M.C., 2017. Facilitation between woody and herbaceous plants that associate with arbuscular mycorrhizal fungi in temperate European forests. Ecology and Evolution7, 1181–1189.

[26]

Wills, C., Harms, K.E., Condit, R., King, D., Thompson, J., He, F.L., Muller-Landau, H.C., Ashton, P., Losos, E., Comita, L., Hubbell, S., Lafrankie, J., Bunyavejchewin, S., Dattaraja, H.S., Davies, S., Esufali, S., Foster, R., Gunatilleke, N., Gunatilleke, S., Hall, P., Itoh, A., John, R., Kiratiprayoon, S., De Lao, S.L., Massa, M., Nath, C., Noor, M.N.S., Kassim, A.R., Sukumar, R., Suresh, H.S., Sun, I.F., Tan, S., Yamakura, T., Zimmerman, J., 2006. Nonrandom processes maintain diversity in tropical forests. Science311, 527–531.

[27]

Wulantuya, Masaka, K., Bayandala, Fukasawa, Y., Matsukura, K., Seiwa, K., 2020. Gap creation alters the mode of conspecific distance-dependent seedling establishment via changes in the relative influence of pathogens and mycorrhizae. Oecologia192, 449–462.

[28]

Xi, J.J., Li, G.C., Wang, M., Veresoglou, S.D., 2024. Leaf area predicts conspecific spatial aggregation of woody species. Global Ecology and Biogeography33, e13887.

[29]

Zubek, S., Rożek, K., Stefanowicz, A.M., Błaszkowski, J., Stanek, M., Gielas, I., Rola, K., 2021. The impact of beech and riparian forest herbaceous plant species with contrasting traits on arbuscular mycorrhizal fungi abundance and diversity. Forest Ecology and Management492, 119245.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1171KB)

Supplementary files

SEL-00293-OF-VS_suppl_1

436

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/