Distinct patterns of soil bacterial and fungal communities in the treeline ecotone

Huijun Xu , Congcong Shen , Jiang Wang , Yuan Ge

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (2) : 240287

PDF (4352KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (2) : 240287 DOI: 10.1007/s42832-024-0287-6
RESEARCH ARTICLE

Distinct patterns of soil bacterial and fungal communities in the treeline ecotone

Author information +
History +
PDF (4352KB)

Abstract

The upward shift of the alpine treeline driven by global climate change has been extensively observed across many mountain ecosystems worldwide. However, variations in belowground microbial communities in the treeline ecotone, as well as the influence of microtopographic factors (e.g., slope aspect) on these changes, remain unclear. Here, we collected soil samples from different aspects above or below the treeline and analyzed the microbial communities using high-throughput sequencing. Our study revealed distinct community characteristics, co-occurrence patterns, and assembly processes between bacterial and fungal communities. Especially, homogeneous selection and dispersal limitation played dominant roles in shaping bacterial and fungal communities, respectively. Keystone bacteria were more critical for maintaining network stability above the treeline, while fungi were the keystone taxa for network stability below the treeline. We also found that oligotrophic species such as Acidobacteriota, Chloroflexi, Verrucomicrobiota, and Ascomycota were predominantly enriched above the treeline, whereas copiotrophic species like Proteobacteria, Gemmatimonadota, Actinobacteriota, and Firmicutes were more abundant below the treeline. Our results uncovered that microbial communities responded greatly to treeline shift than slope aspect, and also imply that the upward shift of the alpine treeline may increase the stochasticity of microbial communities. These findings facilitate our understanding of how microbial communities in the treeline transition zones of alpine ecosystems respond to global warming and their potential effects on soil carbon dynamics.

Graphical abstract

Keywords

alpine treeline / slope aspect / r/K strategy / keystone species / community assembly / Qinghai-Tibet Plateau

Highlight

● Homogeneous selection and dispersal limitation played dominant roles in shaping bacterial and fungal communities, respectively.

● Keystone bacteria were more critical for maintaining network stability above the treeline, while fungi were the keystone taxa for network stability below the treeline.

● Oligotrophic species were predominantly enriched above the treeline, whereas copiotrophic species were more abundant below the treeline.

● Microbial communities responded greatly to treeline shift than slope aspect.

Cite this article

Download citation ▾
Huijun Xu, Congcong Shen, Jiang Wang, Yuan Ge. Distinct patterns of soil bacterial and fungal communities in the treeline ecotone. Soil Ecology Letters, 2025, 7(2): 240287 DOI:10.1007/s42832-024-0287-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aakala, T., Hari, P., Dengel, S., Newberry, S.L., Mizunuma, T., Grace, J., 2014. A prominent stepwise advance of the tree line in north‐east Finland. Journal of Ecology102, 1582–1591.

[2]

Agler, M.T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.T., Weigel, D., Kemen, E.M., 2016. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology14, e1002352.

[3]

Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., West, G.B., 2004. Toward a metabolic theory of ecology. Ecology85, 1771–1789.

[4]

Callahan, B.J., McMurdie, P.J., Holmes, S.P., 2017. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal11, 2639–2643.

[5]

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.

[6]

Catalán, N., Rofner, C., Verpoorter, C., Pérez, M.T., Dittmar, T., Tranvik, L., Sommaruga, R., Peter, H., 2024. Treeline displacement may affect lake dissolved organic matter processing at high latitudes and altitudes. Nature Communications15, 2640.

[7]

Chen, H.Y., Jing, Q.F., Liu, X., Zhou, X.H., Fang, C.M., Li, B., Zhou, S.R., Nie, M., 2022. Microbial respiratory thermal adaptation is regulated by r-/K-strategy dominance. Ecology Letters25, 2489–2499.

[8]

Cheng, W.X., Zhang, Q.L., Coleman, D.C., Ronald Carroll, C., Hoffman, C.A., 1996. Is available carbon limiting microbial respiration in the rhizosphere? Soil Biology and Biochemistry 28, 1283–1288.

[9]

Cleveland, C.C., Nemergut, D.R., Schmidt, S.K., Townsend, A.R., 2007. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry82, 229–240.

[10]

Coyte, K.Z., Schluter, J., Foster, K.R., 2015. The ecology of the microbiome: networks, competition, and stability. Science350, 663–666.

[11]

Dai, T.J., Wen, D.H., Bates, C.T., Wu, L.W., Guo, X., Liu, S., Su, Y.F., Lei, J.S., Zhou, J.Z., Yang, Y.F., 2022. Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities. Nature Communications13, 175.

[12]

de Boer, W., Folman, L.B., Summerbell, R.C., Boddy, L., 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews29, 795–811.

[13]

Deng, Y., Zhang, P., Qin, Y.J., Tu, Q.C., Yang, Y.F., He, Z.L., Schadt, C.W., Zhou, J.Z., 2016. Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation. Environmental Microbiology18, 205–218.

[14]

Devi, N., Hagedorn, F., Moiseev, P., Bugmann, H., Shiyatov, S., Mazepa, V., Rigling, A., 2008. Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Global Change Biology14, 1581–1591.

[15]

Dial, R.J., Maher, C.T., Hewitt, R.E., Wockenfuss, A.M., Wong, R.E., Crawford, D.J., Zietlow, M.G., Sullivan, P.F., 2024. Arctic sea ice retreat fuels boreal forest advance. Science383, 877–884.

[16]

Ding, J.J., Zhang, Y.G., Deng, Y., Cong, J., Lu, H., Sun, X., Yang, C.Y., Yuan, T., Van Nostrand, J.D., Li, D.Q., Zhou, J.Z., Yang, Y.F., 2015. Integrated metagenomics and network analysis of soil microbial community of the forest timberline. Scientific Reports5, 7994.

[17]

Fajardo, A., McIntire, E.J.B., 2012. Reversal of multicentury tree growth improvements and loss of synchrony at mountain tree lines point to changes in key drivers. Journal of Ecology100, 782–794.

[18]

Fan, Q.P., Liu, K.F., Wang, Z.L., Liu, D., Li, T., Hou, H.Y., Zhang, Z.J., Chen, D.H., Zhang, S., Yu, A.L., Deng, Y.C., Cui, X.Y., Che, R.X., 2024. Soil microbial subcommunity assembly mechanisms are highly variable and intimately linked to their ecological and functional traits. Molecular Ecology33, e17302.

[19]

Fetzer, J., Moiseev, P., Frossard, E., Kaiser, K., Mayer, M., Gavazov, K., Hagedorn, F., 2024. Plant–soil interactions alter nitrogen and phosphorus dynamics in an advancing subarctic treeline. Global Change Biology30, e17200.

[20]

Fouquier, J., Rideout, J.R., Bolyen, E., Chase, J., Shiffer, A., McDonald, D., Knight, R., Caporaso, J.G., Kelley, S.T., 2016. ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses. Microbiome4, 11.

[21]

Franke, A.K., Bräuning, A., Timonen, M., Rautio, P., 2017. Growth response of Scots pines in polar-alpine tree-line to a warming climate. Forest Ecology and Management399, 94–107.

[22]

Fu, F.W., Li, J.R., Li, Y.Y., Chen, W.S., Ding, H.H., Xiao, S.Y., 2023. Simulating the effect of climate change on soil microbial community in an Abies georgei var. smithii forest. Frontiers in Microbiology14, 1189859.

[23]

Gaudel, G., Xing, L., Shrestha, S., Poudel, M., Sherpa, P., Raseduzzaman, M., Zhang, X.F., 2024. Microbial mechanisms regulate soil organic carbon mineralization under carbon with varying levels of nitrogen addition in the above-treeline ecosystem. Science of the Total Environment917, 170497.

[24]

Genre, A., Lanfranco, L., Perotto, S., Bonfante, P., 2020. Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology18, 649–660.

[25]

Hassani, M.A., Durán, P., Hacquard, S., 2018. Microbial interactions within the plant holobiont. Microbiome6, 58.

[26]

Hassett, M.O., Fischer, M.W.F., Money, N.P., 2015. Mushrooms as rainmakers: how spores act as nuclei for raindrops. PLoS One10, e0140407.

[27]

Huang, Q., Wang, B.R., Shen, J.K., Xu, F.J., Li, N., Jia, P.H., Jia, Y.J., An, S.S., Amoah, I.D., Huang, Y.M., 2024. Shifts in C-degradation genes and microbial metabolic activity with vegetation types affected the surface soil organic carbon pool. Soil Biology and Biochemistry192, 109371.

[28]

Ke, W.S., Li, C.X., Zhu, F., Luo, X.H., Li, X., Wu, C., Hartley, W., Xue, S.G., 2023. The assembly process and co-occurrence patterns of soil microbial communities at a lead smelting site. Science of the Total Environment894, 164932.

[29]

Körner, C., Paulsen, J., 2004. A world-wide study of high altitude treeline temperatures. Journal of Biogeography31, 713–732.

[30]

Lai, J.S., Zou, Y., Zhang, J.L., Peres‐Neto, P.R., 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp R package. Methods in Ecology and Evolution13, 782–788.

[31]

Li, J.J., Fan, M.C., Wei, Z.H., Zhang, K., Ma, X., Shangguan, Z.P., 2024a. Broad environmental adaptation of abundant microbial taxa in Robinia pseudoacacia forests during long-term vegetation restoration. Environmental Research242, 117720.

[32]

Li, S.D., Fang, J., Zhu, X.S., Spencer, R.G.M., Álvarez -Salgado, X.A., Deng, Y.C., Huang, T., Yang, H., Huang, C.C., 2022. Properties of sediment dissolved organic matter respond to eutrophication and interact with bacterial communities in a plateau lake. Environmental Pollution301, 118996.

[33]

Li, X.W., Li, X.L., Shi, Y., Zhao, S.J., Liu, J.L., Lin, Y.Y., Li, C.L., Zhang, C.H., 2024b. Effects of microtopography on soil microbial communities in alpine meadows on the Qinghai-Tibetan Plateau. CATENA239, 107945.

[34]

Li, W.J., Xia, Y., Li, N., Chang, J., Liu, J., Wang, P., He, X.W., 2024c. Temporal assembly patterns of microbial communities in three parallel bioreactors treating low-concentration coking wastewater with differing carbon source concentrations. Journal of Environmental Sciences137, 455–468.

[35]

Liang, E.Y., Wang, Y.F., Piao, S.L., Lu, X.M., Camarero, J.J., Zhu, H.F., Zhu, L.P., Ellison, A.M., Ciais, P., Peñuelas, J., 2016. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America113, 4380–4385.

[36]

Lu, X.M., Liang, E.Y., Wang, Y.F., Babst, F., Camarero, J.J., 2021. Mountain treelines climb slowly despite rapid climate warming. Global Ecology and Biogeography30, 305–315.

[37]

Luan, L., Shi, G.P., Zhu, G.F., Zheng, J., Fan, J.B., Dini-Andreote, F., Sun, B., Jiang, Y.J., 2023. Biogeographical patterns of abundant and rare bacterial biospheres in paddy soils across East Asia. Environmental Microbiology25, 294–305.

[38]

Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal17, 10–12.

[39]

Mayor, J.R., Sanders, N.J., Classen, A.T., Bardgett, R.D., Clément, J.C., Fajardo, A., Lavorel, S., Sundqvist, M.K., Bahn, M., Chisholm, C., Cieraad, E., Gedalof, Z., Grigulis, K., Kudo, G., Oberski, D.L., Wardle, D.A., 2017. Elevation alters ecosystem properties across temperate treelines globally. Nature542, 91–95.

[40]

Miehe, G., Miehe, S., Vogel, J., Co, S., La, D., 2007. Highest treeline in the northern hemisphere found in southern Tibet. Mountain Research and Development27, 169–173.

[41]

Ning, D.L., Yuan, M.T., Wu, L.W., Zhang, Y., Guo, X., Zhou, X.S., Yang, Y.F., Arkin, A.P., Firestone, M.K., Zhou, J.Z., 2020. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications11, 4717.

[42]

Osburn, E.D., Aylward, F.O., Barrett, J.E., 2021. Historical land use has long-term effects on microbial community assembly processes in forest soils. ISME Communications1, 48.

[43]

Parsapour, M.K., Kooch, Y., Hosseini, S.M., Alavi, S.J., 2018. C and N cycle monitoring under Quercus castaneifolia plantation. Forest Ecology and Management427, 26–36.

[44]

Peay, K.G., Baraloto, C., Fine, P.V.A., 2013. Strong coupling of plant and fungal community structure across western Amazonian rainforests. The ISME Journal7, 1852–1861.

[45]

Piton, G., Allison, S.D., Bahram, M., Hildebrand, F., Martiny, J.B.H., Treseder, K.K., Martiny, A.C., 2023. Life history strategies of soil bacterial communities across global terrestrial biomes. Nature Microbiology8, 2093–2102.

[46]

Razanamalala, K., Razafimbelo, T., Maron, P.A., Ranjard, L., Chemidlin, N., Lelièvre, M., Dequiedt, S., Ramaroson, V.H., Marsden, C., Becquer, T., Trap, J., Blanchart, E., Bernard, L., 2018. Soil microbial diversity drives the priming effect along climate gradients: a case study in Madagascar. The ISME Journal12, 451–462.

[47]

Sigdel, S.R., Wang, Y.F., Camarero, J.J., Zhu, H.F., Liang, E.Y., Peñuelas, J., 2018. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Global Change Biology24, 5549–5559.

[48]

Singh, B.K., Bardgett, R.D., Smith, P., Reay, D.S., 2010. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology8, 779–790.

[49]

Sokol, N.W., Sanderman, J., Bradford, M.A., 2019. Pathways of mineral‐associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Global Change Biology25, 12–24.

[50]

Sokol, N.W., Slessarev, E., Marschmann, G.L., Nicolas, A., Blazewicz, S.J., Brodie, E.L., Firestone, M.K., Foley, M.M., Hestrin, R., Hungate, B.A., Koch, B.J., Stone, B.W., Sullivan, M.B., Zablocki, O., LLNL Soil Microbiome Consortium, Pett-Ridge, J., 2022. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nature Reviews Microbiology20, 415–430.

[51]

Stegen, J.C., Lin, X.J., Fredrickson, J.K., Chen, X.Y., Kennedy, D.W., Murray, C.J., Rockhold, M.L., Konopka, A., 2013. Quantifying community assembly processes and identifying features that impose them. The ISME Journal7, 2069–2079.

[52]

Tedersoo, L., Sánchez-Ramírez, S., Kõljalg, U., Bahram, M., Döring, M., Schigel, D., May, T., Ryberg, M., Abarenkov, K., 2018. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Diversity90, 135–159.

[53]

Telford, R.J., Vandvik, V., Birks, H.J.B., 2006. Dispersal limitations matter for microbial morphospecies. Science312, 1015.

[54]

Tripathi, B.M., Stegen, J.C., Kim, M., Dong, K., Adams, J.M., Lee, Y.K., 2018. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. The ISME Journal12, 1072–1083.

[55]

van der Heijden, M.G.A., Bardgett, R.D., van Straalen, N.M., 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters11, 296–310.

[56]

Wang, X.Y., Wang, T., Xu, J.F., Shen, Z.H., Yang, Y.P., Chen, A.P., Wang, S.P., Liang, E.Y., Piao, S.L., 2022. Enhanced habitat loss of the Himalayan endemic flora driven by warming-forced upslope tree expansion. Nature Ecology & Evolution6, 890–899.

[57]

Yang, Y.Y., Chen, Q.Q., Zhou, Y., Yu, W., Shi, Z., 2024. Soil bacterial community composition and function play roles in soil carbon balance in alpine timberline ecosystems. Journal of Soils and Sediments24, 323–336.

[58]

Yang, T., Tedersoo, L., Liu, X., Gao, G.F., Dong, K., Adams, J.M., Chu, H.Y., 2022. Fungi stabilize multi-kingdom community in a high elevation timberline ecosystem. iMeta1, e49.

[59]

Ye, G.P., Wang, Y.Y., Cui, X.D., Jin, Y., Hu, H.W., Liu, J., Guo, Z.Y., Lin, Y.X., 2024. High stochasticity in rare bacterial community assembly in rice-wheat rotation soils at a regional scale. Soil Biology and Biochemistry195, 109479.

[60]

Yuan, M.M., Guo, X., Wu, L.W., Zhang, Y., Xiao, N.J., Ning, D.L., Shi, Z., Zhou, X.S., Wu, L.Y., Yang, Y.F., Tiedje, J.M., Zhou, J.Z., 2021. Climate warming enhances microbial network complexity and stability. Nature Climate Change11, 343–348.

[61]

Zhang, C.F., de Pasquale, S., Hartman, K., Stanley, C.E., Berendsen, R.L., van der Heijden, M.G.A., 2024. The microbial contribution to litter decomposition and plant growth. Environmental Microbiology Reports16, e13205.

[62]

Zhao, D.H., Shen, C.C., Zhang, Z.M., Wang, J.C., Zhang, L.M., Chen, B.D., Sun, G.X., Ge, Y., 2024. Interactions between soil bacterial communities, assembly processes and microbial functions along the elevational gradient. CATENA235, 107698.

[63]

Zhou, J.Z., Deng, Y., Zhang, P., Xue, K., Liang, Y.T., Van Nostrand, J.D., Yang, Y.F., He, Z.L., Wu, L.Y., Stahl, D.A., Hazen, T.C., Tiedje, J.M., Arkin, A.P., 2014. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proceedings of the National Academy of Sciences of the United States of America111, E836–E845.

[64]

Zhou, H., Gao, Y., Jia, X.H., Wang, M.M., Ding, J.J., Cheng, L., Bao, F., Wu, B., 2020. Network analysis reveals the strengthening of microbial interaction in biological soil crust development in the Mu Us Sandy Land, northwestern China. Soil Biology and Biochemistry144, 107782.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4352KB)

Supplementary files

SEL-00287-OF-GY_suppl_1

1152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/