Genetic potential of soil microbial nitrogen cycling affected by human activities and climate factors

Tao Lu , Chaotang Lei , Nuohan Xu , Qi Zhang , Zhenyan Zhang , Jian Kang , Mingkang Jin , Tingzhang Wang , Wenjie Hong , Shuijin Hu , Haifeng Qian

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (2) : 240283

PDF (5124KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (2) : 240283 DOI: 10.1007/s42832-024-0283-x
RESEARCH ARTICLE

Genetic potential of soil microbial nitrogen cycling affected by human activities and climate factors

Author information +
History +
PDF (5124KB)

Abstract

The soil nitrogen cycle is primarily driven by microbial communities and provides reactive nitrogen for all organisms. With the increasing impact of human activities and climate change, biogeographical explicit patterns of soil microbial nitrogen-cycling genes and their associations with nitrogen fluxes are still unknown at the global scale. By conducting a global analysis of 1198 soil metagenomic samples, we verified that agricultural land displayed lower microbial richness and diversity values than did the other habitats. We generated a global map of the genetic potential of N cycle processes in soil and revealed that denitrification and dissimilatory nitrate reduction processes are greater in agricultural centers than in non-agricultural areas and are mainly driven by the mean annual temperature and nitrogen fertilizer application. Soil nitrous oxide (N2O) emissions are greater in agricultural land than in other habitats and are mainly driven by nitrogen fertilizer application, which is consistent with the genetic potential of N2O synthesis. Our study improves the theoretical framework for predicting global soil nitrogen cycling potential under complex variables and highlights the influence weight of human activities and climate factors. We strongly emphasize the importance of rationally applying nitrogen fertilizers to balance agricultural production, ecological health and climate change.

Graphical abstract

Keywords

soil nitrogen cycle / nitrous oxide / microbial N-cycling genes / nitrogen fertilizer / Anthropocene

Highlight

● 1198 soil metagenomic samples were screened and analyzed for N cycling research.

● We generated a global map of the genetic potential of N cycle processes in soil.

● Denitrification and DNRA related genes are of high potential in agricultural centers.

● Genetic potential of N2O synthesis could be driven by N fertilizer application.

Cite this article

Download citation ▾
Tao Lu, Chaotang Lei, Nuohan Xu, Qi Zhang, Zhenyan Zhang, Jian Kang, Mingkang Jin, Tingzhang Wang, Wenjie Hong, Shuijin Hu, Haifeng Qian. Genetic potential of soil microbial nitrogen cycling affected by human activities and climate factors. Soil Ecology Letters, 2025, 7(2): 240283 DOI:10.1007/s42832-024-0283-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bahram, M., Espenberg, M., Pärn, J., Lehtovirta-Morley, L., Anslan, S., Kasak, K., Kõljalg, U., Liira, J., Maddison, M., Moora, M., Niinemets, Ü., Öpik, M., Pärtel, M., Soosaar, K., Zobel, M., Hildebrand, F., Tedersoo, L., Mander, U., 2022. Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nature Communications13, 1430.

[2]

Bahram, M., Hildebrand, F., Forslund, S.K., Anderson, J.L., Soudzilovskaia, N.A., Bodegom, P.M., Bengtsson-Palme, J., Anslan, S., Coelho, L.P., Harend, H., Huerta-Cepas, J., Medema, M.H., Maltz, M.R., Mundra, S., Olsson, P.A., Pent, M., Põlme, S., Sunagawa, S., Ryberg, M., Tedersoo, L., Bork, P., 2018. Structure and function of the global topsoil microbiome. Nature560, 233–237.

[3]

Bai, E., Li, S.L., Xu, W.H., Li, W., Dai, W.W., Jiang, P., 2013. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist199, 441–451.

[4]

Beaulieu, J.J., Tank, J.L., Hamilton, S.K., Wollheim, W.M., Hall Jr, R.O., Mulholland, P.J., Peterson, B.J., Ashkenas, L.R., Cooper, L.W., Dahm, C.N., Dodds, W.K., Grimm, N.B., Johnson, S.L., McDowell, W.H., Poole, G.C., Valett, H.M., Arango, C.P., Bernot, M.J., Burgin, A.J., Crenshaw, C.L., Helton, A.M., Johnson, L.T., O'Brien, J.M., Potter, J.D., Sheibley, R.W., Sobota, D.J., Thomas, S.M., 2010. Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of Sciences of the United States of America108, 214–219.

[5]

Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120.

[6]

Breiman, L., 2001. Random forests. Machine Learning45, 5–32.

[7]

Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods12, 59–60.

[8]

Canfield, D.E., Glazer, A.N., Falkowski, P.G., 2010. The evolution and future of earth's nitrogen cycle. Science330, 192–196.

[9]

Cleveland, C.C., Houlton, B.Z., Smith, W.K., Marklein, A.R., Reed, S.C., Parton, W., Del Grosso, S.J., Running, S.W., 2013. Patterns of new versus recycled primary production in the terrestrial biosphere. Proceedings of the National Academy of Sciences of the United States of America110, 12733–12737.

[10]

Coskun, D., Britto, D.T., Shi, W.M., Kronzucker, H.J., 2017. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants3, 17074.

[11]

Crutzen, P.J., Mosier, A.R., Smith, K.A., Winiwarter, W., 2008. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics8, 389–395.

[12]

Cui, J.L., Zhang, X.M., Reis, S., Wang, C., Wang, S.T., He, P.Y., Chen, H.Y., van Grinsven, H.J.M., Gu, B.J., 2023. Nitrogen cycles in global croplands altered by elevated CO2. Nature Sustainability6, 1166–1176.

[13]

Cui, P.Y., Fan, F.L., Yin, C., Song, A.L., Huang, P.R., Tang, Y.J., Zhu, P., Peng, C., Li, T.Q., Wakelin, S.A., Liang, Y.C., 2016. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biology and Biochemistry93, 131–141.

[14]

Erisman, J.W., Sutton, M.A., Galloway, J., Klimont, Z., Winiwarter, W., 2008. How a century of ammonia synthesis changed the world. Nature Geoscience1, 636–639.

[15]

Fierer, N., Leff, J.W., Adams, B.J., Nielsen, U.N., Bates, S.T., Lauber, C.L., Owens, S., Gilbert, J.A., Wall, D.H., Caporaso, J.G., 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America109, 21390–21395.

[16]

Friedman, J., Hastie, T., Tibshirani, R., 2010. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software33, 1–22.

[17]

Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z.C., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., Sutton, M.A., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science320, 889–892.

[18]

Greaver, T.L., Clark, C.M., Compton, J.E., Vallano, D., Talhelm, A.F., Weaver, C.P., Band, L.E., Baron, J.S., Davidson, E.A., Tague, C.L., Felker-Quinn, E., Lynch, J.A., Herrick, J.D., Liu, L., Goodale, C.L., Novak, K.J., Haeuber, R.A., 2016. Key ecological responses to nitrogen are altered by climate change. Nature Climate Change6, 836–843.

[19]

Gruber, N., Galloway, J.N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature451, 293–296.

[20]

Gu, B.J., Zhang, X.M., Lam, S.K., Yu, Y.L., van Grinsven, H.J.M., Zhang, S.H., Wang, X.X., Bodirsky, B.L., Wang, S.T., Duan, J.K., Ren, C.C., Bouwman, L., de Vries, W., Xu, J.M., Sutton, M.A., Chen, D.L., 2023. Cost-effective mitigation of nitrogen pollution from global croplands. Nature613, 77–84.

[21]

Guerra, C.A., Berdugo, M., Eldridge, D.J., Eisenhauer, N., Singh, B.K., Cui, H.Y., Abades, S., Alfaro, F.D., Bamigboye, A.R., Bastida, F., Blanco-Pastor, J.L., de los Ríos, A., Durán, J., Grebenc, T., Illán, J.G., Liu, Y.R., Makhalanyane, T.P., Mamet, S., Molina-Montenegro, M.A., Moreno, J.L., Mukherjee, A., Nahberger, T.U., Peñaloza-Bojacá, G.F., Plaza, C., Picó, S., Verma, J.P., Rey, A., Rodríguez, A., Tedersoo, L., Teixido, A.L., Torres-Díaz, C., Trivedi, P., Wang, J.T., Wang, L., Wang, J.Y., Zaady, E., Zhou, X.B., Zhou, X.Q., Delgado-Baquerizo, M., 2022. Global hotspots for soil nature conservation. Nature610, 693–698.

[22]

Hutchins, D.A., Capone, D.G., 2022. The marine nitrogen cycle: new developments and global change. Nature Reviews Microbiology20, 401–414.

[23]

Junium, C.K., Dickson, A.J., Uveges, B.T., 2018. Perturbation to the nitrogen cycle during rapid Early Eocene global warming. Nature Communications9, 3186.

[24]

Kicklighter, D.W., Melillo, J.M., Monier, E., Sokolov, A.P., Zhuang, Q.L., 2019. Future nitrogen availability and its effect on carbon sequestration in Northern Eurasia. Nature Communications10, 3024.

[25]

Kuypers, M.M.M., Marchant, H.K., Kartal, B., 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology16, 263–276.

[26]

Li, L.C., Yang, M.Y., Li, J.C., Roland, B., Du, Z.L., Wu, D., 2022a. Potential denitrification activity response to long-term nitrogen fertilization - A global meta-analysis. Journal of Cleaner Production336, 130451.

[27]

Li, Y.Z., Gu, X.Y., Yong, T.W., Yang, W.Y. 2024. A global synthesis reveals additive density design drives intercropping effects on soil N-cycling variables. Soil Biology and Biochemistry191, 109318.

[28]

Li, Z.L., Tang, Z., Song, Z.P., Chen, W.N., Tian, D.S., Tang, S.M., Wang, X.Y., Wang, J.S., Liu, W.J., Wang, Y., Li, J., Jiang, L.F., Luo, Y.Q., Niu, S.L., 2022b. Variations and controlling factors of soil denitrification rate. Global Change Biology28, 2133–2145.

[29]

Li, Z.L., Zeng, Z.Q., Tian, D.S., Wang, J.S., Fu, Z., Zhang, F.Y., Zhang, R.Y., Chen, W.N., Luo, Y.Q., Niu, S.L., 2020. Global patterns and controlling factors of soil nitrification rate. Global Change Biology26, 4147–4157.

[30]

Lu, T., Xu, N.H., Lei, C.T., Zhang, Q., Zhang, Z.Y., Sun, L.W., He, F., Zhou, N.Y., Peñuelas, J., Zhu, Y.G., Qian, H.F., 2023. Bacterial biogeography in China and its association to land use and soil organic carbon. Soil Ecology Letters5, 230172.

[31]

MacLaren, C., Mead, A., van Balen, D., Claessens, L., Etana, A., de Haan, J., Haagsma, W., Jäck, O., Keller, T., Labuschagne, J., Myrbeck, Å., Necpalova, M., Nziguheba, G., Six, J., Strauss, J., Swanepoel, P.A., Thierfelder, C., Topp, C., Tshuma, F., Verstegen, H., Walker, R., Watson, C., Wesselink, M., Storkey, J. 2022. Long-term evidence for ecological intensification as a pathway to sustainable agriculture. Nature Sustainability5, 770–779.

[32]

Mueller, N.D., Gerber, J.S., Johnston, M., Ray, D.K., Ramankutty, N., Foley, J.A., 2012. Closing yield gaps through nutrient and water management. Nature490, 254–257.

[33]

Nelson, M.B., Martiny, A.C., Martiny, J.B.H., 2016. Global biogeography of microbial nitrogen-cycling traits in soil. Proceedings of the National Academy of Sciences of the United States of America113, 8033–8040.

[34]

OECD, 2018. Human acceleration of the nitrogen cycle. Available at the website of OECD.

[35]

Putz, M., Schleusner, P., Rütting, T., Hallin, S., 2018. Relative abundance of denitrifying and DNRA bacteria and their activity determine nitrogen retention or loss in agricultural soil. Soil Biology and Biochemistry123, 97–104.

[36]

Qasim, W., Zhao, Y.M., Wan, L., Lv, H.F., Lin, S., Gettel, G.M., Butterbach-Bahl, K., 2022. The potential importance of soil denitrification as a major N loss pathway in intensive greenhouse vegetable production systems. Plant and Soil471, 157–174.

[37]

Ravishankara, A.R., Daniel, J.S., Portmann, R.W., 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science326, 123–125.

[38]

Séneca, J., Söllinger, A., Herbold, C.W., Pjevac, P., Prommer, J., Verbruggen, E., Sigurdsson, B.D., Peñuelas, J., Janssens, I.A., Urich, T., Tveit, A.T., Richter, A., 2021. Increased microbial expression of organic nitrogen cycling genes in long-term warmed grassland soils. ISME Communications1, 69.

[39]

Song, L., Niu, S.L., 2022. Increased soil microbial AOB amoA and narG abundances sustain long-term positive responses of nitrification and denitrification to N deposition. Soil Biology and Biochemistry166, 108539.

[40]

Sun, R.B., Wang, F.H., Hu, C.S., Liu, B.B., 2021. Metagenomics reveals taxon-specific responses of the nitrogen-cycling microbial community to long-term nitrogen fertilization. Soil Biology and Biochemistry156, 108214.

[41]

Tan, E.H., Zou, W.B., Zheng, Z.Z., Yan, X.L., Du, M.G., Hsu, T.C., Tian, L., Middelburg, J.J., Trull, T.W., Kao, S.J., 2020. Warming stimulates sediment denitrification at the expense of anaerobic ammonium oxidation. Nature Climate Change10, 349–355.

[42]

Tao, J.J., Wang, S.S., Liao, T.H., Luo, H.W., 2021. Evolutionary origin and ecological implication of a unique nif island in free-living Bradyrhizobium lineages. The ISME Journal15, 3195–3206.

[43]

Tian, H.Q., Xu, R.T., Canadell, J.G., Thompson, R.L., Winiwarter, W., Suntharalingam, P., Davidson, E.A., Ciais, P., Jackson, R.B., Janssens-Maenhout, G., Prather, M.J., Regnier, P., Pan, N.Q., Pan, S.F., Peters, G.P., Shi, H., Tubiello, F.N., Zaehle, S., Zhou, F., Arneth, A., Battaglia, G., Berthet, S., Bopp, L., Bouwman, A.F., Buitenhuis, E.T., Chang, J.F., Chipperfield, M.P., Dangal, S.R.S., Dlugokencky, E., Elkins, J.W., Eyre, B.D., Fu, B.J., Hall, B., Ito, A., Joos, F., Krummel, P.B., Landolfi, A., Laruelle, G.G., Lauerwald, R., Li, W., Lienert, S., Maavara, T., MacLeod, M., Millet, D.B., Olin, S., Patra, P.K., Prinn, R.G., Raymond, P.A., Ruiz, D.J., van der Werf, G.R., Vuichard, N., Wang, J.J., Weiss, R.F., Wells, K.C., Wilson, C., Yang, J., Yao, Y.Z., 2020. A comprehensive quantification of global nitrous oxide sources and sinks. Nature586, 248–256.

[44]

Tu, Q.C., Lin, L., Cheng, L., Deng, Y., He, Z.L., 2019. NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics35, 1040–1048.

[45]

Uritskiy, G.V., DiRuggiero, J., Taylor, J., 2018. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome6, 158.

[46]

Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, D.G., 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications7, 737–750.

[47]

Wan, S., Lin, Y.X., Ye, G.P., Fan, J.B., Hu, H.W., Zheng, Y., Jin, S.S., Duan, C.J., He, J.Z., 2023. Long-term manure amendment reduces nitrous oxide emissions through decreasing the abundance ratio of amoA and nosZ genes in an Ultisol. Applied Soil Ecology184, 104771.

[48]

Xiao, H.B., Jiang, M.D., Su, R.L., Luo, Y., Jiang, Y.B., Hu, R.G., 2024. Fertilization intensities at the buffer zones of ponds regulate nitrogen and phosphorus pollution in an agricultural watershed. Water Research250, 121033.

[49]

Xu, C., Zhu, H.S., Wang, J., Ji, C., Liu, Y.B., Chen, D.Y., Zhang, H., Wang, J.D., Zhang, Y.C., 2023. Fertilizer N triggers native soil N-derived N2O emissions by priming gross N mineralization. Soil Biology and Biochemistry178, 108961.

[50]

Yang, X.L., Xiong, J.R., Du, T.S., Ju, X.T., Gan, Y.T., Li, S.E., Xia, L.L., Shen, Y.J., Pacenka, S., Steenhuis, T.S., Siddique, K.H.M., Kang, S.Z., Butterbach-Bahl, K., 2024. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nature Communications15, 198.

[51]

Yao, Z.S., Yan, G.X., Ma, L., Wang, Y., Zhang, H., Zheng, X.H., Wang, R., Liu, C.Y., Wang, Y.Q., Zhu, B., Zhou, M.H., Rahimi, J., Butterbach-Bahl, K., 2022. Soil C/N ratio is the dominant control of annual N2O fluxes from organic soils of natural and semi-natural ecosystems. Agricultural and Forest Meteorology327, 109198.

[52]

Yergeau, E., Kang, S., He, Z.L., Zhou, J.Z., Kowalchuk, G.A., 2007. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. The ISME Journal1, 163–179.

[53]

Yin, Y.L., Wang, Z.H., Tian, X.S., Wang, Y.C., Cong, J.H., Cui, Z.L., 2022. Evaluation of variation in background nitrous oxide emissions: a new global synthesis integrating the impacts of climate, soil, and management conditions. Global Change Biology28, 480–492.

[54]

Zhan, Y., Yao, Z.S., Groffman, P.M., Xie, J.F., Wang, Y., Li, G.T., Zheng, X.H., Butterbach-Bahl, K., 2023. Urbanization can accelerate climate change by increasing soil N2O emission while reducing CH4 uptake. Global Change Biology29, 3489–3502.

[55]

Zhang, K.C., Qiu, Y.P., Zhao, Y.F., Wang, S.H., Deng, J., Chen, M.F., Xu, X.Y., Wang, H., Bai, T.S., He, T.Q., Zhang, Y., Chen, H.H., Wang, Y., Hu, S.J., 2023. Moderate precipitation reduction enhances nitrogen cycling and soil nitrous oxide emissions in a semi-arid grassland. Global Change Biology29, 3114–3129.

[56]

Zhang, Z.Y., Zhang, Q., Wang, T.Z., Xu, N.H., Lu, T., Hong, W.J., Penuelas, J., Gillings, M., Wang, M.X., Gao, W.W., Qian, H.F., 2022. Assessment of global health risk of antibiotic resistance genes. Nature Communications13, 1553.

[57]

Zheng, D.S., Yin, G.Y., Liu, M., Hou, L.J., Yang, Y., van Boeckel, T.P., Zheng, Y.L., Li, Y., 2022. Global biogeography and projection of soil antibiotic resistance genes. Science Advances8, eabq8015.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5124KB)

Supplementary files

SEL-00283-OF-HFQ_suppl_1

1159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/