
The distribution of soil alkaline phosphatase (phoD) gene harbouring bacteria across Qinghai-Tibet Plateau
Lin Xu, Jiabao Li, Chaonan Li, Yongping Kou, Minjie Yao, Changting Wang, Weidong Kong, Junming Wang, Xiangzhen Li
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (2) : 240282.
The distribution of soil alkaline phosphatase (phoD) gene harbouring bacteria across Qinghai-Tibet Plateau
● phoD richness and abundance was higher on the southeastern than northwestern plateau. | |
● phoD richness first increased, then decreased with rising temperatures. | |
● phoD richness increased consistently with higher humidity. | |
● Warm, humid conditions led to soil acidification, driving phoD taxa distribution. |
The alkaline phosphatase (phoD) gene-encoding bacterial communities (phoD-harbouring communities, hereafter) play crucial roles in organic phosphorus (Po) mineralisation across global terrestrial ecosystems. However, their geographic distribution and driving factors remain unclear, largely due to the mosaic temperature and humidity patterns and the lack of comprehensive high-resolution sampling data across the Qinghai-Tibet Plateau. We addressed this gap using amplicon sequencing techniques and analyses of soil properties as well as plant biomass. Plant biomass, soil organic carbon (C), Po content, C:P ratio, alkaline phosphatase (ALP) activity, and the richness and abundance of key soil phoD-harbouring taxa were higher in warmer, more humid regions, such as the southeastern plateau than the northeastern plateau, while soil pH followed an inverse trend. Soil pH and Po content emerged as the key factors shaping the geographic distribution of phoD-harbouring communities. Acidic soils were associated with higher C:P ratios, community richness, ALP activity, and Po content than alkaline soils. Our findings suggest that warmer, more humid regions promote soil acidification, which in turn drive changes in phoD-harbouring communities, enhance ALP activity, and stimulate Po mineralisation. This study provides new insights into the geographic distribution of phoD-harbouring communities and their role in Po mineralisation across the Qinghai-Tibet Plateau.
alkaline phosphatase / geographic distribution / organic phosphorus mineralisation / phosphorus fractions / phoD-harbouring community / Qinghai-Tibet Plateau
[1] |
Adeleke, R., Nwangburuka, C., Oboirien, B., 2017. Origins, roles and fate of organic acids in soils: a review. South African Journal of Botany108, 393–406.
CrossRef
Google scholar
|
[2] |
Bergkemper, F., Schöler, A., Engel, M., Lang, F., Krüger, J., Schloter, M., Schulz, S., 2016. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environmental Microbiology18, 1988–2000.
CrossRef
Google scholar
|
[3] |
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J.R., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L.J., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., Mciver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., Van Der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y.H., Wang, M.X., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y.L., Zhu, Q.Y., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology37, 852–857.
CrossRef
Google scholar
|
[4] |
Bremner, J.M., 1965. Total nitrogen. In: Norman, A.G., ed. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. Wisconsin: American Society of Agronomy, 1049–1178.
|
[5] |
Cai, S.J., Deng, K.Y., Tang, J., Sun, R., Lu, H.L., Li, J.Y., Wu, Y.H., Xu, R.K., 2021. Characterization of extracellular phosphatase activities in periphytic biofilm from paddy field. Pedosphere31, 116–124.
CrossRef
Google scholar
|
[6] |
Chen, H., Ju, P.J., Zhu, Q.A., Xu, X.L., Wu, N., Gao, Y.H., Feng, X.J., Tian, J.Q., Niu, S.L., Zhang, Y.J., Peng, C.H., Wang, Y.F., 2022. Carbon and nitrogen cycling on the Qinghai–Tibetan Plateau. Nature Reviews Earth & Environment3, 701–716.
|
[7] |
Damian, J.M., Firmano, R.F., Cherubin, M.R., Pavinato, P.S., de Marchi Soares, T., Paustian, K., Cerri, C.E.P., 2020. Changes in soil phosphorus pool induced by pastureland intensification and diversification in Brazil. Science of the Total Environment703, 135463.
CrossRef
Google scholar
|
[8] |
de Mendiburu, F., 2023. Agricolae: statistical procedures for agricultural research. Available at the website of Cran.r-projecto.org.
|
[9] |
Delgado-Baquerizo, M., Oliverio, A.M., Brewer, T.E., Benavent-González, A., Eldridge, D.J., Bardgett, R.D., Maestre, F.T., Singh, B.K., Fierer, N., 2018. A global atlas of the dominant bacteria found in soil. Science359, 320–325.
CrossRef
Google scholar
|
[10] |
Dieter, D., Elsenbeer, H., Turner, B.L., 2010. Phosphorus fractionation in lowland tropical rainforest soils in central Panama. CATENA82, 118–125.
CrossRef
Google scholar
|
[11] |
Doane, T.A., Horwáth, W.R., 2003. Spectrophotometric determination of nitrate with a single reagent. Analytical Letters36, 2713–2722.
CrossRef
Google scholar
|
[12] |
Elser, J.J., 2012. Phosphorus: a limiting nutrient for humanity? Current Opinion in Biotechnology 23, 833–838.
|
[13] |
Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology37, 4302–4315.
CrossRef
Google scholar
|
[14] |
Fish, J.A., Chai, B.L., Wang, Q., Sun, Y.N., Brown, C.T., Tiedje, J.M., Cole, J.R., 2013. FunGene: the functional gene pipeline and repository. Frontiers in Microbiology4, 291.
|
[15] |
Fraser, T.D., Lynch, D.H., Bent, E., Entz, M.H., Dunfield, K.E., 2015. Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management. Soil Biology and Biochemistry88, 137–147.
CrossRef
Google scholar
|
[16] |
Gardner, S.G., Johns, K.D., Tanner, R., McCleary, W.R., 2014. The PhoU protein from Escherichia coli interacts with PhoR, PstB, and metals to form a phosphate-signaling complex at the membrane. Journal of Bacteriology196, 1741–1752.
CrossRef
Google scholar
|
[17] |
Ge, N.N., Wei, X.R., Wang, X., Liu, X.T., Shao, M.A., Jia, X.X., Li, X.Z., Zhang, Q.Y., 2019. Soil texture determines the distribution of aggregate-associated carbon, nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. CATENA 172, 148–157.
|
[18] |
Gelybó, G., Tóth, E., Farkas, C., Horel, Á., Kása, I., Bakacsi, Z., 2018. Potential impacts of climate change on soil properties. Agrokémia és Talajtan67, 121–141.
|
[19] |
Lambers, H., Raven, J.A., Shaver, G.R., Smith, S.E., 2008. Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution23, 95–103.
|
[20] |
Li, C.N., Liu, C., Li, H.K., Liao, H.J., Xu, L., Yao, M.J., Li, X.Z., 2024a. The microgeo: an R package rapidly displays the biogeography of soil microbial community traits on maps. FEMS Microbiology Ecology100, fiae087.
CrossRef
Google scholar
|
[21] |
Li, C.N., Wang, C.T., Zou, P., Xu, L., Liao, H.J., Lan, N., Lei, L., Xiong, W.J., Kong, W.D., Wang, J.M., Li, X.Z., 2024b. Warming and wetting-induced soil acidification triggers methanotrophic diversity loss and species turnover in an alpine ecosystem. CATENA235, 107700.
CrossRef
Google scholar
|
[22] |
Li, J.B., Xie, T., Zhu, H., Zhou, J., Li, C.N., Xiong, W.J., Xu, L., Wu, Y.H., He, Z.L., Li, X.Z., 2021. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma404, 115376.
CrossRef
Google scholar
|
[23] |
Li, J.Y., Benti, G., Wang, D., Yang, Z.L., Xiao, R., 2022. Effect of alteration in precipitation amount on soil microbial community in a semi-arid grassland. Frontiers in Microbiology13, 842446.
CrossRef
Google scholar
|
[24] |
Liu, C., Cui, Y.M., Li, X.Z., Yao, M.J., 2021. microeco: an R package for data mining in microbial community ecology. FEMS Microbiology Ecology97, fiaa255.
CrossRef
Google scholar
|
[25] |
Lu, T., Xu, N.H., Lei, C.T., Zhang, Q., Zhang, Z.Y., Sun, L.W., He, F., Zhou, N.Y., Peñuelas, J., Zhu, Y.G., Qian, H.F., 2023. Bacterial biogeography in China and its association to land use and soil organic carbon. Soil Ecology Letters5, 230172.
CrossRef
Google scholar
|
[26] |
Luo, G.W., Sun, B., Li, L., Li, M.H., Liu, M.Q., Zhu, Y.Y., Guo, S.W., Ling, N., Shen, Q.R., 2019. Understanding how long-term organic amendments increase soil phosphatase activities: insight into phoD- and phoC-harboring functional microbial populations. Soil Biology and Biochemistry139, 107632.
CrossRef
Google scholar
|
[27] |
Ma, Y.J., Xie, T., Li, X.Y., 2022. Spatial variation of soil organic carbon in the Qinghai Lake watershed, northeast Qinghai-Tibet Plateau. CATENA213, 106187.
CrossRef
Google scholar
|
[28] |
Magoč, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics27, 2957–2963.
CrossRef
Google scholar
|
[29] |
Marklein, A.R., Houlton, B.Z., 2012. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist193, 696–704.
|
[30] |
Meng, C., Tian, D.S., Zeng, H., Li, Z.L., Yi, C.X., Niu, S.L., 2019. Global soil acidification impacts on belowground processes. Environmental Research Letters14, 074003.
CrossRef
Google scholar
|
[31] |
Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta27, 31–36.
CrossRef
Google scholar
|
[32] |
Nannipieri, P., Giagnoni, L., Landi, L., Renella, G., 2011. Role of phosphatase enzymes in soil. In: Bünemann, E., Oberson, A., Frossard, E., eds. Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling. Berlin: Springer, 215–243.
|
[33] |
Nelson, D.W., Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., eds. Methods of Soil Analysis: Part 3 Chemical Methods. Madison: Soil Science Society of America, 961–1010.
|
[34] |
Ni, G.F., Leung, P.M., Daebeler, A., Guo, J.H., Hu, S.H., Cook, P., Nicol, G.W., Daims, H., Greening, C., 2023. Nitrification in acidic and alkaline environments. Essays in Biochemistry67, 753–768.
CrossRef
Google scholar
|
[35] |
Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M., Lahti, L., McGlinn, D., Ouellette, M., Ribeiro Cunha, E., Smith, T., Stier, A., Ter Braak, C., Weedon, J., 2022. vegan: community ecology package. Release 2.6–4.
|
[36] |
Oliva, P., Viers, J., Dupré, B., 2003. Chemical weathering in granitic environments. Chemical Geology202, 225–256.
CrossRef
Google scholar
|
[37] |
Olsen, S.R., 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. Washington: United States Department of Agriculture, 1–19.
|
[38] |
R Core Team, 2023. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
|
[39] |
Ragot, S.A., Kertesz, M.A., Bünemann, E.K., 2015. phoD alkaline phosphatase gene diversity in soil. Applied and Environmental Microbiology81, 7281–7289.
CrossRef
Google scholar
|
[40] |
Rengel, Z., 2011. Soil pH, soil health and climate change. In: Singh, B.P., Cowie, A.L., Chan, K.Y., eds. Soil Health and Climate Change. Berlin: Springer, 69–85.
|
[41] |
Richardson, A.E., Barea, J.M., McNeill, A.M., Prigent-Combaret, C., 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil321, 305–339.
CrossRef
Google scholar
|
[42] |
Santos-Beneit, F., 2015. The Pho regulon: a huge regulatory network in bacteria. Frontiers in Microbiology6, 402.
|
[43] |
Shi, Y., Li, Y.T., Yuan, M.Q., Adams, J.M., Pan, X.Z., Yang, Y.F., Chu, H.Y., 2019. A biogeographic map of soil bacterial communities in wheats field of the North China Plain. Soil Ecology Letters1, 50–58.
CrossRef
Google scholar
|
[44] |
Sievert, C., 2020. Interactive Web-Based Data Visualization with R, Plotly, and Shiny. Boca Raton: Chapman & Hall.
|
[45] |
Šimek, M., Cooper, J.E., 2002. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science53, 345–354.
CrossRef
Google scholar
|
[46] |
Tiessen, H., Moir, J.O., 1993. Characterization of available P by sequential extraction. Soil Sampling and Methods of Analysis824, 75–87.
|
[47] |
Vitousek, P.M., Porder, S., Houlton, B.Z., Chadwick, O.A., 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications20, 5–15.
CrossRef
Google scholar
|
[48] |
Walker, T.W., Syers, J.K., 1976. The fate of phosphorus during pedogenesis. Geoderma15, 1–19.
CrossRef
Google scholar
|
[49] |
Wang, E., Koutsioulis, D., Leiros, H.K.S., Andersen, O.A., Bouriotis, V., Hough, E., Heikinheimo, P., 2007. Crystal structure of alkaline phosphatase from the antarctic bacterium TAB5. Journal of Molecular Biology366, 1318–1331.
CrossRef
Google scholar
|
[50] |
Wang, M.M., Wu, Y.C., Zhao, J.Y., Liu, Y., Chen, Z., Tang, Z.Y., Tian, W., Xi, Y.G., Zhang, J.B., 2022. Long-term fertilization lowers the alkaline phosphatase activity by impacting the phoD-harboring bacterial community in rice-winter wheat rotation system. Science of the Total Environment821, 153406.
CrossRef
Google scholar
|
[51] |
Wang, Q., Quensen III, J.F., Fish, J.A., Lee, T.K., Sun, Y.N., Tiedje, J.M., Cole, J.R., 2013. Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. MBio4, e00592–13.
|
[52] |
Wang, R., Wang, M., Wang, J., Lin, Y.H., 2021a. Habitats are more important than seasons in shaping soil bacterial communities on the Qinghai-Tibetan Plateau. Microorganisms9, 1595.
CrossRef
Google scholar
|
[53] |
Wang, S., Bao, X.L., Feng, K., Deng, Y., Zhou, W.J., Shao, P.S., Zheng, T.T., Yao, F., Yang, S., Liu, S.E., Shi, R.J., Bai, Z., Xie, H.T., Yu, J.H., Zhang, Y.P., Zhang, Y.P., Sha, L.Q., Song, Q.H., Liu, Y.T., Zhou, J.Z., Zhang, Y.G., Li, H., Wang, Q.K., Han, X.G., Zhu, Y.G., Liang, C., 2021b
|
[54] |
Wang, S.R., Guo, L.L., He, B., Lyu, Y.L., Li, T.W., 2020. The stability of Qinghai-Tibet Plateau ecosystem to climate change. Physics and Chemistry of the Earth, Parts A/B/C115, 102827.
CrossRef
Google scholar
|
[55] |
Wang, X.W., Guo, H., Wang, J.N., He, P., Kuzyakov, Y., Ma, M.J., Ling, N., 2024. Microbial phosphorus-cycling genes in soil under global change. Global Change Biology30, e17281.
CrossRef
Google scholar
|
[56] |
Weatherburn, M.W., 1967. Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry39, 971–974.
CrossRef
Google scholar
|
[57] |
Weaver, R.W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A., 1994. Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties. Madison: Soil Science Society of America, 775–833.
|
[58] |
Wei, X.M., Hu, Y.J., Cai, G., Yao, H.Y., Ye, J., Sun, Q., Veresoglou, S.D., Li, Y.Y., Zhu, Z.K., Guggenberger, G., Chen, X.B., Su, Y.R., Li, Y., Wu, J.S., Ge, T.D., 2021. Organic phosphorus availability shapes the diversity of phoD-harboring bacteria in agricultural soil. Soil Biology and Biochemistry161, 108364.
CrossRef
Google scholar
|
[59] |
Wei, X.T., Han, B., Wu, B., Shao, X.Q., Qian, Y.Q., 2023. Stronger effects of simultaneous warming and precipitation increase than the individual factor on soil bacterial community composition and assembly processes in an alpine grassland. Frontiers in Microbiology14, 1237850.
CrossRef
Google scholar
|
[60] |
Xu, L., Cao, H.L., Li, C.N., Wang, C.H., He, N.P., Hu, S.Y., Yao, M.J., Wang, C.T., Wang, J.M., Zhou, S.G., Li, X.Z., 2022. The importance of rare versus abundant phoD-harboring subcommunities in driving soil alkaline phosphatase activity and available P content in Chinese steppe ecosystems. Soil Biology and Biochemistry164, 108491.
CrossRef
Google scholar
|
[61] |
Xu, L., He, N.P., Li, X.Z., Cao, H.L., Li, C.N., Wang, R.L., Wang, C.H., Yao, M.J., Zhou, S.G., Wang, J.M., 2021. Local community assembly processes shape β-diversity of soil phoD-harbouring communities in the Northern Hemisphere steppes. Global Ecology and Biogeography30, 2273–2285.
CrossRef
Google scholar
|
[62] |
Xu, L., Li, X.Z., Li, C.N., Kou, Y.P., Li, J.B., Yao, M.J., Zhang, B.C., Wang, L.X., Xu, H.W., You, C.M., Li, H., Liu, S.N., Zhang, L., Liu, Y., Tan, B., Xu, Z.F., 2023. Disentangling the relative importance of precipitation, biocrust succession, and shrub cover in mediating soil phoD-harbouring communities and organic phosphorus mineralisation. Soil Biology and Biochemistry184, 109165.
|
[63] |
Zomer, R.J., Xu, J.C., Trabucco, A., 2022. Version 3 of the global aridity index and potential evapotranspiration database. Scientific Data9, 409.
CrossRef
Google scholar
|
/
〈 |
|
〉 |