Microbe-mediated organic fertilization increases insect predator attraction upon fruit damage in olive trees
Martin Aguirrebengoa , Beatriz Moreno , Nuria Guirado , Rafael Núñez , María L. Fernández-Sierra , Fernando Reyes , Jesús Martín , Emilio Benítez
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (1) : 240281
Microbe-mediated organic fertilization increases insect predator attraction upon fruit damage in olive trees
The objective of this study was to investigate the combined effect of soil amendments and pest attack on plant-induced defense and their impact on a biological control agent’s behavior. The effects of olive mill wastes revalorized through vermicomposting on the aboveground tri-trophic interactions among olive trees (Olea europaea), the olive seed-feeder, Prays oleae, and its natural predator, Chrysoperla carnea, were evaluated. The findings demonstrate that soil nitrogen and organic carbon levels, in conjunction with fungal diversity and functionality within olive roots, exert a significant influence on the volatile compounds emitted by the plant underattack that are most appealing to C. carnea. Moreover, the attractivenessof aerial volatiles was found to correlate with soil organic carbon content and the taxonomic and functional diversity of both bacteria and fungi in the olive root system. It is worthy of note that three particular volatile compounds, namely 5-hepten-2-one-6-methyl, acetic acid and nonanal, were consistently observed to attract C. carnea. These findings highlight the potential of soil amendments to enhance biological control strategies. Future research should prioritise the validation the greenhouse findings through large-scale field trials and the assessment of the practical applications of soil amendments in pest management programmes.
Chrysoperla carnea / HIPVs / Olea europaea / Prays oleae / roots microbiome / soil amendments
| ● Revalorized olive waste impacts root microbiome. | |
| ● Root microbiome modulates plant-induced defense. | |
| ● Insect’s exudate simulates the pest attack. |
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
The Author(s) 2024. This article is published with open access at link.springer.com and journal.hep.com.cn
Supplementary files
/
| 〈 |
|
〉 |