Microbe-mediated organic fertilization increases insect predator attraction upon fruit damage in olive trees
Martin Aguirrebengoa, Beatriz Moreno, Nuria Guirado, Rafael Núñez, María L. Fernández-Sierra, Fernando Reyes, Jesús Martín, Emilio Benítez
Microbe-mediated organic fertilization increases insect predator attraction upon fruit damage in olive trees
● Revalorized olive waste impacts root microbiome. | |
● Root microbiome modulates plant-induced defense. | |
● Insect’s exudate simulates the pest attack. |
The objective of this study was to investigate the combined effect of soil amendments and pest attack on plant-induced defense and their impact on a biological control agent’s behavior. The effects of olive mill wastes revalorized through vermicomposting on the aboveground tri-trophic interactions among olive trees (Olea europaea), the olive seed-feeder, Prays oleae, and its natural predator, Chrysoperla carnea, were evaluated. The findings demonstrate that soil nitrogen and organic carbon levels, in conjunction with fungal diversity and functionality within olive roots, exert a significant influence on the volatile compounds emitted by the plant underattack that are most appealing to C. carnea. Moreover, the attractivenessof aerial volatiles was found to correlate with soil organic carbon content and the taxonomic and functional diversity of both bacteria and fungi in the olive root system. It is worthy of note that three particular volatile compounds, namely 5-hepten-2-one-6-methyl, acetic acid and nonanal, were consistently observed to attract C. carnea. These findings highlight the potential of soil amendments to enhance biological control strategies. Future research should prioritise the validation the greenhouse findings through large-scale field trials and the assessment of the practical applications of soil amendments in pest management programmes.
Chrysoperla carnea / HIPVs / Olea europaea / Prays oleae / roots microbiome / soil amendments
[1] |
Abarenkov, K., Zirk, A., Piirmann, T., Pöhönen, R., Ivanov, F., Nilsson, R.H., Kõljalg, U., 2024. UNITE mothur release for Fungi. UNITE Community. DOI:10.15156/BIO/2959342.
|
[2] |
Aguirrebengoa, M., Moreno, B., Alcalá-Herrera, R., Núñez, R., Guirado, N., García, J.M., Pozo, M.J., Benítez, E., 2024. Modulation of volatile emissions in olive trees: sustained effect of Trichoderma afroharzianum T22 on induced plant defenses after simulated herbivory. Biology and Fertility of Soils60, 593–602.
CrossRef
Google scholar
|
[3] |
Akanmu, A.O., Babalola, O.O., Venturi, V., Ayilara, M.S., Adeleke, B.S., Amoo, A.E., Sobowale, A.A., Fadiji, A.E., Glick, B.R., 2021. Plant disease management: leveraging on the plant-microbe-soil interface in the biorational use of organic amendments. Frontiers in Plant Science12, 700507.
CrossRef
Google scholar
|
[4] |
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management259, 660–684.
CrossRef
Google scholar
|
[5] |
Arimura, G.I., Matsui, K., Takabayashi, J., 2009. Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant and Cell Physiology50, 911–923.
CrossRef
Google scholar
|
[6] |
Armstrong, G., Rahman, G., Martino, C., McDonald, D., Gonzalez, A., Mishne, G., Knight, R., 2022. Applications and comparison of dimensionality reduction methods for microbiome data. Frontiers in Bioinformatics2, 821861.
CrossRef
Google scholar
|
[7] |
Badra, Z., Larsson Herrera, S., Cappellin, L., Biasioli, F., Dekker, T., Angeli, S., Tasin, M., 2021. Species-specific induction of plant volatiles by two aphid species in apple: real time measurement of plant emission and attraction of lacewings in the wind tunnel. Journal of Chemical Ecology47, 653–663.
CrossRef
Google scholar
|
[8] |
Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software67, 1–48.
CrossRef
Google scholar
|
[9] |
Benítez, E., Paredes, D., Rodríguez, E., Aldana, D., González, M., Nogales, R., Campos, M., Moreno, B., 2017. Bottom-up effects on herbivore-induced plant defences: a case study based on compositional patterns of rhizosphere microbial communities. Scientific Reports7, 6251.
CrossRef
Google scholar
|
[10] |
Botta-Dukát, Z., 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science16, 533–540.
CrossRef
Google scholar
|
[11] |
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.
CrossRef
Google scholar
|
[12] |
Chauhan, P., Sharma, N., Tapwal, A., Kumar, A., Verma, G.S., Meena, M., Seth, C.S., Swapnil, P., 2023. Soil microbiome: diversity, benefits and interactions with plants. Sustainability15, 14643.
CrossRef
Google scholar
|
[13] |
Chen, D.Q., Shao, M., Sun, S.Z., Liu, T.T., Zhang, H., Qin, N.N., Zeng, R.S., Song, Y.Y., 2019. Enhancement of jasmonate-mediated antiherbivore defense responses in tomato by acetic acid, a potent inducer for plant protection. Frontiers in Plant Science10, 764.
CrossRef
Google scholar
|
[14] |
Chong, J., Liu, P., Zhou, G.Y., Xia, J.G., 2020. Using microbiomeanalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols15, 799–821.
CrossRef
Google scholar
|
[15] |
Cui, Y., Ouyang, S.N., Zhao, Y.J., Tie, L., Shao, C.C., Duan, H.L., 2022. Plant responses to high temperature and drought: a bibliometrics analysis. Frontiers in Plant Science13, 1052660.
CrossRef
Google scholar
|
[16] |
Dhariwal, A., Chong, J., Habib, S., King, I.L., Agellon, L.B., Xia, J.G., 2017. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Research45, W180–W188.
CrossRef
Google scholar
|
[17] |
Dicke, M., Baldwin, I.T., 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends in Plant Science15, 167–175.
CrossRef
Google scholar
|
[18] |
Escobar-Bravo, R., Lin, P.A., Waterman, J.M., Erb, M., 2023. Dynamic environmental interactions shaped by vegetative plant volatiles. Natural Product Reports40, 840–865.
CrossRef
Google scholar
|
[19] |
Espinoza Vidaurre, S.M., Velásquez Rodríguez, N.C., Gambetta Quelopana, R.L., Martinez Valdivia, A.N., Leo Rossi, E.A., Laura De La Cruz, K.M., 2023. Understanding factors that influence pest risk in olive production. Sustainability15, 16445.
CrossRef
Google scholar
|
[20] |
FAOSTAT,
|
[21] |
Farooqi, Z.U.R., Qadir, A.A., Alserae, H., Raza, A., Mohy-Ud-Din, W., 2023. Organic amendment–mediated reclamation and build-up of soil microbial diversity in salt-affected soils: fostering soil biota for shaping rhizosphere to enhance soil health and crop productivity. Environmental Science and Pollution Research30, 109889–109920.
CrossRef
Google scholar
|
[22] |
Fernández-González, A.J., Cardoni, M., Gómez-Lama Cabanás, C., Valverde-Corredor, A., Villadas, P.J., Fernández-López, M., Mercado-Blanco, J., 2020. Linking belowground microbial network changes to different tolerance level towards Verticillium wilt of olive. Microbiome8, 11.
CrossRef
Google scholar
|
[23] |
Food and Agriculture Organization of the United Nations, 2019. RECSOIL: Recarbonization of Global Agricultural Soils [Online]. Available at the website of FAO.
|
[24] |
Hjältén, J., 2008. Simulating herbivory: problems and possibilities. In: Weisser, W.W., Siemann, E., eds. Insects and Ecosystem Function. Berlin: Springer243–255.
CrossRef
Google scholar
|
[25] |
Ihrmark, K., Bödeker, I.T.M., Cruz-Martinez, K., Friberg, H., Kubartova, A., Schenck, J., Strid, Y., Stenlid, J., Brandström-Durling, M., Clemmensen, K.E., Lindahl, B.D., 2012. New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiology Ecology82, 666–677.
CrossRef
Google scholar
|
[26] |
Jombart, T., 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics24, 1403–1405.
CrossRef
Google scholar
|
[27] |
Jombart, T., Ahmed, I., 2011. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics27, 3070–3071.
CrossRef
Google scholar
|
[28] |
Jones, A.C., Felton, G.W., Tumlinson, J.H., 2022. The dual function of elicitors and effectors from insects: reviewing the ‘arms race’ against plant defenses. Plant Molecular Biology109, 427–445.
CrossRef
Google scholar
|
[29] |
Laliberté, E., Legendre, P., 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology91, 299–305.
CrossRef
Google scholar
|
[30] |
Laliberté, E., Legendre, P., Shipley, B., 2014. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R Package Version 1.0-12.
|
[31] |
Lidoy, J., Lópéz-García, Á., Amate, C., García, J.M., Flors, V., García-Garrido, J.M., Azcón-Aguilar, C., López-Ráez, J.A., Pozo, M.J., 2023. Regulation of mycorrhizal colonization under stress in tomato depends on symbiotic efficiency. Environmental and Experimental Botany215, 105479.
CrossRef
Google scholar
|
[32] |
Liu, W.J., Yang, Z.P., Ye, Q.X., Peng, Z.H., Zhu, S.X., Chen, H.L., Liu, D.H., Li, Y.D., Deng, L.J., Shu, X.Y., Huang, H., 2023. Positive effects of organic amendments on soil microbes and their functionality in agro-ecosystems. Plants12, 3790.
CrossRef
Google scholar
|
[33] |
Lundberg, D.S., Yourstone, S., Mieczkowski, P., Jones, C.D., Dangl, J.L., 2013. Practical innovations for high-throughput amplicon sequencing. Nature Methods10, 999–1002.
CrossRef
Google scholar
|
[34] |
Mahzoum, A.M., Villa, M., Benhadi-Marín, J., Pereira, J.A., 2020. Functional response of Chrysoperla carnea (Neuroptera: Chrysopidae) larvae on Saissetia oleae (Olivier) (Hemiptera: Coccidae): implications for biological control. Agronomy10, 1511.
CrossRef
Google scholar
|
[35] |
Martín, J., Crespo, G., González-Menéndez, V., Pérez-Moreno, G., Sánchez-Carrasco, P., Pérez-Victoria, I., Ruiz-Pérez, L.M., González-Pacanowska, D., Vicente, F., Genilloud, O., Bills, G.F., Reyes, F., 2014. MDN-0104, an antiplasmodial betaine lipid from Heterospora chenopodii. Journal of Natural Products77, 2118–2123.
CrossRef
Google scholar
|
[36] |
Mendes, R., Kruijt, M., De Bruijn, I., Dekkers, E., Van Der Voort, M., Schneider, J.H.M., Piceno, Y.M., Desantis, T.Z., Andersen, G.L., Bakker, P.A.H.M., Raaijmakers, J.M., 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science332, 1097–1100.
CrossRef
Google scholar
|
[37] |
Molefe, R.R., Amoo, A.E., Babalola, O.O., 2023. Communication between plant roots and the soil microbiome; involvement in plant growth and development. Symbiosis90, 231–239.
CrossRef
Google scholar
|
[38] |
Nguyen, L.H., Holmes, S., 2019. Ten quick tips for effective dimensionality reduction. PLOS Computational Biology15, e1006907.
CrossRef
Google scholar
|
[39] |
Niu, H., Pang, Z.Q., Fallah, N., Zhou, Y.M., Zhang, C.F., Hu, C.H., Lin, W.X., Yuan, Z.N., 2021. Diversity of microbial communities and soil nutrients in sugarcane rhizosphere soil under water soluble fertilizer. PLoS One16, e0245626.
CrossRef
Google scholar
|
[40] |
Noman, M., Ahmed, T., Ijaz, U., Shahid, M., Azizullah, Li, D.Y., Manzoor, I., Song, F.M., 2021. Plant-microbiome crosstalk: dawning from composition and assembly of microbial community to improvement of disease resilience in plants. International Journal of Molecular Sciences22, 6852.
CrossRef
Google scholar
|
[41] |
Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, .H. B. A, FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., O. Hill, M., Lahti, L., McGlinn, D., Ouellette, M.H., Cunha, E.R., Smith, T., Stier, A., Braak, C.J.F.T., Weedon, J., 2024. vegan: Community Ecology Package. R package version 2.6-8 [Online]. .
|
[42] |
Ourry, M., Lebreton, L., Chaminade, V., Guillerm-Erckelboudt, A.Y., Hervé, M., Linglin, J., Marnet, N., Ourry, A., Paty, C., Poinsot, D., Cortesero, A.M., Mougel, C., 2018. Influence of belowground herbivory on the dynamics of root and rhizosphere microbial communities. Frontiers in Ecology and Evolution6, 91.
CrossRef
Google scholar
|
[43] |
Palomares-Pérez, M., Moreno-Rodriguez, C., Contreras-Bermúdez, Y., Arredondo-Bernal, H.C., Gallou, A., 2019. Molecular characterization of Chrysoperla carnea (Neuroptera: Chrysopidae) from commercial insectaries in Mexico. Molecular Biology Reports46, 6577–6583.
CrossRef
Google scholar
|
[44] |
Pappalardo, S., Villa, M., Santos, S.A.P., Benhadi-Marín, J., Pereira, J.A., Venturino, E., 2021. A tritrophic interaction model for an olive tree pest, the olive moth - Prays oleae (Bernard). Ecological Modelling462, 109776.
CrossRef
Google scholar
|
[45] |
Paredes, D., Cayuela, L., Gurr, G.M., Campos, M., 2015. Single best species or natural enemy assemblages? A correlational approach to investigating ecosystem function. BioControl60, 37–45.
CrossRef
Google scholar
|
[46] |
Pascale, A., Proietti, S., Pantelides, I.S., Stringlis, I.A., 2020. Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Frontiers in Plant Science10, 1741.
CrossRef
Google scholar
|
[47] |
Peñaflor, M.F.G.V., Bento, J.M.S., 2013. Herbivore-induced plant volatiles to enhance biological control in agriculture. Neotropical Entomology42, 331–343.
CrossRef
Google scholar
|
[48] |
Pérez-Hedo, M., Alonso-Valiente, M., Vacas, S., Gallego, C., Pons, C., Arbona, V., Rambla, J.L., Navarro-Llopis, V., Granell, A., Urbaneja, A., 2021. Plant exposure to herbivore-induced plant volatiles: a sustainable approach through eliciting plant defenses. Journal of Pest Science94, 1221–1235.
CrossRef
Google scholar
|
[49] |
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team., 2022. nlme: Linear and Nonlinear Mixed Effects Models. R package version3, 1–153.
|
[50] |
Põlme, S., Abarenkov, K., Nilsson, R.H., Lindahl, B.D., Clemmensen, K.E., Kauserud, H., Nguyen, N., Kjøller, R., Bates, S.T., Baldrian, P., Frøslev, T.G., Adojaan, K., Vizzini, A., Suija, A., Pfister, D., Baral, H.O., Järv, H., Madrid, H., Nordén, J., Liu, J.K., Pawlowska, J., Põldmaa, K., Pärtel, K., Runnel, K., Hansen, K., Larsson, K.H., Hyde, K.D., Sandoval-Denis, M., Smith, M.E., Toome-Heller, M., Wijayawardene, N.N., Menolli, N., Reynolds, N.K., Drenkhan, R., Maharachchikumbura, S.S.N., Gibertoni, T.B., Læssøe, T., Davis, W., Tokarev, Y., Corrales, A., Soares, A.M., Agan, A., Machado, A.R., Argüelles-Moyao, A., Detheridge, A., De Meiras-ottoni, A., Verbeken, A., Dutta, A.K., Cui, B.K., Pradeep, C.K., Marín, C., Stanton, D., Gohar, D., Wanasinghe, D.N., Otsing, E., Aslani, F., Griffith, G.W., Lumbsch, T.H., Grossart, H.P., Masigol, H., Timling, I., Hiiesalu, I., Oja, J., Kupagme, J.Y., Geml, J., Alvarez-Manjarrez, J., Ilves, K., Loit, K., Adamson, K., Nara, K., Küngas, K., Rojas-Jimenez, K., Bitenieks, K., Irinyi, L., Nagy, L.G., Soonvald, L., Zhou, L.W., Wagner, L., Aime, M.C., Öpik, M., Mujica, M.I., Metsoja, M., Ryberg, M., Vasar, M., Murata, M., Nelsen, M.P., Cleary, M., Samarakoon, M.C., Doilom, M., Bahram, M., Hagh-Doust, N., Dulya, O., Johnston, P., Kohout, P., Chen, Q., Tian, Q., Nandi, R., Amiri, R., Perera, R.H., Dos Santos chikowski, R., Mendes-Alvarenga, R.L., Garibay-Orijel, R., Gielen, R., Phookamsak, R., Jayawardena, R.S., Rahimlou, S., Karunarathna, S.C., Tibpromma, S., Brown, S.P., Sepp, S.K., Mundra, S., Luo, Z.H., Bose, T., Vahter, T., Netherway, T., Yang, T., May, T., Varga, T., Li, W., Coimbra, V.R.M., de Oliveira, V.R.T., de Lima, V.X., Mikryukov, V.S., Lu, Y.Z., Matsuda, Y., Miyamoto, Y., Kõljalg, U., Tedersoo, L., 2020. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity105, 1–16.
CrossRef
Google scholar
|
[51] |
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research41, D590–D596.
CrossRef
Google scholar
|
[52] |
R Core Team, 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Available at the website of r-project.org.
|
[53] |
Rani, A.S., Sulakshana, G., 2017. Herbivore-induced plant volatiles. In: Choudhary, D.K., Sharma, A.K., Agarwal, P., Varma, A., Tuteja, N., eds. Volatiles and Food Security. Singapore: Springer285–298.
CrossRef
Google scholar
|
[54] |
Reimer, L.C., Sardà Carbasse, J., Koblitz, J., Ebeling, C., Podstawka, A., Overmann, J., 2022. BacDive in 2022: the knowledge base for standardized bacterial and archaeal data. Nucleic Acids Research50, D741–D746.
CrossRef
Google scholar
|
[55] |
Ruano-Rosa, D., Valverde-Corredor, A., Gómez-Lama Cabanás, C., Sesmero, R., Mercado-Blanco, J., 2017. What lies beneath: root-associated bacteria to improve the growth and health of olive trees. In: Lukac, M., Grenni, P., Gamboni, M., eds. Soil Biological Communities and Ecosystem Resilience. Cham: Springer107–122.
CrossRef
Google scholar
|
[56] |
Sato, H., Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki, K., 2024. Complex plant responses to drought and heat stress under climate change. The Plant Journal117, 1873–1892.
CrossRef
Google scholar
|
[57] |
Sciubba, F., Chronopoulou, L., Pizzichini, D., Lionetti, V., Fontana, C., Aromolo, R., Socciarelli, S., Gambelli, L., Bartolacci, B., Finotti, E., Benedetti, A., Miccheli, A., Neri, U., Palocci, C., Bellincampi, D., 2020. Olive mill wastes: a source of bioactive molecules for plant growth and protection against pathogens. Biology9, 450.
CrossRef
Google scholar
|
[58] |
Sharma, I., Kashyap, S., Agarwala, N., 2023. Biotic stress-induced changes in root exudation confer plant stress tolerance by altering rhizospheric microbial community. Frontiers in Plant Science14, 1132824.
CrossRef
Google scholar
|
[59] |
Shree, P., Kumar, M., Singh, D.K., 2021. Molecular and biochemical aspect of insect-plant interaction: a perspective for pest management. In: Singh, I. K., Singh, A., eds. Plant-Pest Interactions: from Molecular Mechanisms to Chemical Ecology. Singapore: Springer417–436.
CrossRef
Google scholar
|
[60] |
Snoeck, S., Guayazán-Palacios, N., Steinbrenner, A.D., 2022. Molecular tug-of-war: plant immune recognition of herbivory. The Plant Cell34, 1497–1513.
CrossRef
Google scholar
|
[61] |
Song, C.X., Zhu, F., Carrión, V.J., Cordovez, V., 2020. Beyond plant microbiome composition: exploiting microbial functions and plant traits via integrated approaches. Frontiers in Bioengineering and Biotechnology8, 896.
CrossRef
Google scholar
|
[62] |
Takahashi, S., Tomita, J., Nishioka, K., Hisada, T., Nishijima, M., 2014. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS One9, e105592.
CrossRef
Google scholar
|
[63] |
Tzanakakis, M.E., 2003. Seasonal development and dormancy of insects and mites feeding on olive: a review. Netherlands Journal of Zoology52, 87–224.
CrossRef
Google scholar
|
[64] |
Villa, M., Santos, S.A.P., Benhadi-Marín, J., Mexia, A., Bento, A., Pereira, J.A., 2016. Life-history parameters of Chrysoperla carnea s.l. fed on spontaneous plant species and insect honeydews: importance for conservation biological control. BioControl61, 533–543.
CrossRef
Google scholar
|
[65] |
Vivas, A., Moreno, B., Garcia-Rodríguez, S., Benitez, E., 2009. Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste. Bioresource Technology100, 1319–1326.
CrossRef
Google scholar
|
[66] |
Wang, H.Y., Shi, S.J., Hua, W., 2023. Advances of herbivore-secreted elicitors and effectors in plant-insect interactions. Frontiers in Plant Science14, 1176048.
CrossRef
Google scholar
|
[67] |
Waterman, J.M., Cazzonelli, C.I., Hartley, S.E., Johnson, S.N., 2019. Simulated herbivory: the key to disentangling plant defence responses. Trends in Ecology & Evolution34, 447–458.
CrossRef
Google scholar
|
[68] |
Wei, L.P., Bergeron, Y., De Frenne, P., Verheyen, K., Tian, L.M., Ren, H., Jian, S.G., 2024. Above- and belowground composition and diversity of subtropical plantations and their relationships with soil nutrient stocks. Plant and Soil495, 235–252.
CrossRef
Google scholar
|
[69] |
Wright, M.N., Ziegler, A., 2017. ranger: a fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software77, 1–17.
CrossRef
Google scholar
|
[70] |
Yamamichi, M., Gibbs, T., Levine, J.M., 2022. Integrating eco-evolutionary dynamics and modern coexistence theory. Ecology Letters25, 2091–2106.
CrossRef
Google scholar
|
[71] |
Yang, M., Cheng, J.B., Yin, M., Wu, J.S., 2023. NaMLP, a new identified Kunitz trypsin inhibitor regulated synergistically by JA and ethylene, confers Spodoptera litura resistance in Nicotiana attenuata. Plant Cell Reports42, 723–734.
CrossRef
Google scholar
|
[72] |
Zhang, H.M., Kaushal, R., Singh, S.K., Paré, P.W., 2020. Bacterial volatile-mediated plant abiotic stress tolerance. In: Ryu, C.M., Weisskopf, L., Piechulla, B., eds. Bacterial Volatile Compounds as Mediators of Airborne Interactions. Singapore: Springer187–200.
CrossRef
Google scholar
|
/
〈 | 〉 |