
Effects of plant invasion and land use change on soil labile organic carbon in southern China’s coastal wetlands
Lihua Wang, Wenjing Liu, Xueya Zhou, Shenglei Fu, Ping Yang, Chuan Tong, Hong Yang, Dongyao Sun, Linhai Zhang, Wanyi Zhu, Kam W. Tang
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (1) : 240275.
Effects of plant invasion and land use change on soil labile organic carbon in southern China’s coastal wetlands
● EOC dominated the labile organic carbon pool in coastal wetland soil. | |
● Invasion of mudflats by Spartina alterniflora increased soil EOC and DOC. | |
● EOC and DOC decreased when Spartina marshes were converted into aquaculture ponds. | |
● SOC mineralization rate increased most strongly with increasing DOC. | |
● Latitudinal gradients in EOC and MBC suggest a temperature-dependent effect. |
Labile organic carbon (LOC) plays a pivotal role in soil biogeochemistry and ecological functions. China’s coastal wetlands have been profoundly impacted due to plant invasion and land use change, but the effects on soil LOC quantity and composition are unclear. This study analyzed the soil LOC components—namely, dissolved organic carbon (DOC), easily oxidizable carbon (EOC), and microbial biomass carbon (MBC)—across twenty-one coastal wetlands in southeastern China. These wetlands underwent a uniform land cover transition from native mudflats (MFs) to Spartina alterniflora marshes (SAs), and eventually to aquaculture ponds (APs). The results indicated that EOC was the dominant component of soil organic carbon (SOC) (57.5%–61.6%), followed by MBC (3.5%–4.5%) and DOC (<0.5%). The transition from MFs to SAs led to a rise in mean EOC and DOC by 18.6% and 41.4%, respectively. Subsequent conversion of SAs to APs resulted in a reduction in mean EOC and DOC by 5.9% and 20.3%, respectively. MBC did not differ significantly among habitat types. Total nitrogen availability was the main driver of changes in LOC across both land cover change scenarios. The mineralization rate of SOC were more strongly correlated with DOC than EOC and MBC. Microbial turnover of EOC was temperature dependent across the geographical range. These finds highlighted that plant invasion and land use change affected LOC fractions and subsequent SOC stability and carbon emissions in coastal wetlands.
labile organic carbon (LOC) / dissolved organic carbon (DOC) / microbial biomass carbon (MBC) / carbon stock / plant invasion / aquaculture reclamation
Fig.2 Box plots of (a) easily oxidizable carbon (EOC), (b) dissolved organic carbon (DOC), and (c) microbial biomass carbon (MBC) contents in the topsoil (0–20 cm) of mud flats (MFs), S. alterniflora marshes (SAs), and aquaculture ponds (APs) in 21 coastal wetlands in southeastern China (n = 63). Different lowercase letters above the boxplots within each panel indicate significant differences between habitat types (p<0.05). |
Tab.1 Different labile organic carbon components as percentages of soil organic carbon (SOC) across the three wetland habitat types. |
Habitat types | EOC/SOC (%) | DOC/SOC (%) | MBC/SOC (%) |
---|---|---|---|
MFs | 61.63 (3.49) | 0.22 (0.02) | 4.49 (0.48) |
SAs | 57.45 (5.00) | 0.24 (0.03) | 3.54 (0.50) |
APs | 60.09 (4.23) | 0.23 (0.03) | 4.49 (0.52) |
Note: MFs, SAs, and APs represent mudflats, S. alterniflora marshes, and aquaculture ponds, respectively. EOC, DOC and MBC represent easily oxidizable carbon, dissolved organic carbon and microbial biomass carbon, respectively. SOC data are taken from Hong et al. (2023). The values in parentheses are standard errors. |
Fig.3 Linear regressions between latitude and labile organic carbon components in the topsoil (0–20 cm) for the three habitat types. a, b, and c are EOC. d, e, and f are DOC. g, h, and i are MBC. a, d, and g are mudflats. b, e, and h are S. alterniflora marshes. c, f, and i are aquaculture ponds. |
Fig.4 Weighted response ratios (RR++) of (a) EOC, (b) DOC and (c) MBC contents in the topsoil (0‒20 cm) for the different habitat modification scenarios: MFs→SAs represents transformation from mudflats to S. alterniflora marshes; SAs→APs represents conversion from S. alterniflora marshes to aquaculture ponds. Bars represent the RR++ values and 95% CIs (n = 21 sampling sites). The asterisks (*) indicate significant differences from zero (p < 0.05). |
Fig.5 Redundancy analysis (RDA) of the relationships between the EOC, DOC, MBC, SOC and the soil physicochemical properties in the topsoil (0–20 cm) for the different land cover change scenarios: (a) Transformation of mudflats to S. alterniflora marshes (MFs→SAs), and (b) Conversion of S. alterniflora marshes to aquaculture ponds (SAs→APs). The pie charts show the percentages of relative influence of the different soil physicochemical parameters on labile organic carbon (LOC). |
Fig.6 Linear regressions between SOC mineralization rate (Rmin) and (a) EOC, (b) DOC and (C) MBC contents in the topsoil (0–20 cm) of all sampling sites. Rmin data are taken from Yang et al. (2022). MFs, SAs and APs represent mud flats, S. alterniflora marshes and aquaculture ponds, respectively. |
[1] |
Atwood, T.B., Connolly, R.M., Almahasheer, H., Carnell, P.E., Duarte, C.M., Ewers Lewis, C.J., Irigoien, X., Kelleway, J.J., Lavery, P.S., Macreadie, P.I., Serrano, O., Sanders, C.J., Santos, I., Steven, A.D. L., Lovelock, C.E., 2017. Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change7, 523–528.
|
[2] |
Banerjee, S., van der Heijden, M.G.A., 2023. Soil microbiomes and one health. Nature Reviews Microbiology21, 6–20.
CrossRef
Google scholar
|
[3] |
Batjes, N.H., 2014. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science65, 10–21.
|
[4] |
Bongiorno, G., Bünemann, E.K., Oguejiofor, C.U., Meier, J., Gort, G., Comans, R., Mäder, P., Brussaard, L., de Goede, R., 2019. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators99, 38–50.
CrossRef
Google scholar
|
[5] |
Cheng, L., Leavitt, S.W., Kimball, B.A., Pinter, P.J. Jr., Ottman, M.J., Matthias, A., Wall, G.W., Brooks, T., Williams, D.G., Thompson, T.L., 2007. Dynamics of labile and recalcitrant soil carbon pools in a sorghum free-air CO2 enrichment (FACE) agroecosystem. Soil Biology and Biochemistry39, 2250–2263.
CrossRef
Google scholar
|
[6] |
Cheng, Z.R., Guo, J.Y., Jin, W., Liu, Z.T., Wang, Q., Zha, L., Zhou, Z.G., Meng, Y.L., 2024. Responses of SOC, labile SOC fractions, and amino sugars to different organic amendments in a coastal saline-alkali soil. Soil and Tillage Research239, 106051.
CrossRef
Google scholar
|
[7] |
Chmura, G.L., Anisfeld, S.C., Cahoon, D.R., Lynch, J.C., 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles17, 1111.
|
[8] |
Chung, C.H., 2006. Forty years of ecological engineering with Spartina plantations in China. Ecological Engineering27, 49–57.
CrossRef
Google scholar
|
[9] |
Culman, S.W., Snapp, S.S., Freeman, M.A., Schipanski, M.E., Beniston, J., Lal, R., Drinkwater, L.E., Franzluebbers, A.J., Glover, J.D., Stuart Grandy, A., Lee, J., Six, J., Maul, J.E., Mirsky, S.B., Spargo, J.T., Wander, M.M., 2012. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management. Soil Science Society of America Journal76, 494–504.
|
[10] |
de Vries, F.T., Caruso, T., 2016. Eating from the same plate? Revisiting the role of labile carbon inputs in the soil food web. Soil Biology and Biochemistry102, 4–9.
CrossRef
Google scholar
|
[11] |
Deng, L., Wang, K.B., Tang, Z.S., Shangguan, Z.P., 2016. Soil organic carbon dynamics following natural vegetation restoration: evidence from stable carbon isotopes (δ13C). Agriculture, Ecosystems & Environment221, 235–244.
|
[12] |
Ding, X.L., Wang, W.Q., Wen, J.H., Feng, T.S., Peñuelas, J., Sardans, J., Liang, C., Agathokleous, E., Wang, C., Song, Z.L., Li, Q., Filley, T.R., He, H.B., Zhang, X.D., 2023. Spartina alterniflora invasion differentially alters microbial residues and their contribution to soil organic C in coastal marsh and mangrove wetlands. CATENA230, 107246.
CrossRef
Google scholar
|
[13] |
Duan, Y.Q., Li, X., Zhang, L.P., Chen, D., Liu, S.A., Ji, H.Y., 2020. Mapping national-scale aquaculture ponds based on the Google Earth Engine in the Chinese coastal zone. Aquaculture520, 734666.
CrossRef
Google scholar
|
[14] |
Duarte, C.M., Losada, I.J., Hendriks, I.E., Mazarrasa, I., Marbà, N., 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change3, 961–968.
|
[15] |
Fan, T., Zhang, Y.L., Hu, K.X., Xu, S.Q., Zhang, A.F., Xue, S.Q., Han, J.L., Wang, X.D., 2024. Changes in soil organic carbon and microbial community in saline soil following different forms of straw incorporation. European Journal of Soil Science75, e13457.
CrossRef
Google scholar
|
[16] |
Fang, Y.Y., Singh, B.P., Collins, D., Armstrong, R., Van Zwieten, L., Tavakkoli, E., 2020. Nutrient stoichiometry and labile carbon content of organic amendments control microbial biomass and carbon-use efficiency in a poorly structured sodic-subsoil. Biology and Fertility of Soils56, 219–233.
CrossRef
Google scholar
|
[17] |
Farzadfar, S., Knight, J.D., Congreves, K.A., 2021. Soil organic nitrogen: an overlooked but potentially significant contribution to crop nutrition. Plant and Soil462, 7–23.
CrossRef
Google scholar
|
[18] |
Fierer, N., Wood, S.A., de Mesquita, C.P. B., 2021. How microbes can, and cannot, be used to assess soil health. Soil Biology and Biochemistry153, 108111.
|
[19] |
Fluet-Chouinard, E., Stocker, B.D., Zhang, Z., Malhotra, A., Melton, J.R., Poulter, B., Kaplan, J.O., Goldewijk, K.K., Siebert, S., Minayeva, T., Hugelius, G., Joosten, H., Barthelmes, A., Prigent, C., Aires, F., Hoyt, A.M., Davidson, N., Finlayson, C.M., Lehner, B., Jackson, R.B., McIntyre, P.B., 2023. Extensive global wetland loss over the past three centuries. Nature614, 281–286.
CrossRef
Google scholar
|
[20] |
Fu, C.C., Li, Y., Zeng, L., Zhang, H.B., Tu, C., Zhou, Q., Xiong, K.X., Wu, J.P., Duarte, C.M., Christie, P., Luo, Y.M., 2021. Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats. Global Change Biology27, 202–214.
CrossRef
Google scholar
|
[21] |
Garten, C.T.Jr., 2011. Comparison of forest soil carbon dynamics at five sites along a latitudinal gradient. Geoderma167, 30–40.
|
[22] |
Ghani, A., Dexter, M., Perrott, K.W., 2003. Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biology and Biochemistry35, 1231–1243.
|
[23] |
Hati, K.M., Swarup, A., Dwivedi, A.K., Misra, A.K., Bandyopadhyay, K.K., 2007. Changes in soil physical properties and organic carbon status at the topsoil horizon of a vertisol of central India after 28 years of continuous cropping, fertilization and manuring. Agriculture, Ecosystems & Environment119, 127–134.
|
[24] |
Haubensak, K.A., Hart, S.C., Stark, J.M., 2002. Influences of chloroform exposure time and soil water content on C and N release in forest soils. Soil Biology and Biochemistry34, 1549–1562.
CrossRef
Google scholar
|
[25] |
Haynes, R.J., 2005. Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Advances in Agronomy85, 221–268.
|
[26] |
Hedges, L.V., Gurevitch, J., Curtis, P.S., 1999. The meta-analysis of response ratios in experimental ecology. Ecology80, 1150–1156.
CrossRef
Google scholar
|
[27] |
Hoffland, E., Kuyper, T.W., Comans, R.N.J., Creamer, R.E., 2020. Eco-functionality of organic matter in soils. Plant and Soil,455, 1–22.
|
[28] |
Hong, Y., Zhang, L.H., Yang, P., Tong, C., Lin, Y.X., Lai, D.Y. F., Yang, H., Tian, Y.L., Zhu, W.Y., Tang, K.W., 2023. Responses of coastal sediment organic and inorganic carbon to habitat modification across a wide latitudinal range in southeastern China. CATENA225, 107034.
CrossRef
Google scholar
|
[29] |
Kauffman, J.B., Bernardino, A.F., Ferreira, T.O., Bolton, N.W., de O. Gomes, L.E., Nobrega, G.N., 2018. Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves. Ecology and Evolution8, 5530–5540.
CrossRef
Google scholar
|
[30] |
Kindler, R., Siemens, J.A.N., Kaiser, K., Walmsley, D.C., Bernhofer, C., Buchmann, N., Cellier, P., Eugster, W., Gleixner, G., Grũnwald, T., Heim, A., Ibrom, A., Jones, S.K.; Jones, M., Klumpp, K., Kutsch, W., Larsen, K.S., Lehuger, S., Loubet, B., McKenzie, R., Moors, E., Osborne, B., Pilegaard, K., Rebmann, C., Saunders, M., Schmidt, M.W. I., Schrumpf, M., Seyfferth, J., Skiba, U., Soussana, J.F., Sutton, M.A., Tefs, C., Vowinckel, B., Zeeman, M.J., Kaupenjohann, M., 2011. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Global Change Biology17, 1167–1185.
CrossRef
Google scholar
|
[31] |
Lal, R., 2008. Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences363, 815–830.
CrossRef
Google scholar
|
[32] |
Lázaro-Lobo, A., Ervin, G.N., 2021. Wetland invasion: a multi-faceted challenge during a time of rapid global change. Wetlands41, 64.
|
[33] |
Le Mer, J., Roger, P., 2001. Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology37, 25–50.
CrossRef
Google scholar
|
[34] |
Leifeld, J., Wüst-Galley, C., Page, S., 2019. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nature Climate Change9, 945–947.
CrossRef
Google scholar
|
[35] |
Li, X., Zheng, D., Zhang, N.L., Dong, L.J., Wu, A.P., Wu, Q.Q., Liu, H., Zhao, M.S., Li, Y., Wang, X.P., Wang, Y.H., 2024. Arbuscular mycorrhizal fungi-mediated resistance to salt spray in Cinnamomum camphora seedlings enhanced by leaf functional traits. Soil Ecology Letters6, 230211.
CrossRef
Google scholar
|
[36] |
Li, X.F., Han, S.J., Guo, Z.L., Shao, D.K., Xin, L.H., 2010. Changes in soil microbial biomass carbon and enzyme activities under elevated CO2 affect fine root decomposition processes in a Mongolian oak ecosystem. Soil Biology and Biochemistry42, 1101–1107.
|
[37] |
Lin, G.M., Lin, X.B., 2022. Bait input altered microbial community structure and increased greenhouse gases production in coastal wetland sediment. Water Research218, 118520.
CrossRef
Google scholar
|
[38] |
Lin, X., Yang, Y.L., Yang, P., Hong, Y., Zhang, L.H., Tong, C., Lai, D.Y. F., Lin, Y.X., Tan, L.S., Tian, Y.L., Tang, K.W., 2023. Soil organic nitrogen content and composition in different wetland habitat types along the south-east coast of China. CATENA232, 107457.
CrossRef
Google scholar
|
[39] |
Liu, J.Y., Zhuang, D.F., Luo, D., Xiao, X., 2003. Land-cover classification of China: integrated analysis of AVHRR imagery and geophysical data. International Journal of Remote Sensing24, 2485–2500.
CrossRef
Google scholar
|
[40] |
Liu, M.Y., Mao, D.H., Wang, Z.M., Li, L., Man, W.D., Jia, M.M., Ren, C.Y., Zhang, Y.Z., 2018. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: new observations from landsat OLI images. Remote Sensing10, 1933.
CrossRef
Google scholar
|
[41] |
Lu, T., Xu, N.H., Lei, C.T., Zhang, Q., Zhang, Z.Y., Sun, L.W., He, F., Zhou, N.Y., Peñuelas, J., Zhu, Y.G., Qian, H.F., 2023. Bacterial biogeography in China and its association to land use and soil organic carbon. Soil Ecology Letters5, 230172.
CrossRef
Google scholar
|
[42] |
Lucas, S., Weil, R., 2021. Can permanganate oxidizable carbon predict soil function responses to soil organic matter management?. Soil Science Society of America Journal85, 1768–1784.
CrossRef
Google scholar
|
[43] |
Macreadie, P.I., Costa, M.D.P., Atwood, T.B., Friess, D.A., Kelleway, J.J., Kennedy, H., Lovelock, C.E., Serrano, O., Duarte, C.M., 2021. Blue carbon as a natural climate solution. Nature Reviews Earth & Environment2, 826–839.
|
[44] |
Mao, D.H., Liu, M.Y., Wang, Z.M., Li, L., Man, W.D., Jia, M.M., Zhang, Y.Z., 2019. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: spatiotemporal patterns and human prevention. Sensors19, 2308.
CrossRef
Google scholar
|
[45] |
Mcleod, E., Chmura, G.L., Bouillon, S., Salm, R., Björk, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H., Silliman, B.R., 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment9, 552–560.
|
[46] |
Meng, W.Q., Feagin, R.A., Innocenti, R.A., Hu, B.B., He, M.X., Li, H.Y., 2020. Invasion and ecological effects of exotic smooth cordgrass Spartina alterniflora in China. Ecological Engineering143, 105670.
CrossRef
Google scholar
|
[47] |
Middelburg, J.J., Nieuwenhuize, J., Lubberts, R.K., van de Plassche, O., 1997. Organic carbon isotope systematics of coastal marshes. Estuarine, Coastal and Shelf Science45, 681–687.
|
[48] |
Neff, J.C., Asner, G.P., 2001. Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems4, 29–48.
CrossRef
Google scholar
|
[49] |
Newton, A., Icely, J., Cristina, S., Perillo, G.M.E., Turner, R.E., Ashan, D., Cragg, S., Luo, Y.M., Tu, C., Li, Y., Zhang, H.B., Ramesh, R., Forbes, D.L., Solidoro, C., Béjaoui, B., Gao, S., Pastres, R., Kelsey, H., Taillie, D., Nhan, N., Brito, A.C., de Lima, R., Kuenzer, C., 2020. Anthropogenic, direct pressures on coastal wetlands. Frontiers in Ecology and Evolution8, 144.
CrossRef
Google scholar
|
[50] |
Padhy, S.R., Bhattacharyya, P., Dash, P.K., Roy, K.S., Neogi, S., Baig, M.J., Swain, P., Nayak, A.K., Mohapatra, T., 2020. Enhanced labile carbon flow in soil-microbes-plant-atmospheric continuum in rice under elevated CO2 and temperature leads to positive climate change feed-back. Applied Soil Ecology155, 103657.
CrossRef
Google scholar
|
[51] |
Paterson, E., Sim, A., 2013. Soil-specific response functions of organic matter mineralization to the availability of labile carbon. Global Change Biology19, 1562–1571.
|
[52] |
Ramesh, T., Bolan, N.S., Kirkham, M.B., Wijesekara, H., Kanchikerimath, M., Rao, C.S., Sandeep, S., Rinklebe, J., Sik Ok, Y., Choudhury, B.U., Wang, H.L., Tang, C.X., Wang, X.J., Song, Z.L., Freeman II, O.W., 2019. Soil organic carbon dynamics: Impact of land use changes and management practices: a review. Advances in Agronomy156, 1–107.
|
[53] |
Ren, C.Y., Wang, Z.M., Zhang, Y.Z., Zhang, B., Chen, L., Xi, Y.B., Xiao, X.M., Doughty, R.B., Liu, M.Y., Jia, M.M., Mao, D.H., Song, K.S., 2019. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. International Journal of Applied Earth Observation and Geoinformation82, 101902.
CrossRef
Google scholar
|
[54] |
Rovira, P., Vallejo, V.R., 2002. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma107, 109–141.
|
[55] |
Scharlemann, J.P.W., Tanner, E.V.J., Hiederer, R., Kapos, V., 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management5, 81–91.
CrossRef
Google scholar
|
[56] |
Setia, R., Rengasamy, P., Marschner, P., 2013. Effect of exchangeable cation concentration on sorption and desorption of dissolved organic carbon in saline soils. Science of the Total Environment465, 226–232.
CrossRef
Google scholar
|
[57] |
Shao, P.S., Li, T., Dong, K.K., Yang, H.J., Sun, J.K., 2022. Microbial residues as the nexus transforming inorganic carbon to organic carbon in coastal saline soils. Soil Ecology Letters4, 328–336.
CrossRef
Google scholar
|
[58] |
Sheng, H., Zhou, P., Zhang, Y.Z., Kuzyakov, Y., Zhou, Q., Ge, T.D., Wang, C.H., 2015. Loss of labile organic carbon from subsoil due to land-use changes in subtropical China. Soil Biology and Biochemistry88, 148–157.
|
[59] |
Soper, F.M., MacKenzie, R.A., Sharma, S., Cole, T.G., Litton, C.M., Sparks, J.P., 2019. Non‐native mangroves support carbon storage, sediment carbon burial, and accretion of coastal ecosystems. Global Change Biology25, 4315–4326.
CrossRef
Google scholar
|
[60] |
Sun, Z.G., Sun, W.G., Tong, C., Zeng, C.S., Yu, X., Mou, X.J., 2015. China’s coastal wetlands: conservation history, implementation efforts, existing issues and strategies for future improvement. Environment International79, 25–41.
CrossRef
Google scholar
|
[61] |
Tan, L.S., Ge, Z.M., Li, S.H., Zhou, K., Lai, D.Y. F., Temmerman, S., Dai, Z.J., 2023. Impacts of land-use change on carbon dynamics in China's coastal wetlands. Science of the Total Environment890, 164206.
|
[62] |
Tan, L.S., Ge, Z.M., Zhou, X.H., Li, S.H., Li, X.Z., Tang, J.W., 2020. Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: a global meta-analysis. Global Change Biology26, 1638–1653.
CrossRef
Google scholar
|
[63] |
Tan, L.S., Yang, P., Lin, X., Lin, Y.X., Zhang, L.H., Tong, C., Hong, Y., Lai, D.Y.F., Tang, K.W., 2024. Latitudinal responses of wetland soil nitrogen pools to plant invasion and subsequent aquaculture reclamation along the southeastern coast of China. Agriculture, Ecosystems & Environment363, 108874.
|
[64] |
Tong, C., Zhang, L.H., Wang, W.Q., Gauci, V., Marrs, R., Liu, B.G., Jia, R.X., Zeng, C.S., 2011. Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh. Environmental Research111, 909–916.
CrossRef
Google scholar
|
[65] |
Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry19, 703–707.
CrossRef
Google scholar
|
[66] |
Verrone, V., Gupta, A., Laloo, A.E., Dubey, R.K., Hamid, N.A.A., Swarup, S., 2024. Organic matter stability and lability in terrestrial and aquatic ecosystems: a chemical and microbial perspective. Science of the Total Environment906, 167757.
CrossRef
Google scholar
|
[67] |
Wang, B., Lin, X.B., 2023. Exotic Spartina alterniflora invasion enhances sediment N-loss while reducing N retention in mangrove wetland. Geoderma431, 116362.
|
[68] |
Wang, B.R., Liu, D., Yang, J.J., Zhu, Z.L., Darboux, F., Jiao, J.Y., An, S.S., 2021a. Effects of forest floor characteristics on soil labile carbon as varied by topography and vegetation type in the Chinese Loess Plateau. CATENA196, 104825.
CrossRef
Google scholar
|
[69] |
Wang, D.B., Huang, W., Liang, R.W., Li, F.S., 2016. Effects of Spartina alterniflora invasion on soil quality in coastal wetland of Beibu Gulf of South China. PLoS One11, e0168951.
CrossRef
Google scholar
|
[70] |
Wang, F., Wang, T., Gustave, W., Wang, J.J., Zhou, Y.H., Chen, J.Q., 2023. Spatial-temporal patterns of organic carbon sequestration capacity after long-term coastal wetland reclamation. Agriculture, Ecosystems & Environment341, 108209.
|
[71] |
Wang, F.M., Sanders, C.J., Santos, I.R., Tang, J.W., Schuerch, M., Kirwan, M.L., Kopp, R.E., Zhu, K., Li, X.Z., Yuan, J.C., Liu, W.Z., Li, Z.A., 2021b. Global blue carbon accumulation in tidal wetlands increases with climate change. National Science Review8, nwaa296.
|
[72] |
Wang, J.Y., Song, C.C., Wang, X.W., Song, Y.Y., 2012. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China. CATENA96, 83–89.
CrossRef
Google scholar
|
[73] |
Wang, K.K., Ren, T., Yan, J.Y., Zhu, D.D., Liao, S.P., Zhang, Y.Y., Lu, Z.F., Cong, R.H., Li, X.K., Lu, J.W., 2022a. Straw returning mediates soil microbial biomass carbon and phosphorus turnover to enhance soil phosphorus availability in a rice-oilseed rape rotation with different soil phosphorus levels. Agriculture, Ecosystems & Environment335, 107991.
|
[74] |
Wang, Q.K., Wang, S.L., 2011. Response of labile soil organic matter to changes in forest vegetation in subtropical regions. Applied Soil Ecology47, 210–216.
CrossRef
Google scholar
|
[75] |
Wang, Z.H., Zhang, J.Y., Yang, X.M., Huang, C., Su, F.Z., Liu, X.L., Liu, Y.M., Zhang, Y.Z., 2022b. Global mapping of the landside clustering of aquaculture ponds from dense time-series 10m Sentinel-2 images on Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation115, 103100.
|
[76] |
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H.J., Kögel-Knabner, I., 2019. Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma333, 149–162.
CrossRef
Google scholar
|
[77] |
Xia, S.P., Wang, W.Q., Song, Z.L., Kuzyakov, Y., Guo, L.D., Van Zwieten, L., Li, Q., Hartley, L.P., Yang, Y.H., Wang, Y.D., Qunie, T.A., Liu, C.Q., Wang, H.L., 2021. Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics. Global Change Biology27, 1627–1644.
CrossRef
Google scholar
|
[78] |
Xiao, Y., Huang, Z.G., Lu, X.G., 2015. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China. Ecological Engineering82, 381–389.
CrossRef
Google scholar
|
[79] |
Xu, X., Wei, S.J., Chen, H.Y., Li, B., Nie, M., 2022. Effects of Spartina invasion on the soil organic carbon content in salt marsh and mangrove ecosystems in China. Journal of Applied Ecology59, 1937–1946.
|
[80] |
Yang, P., Chen, G.P., Zhang, L.H., Tong, C., Yang, H., Zhu, W.Y., Sun, D.Y., Tan, L.S., Hong, Y., Tang, K.W., 2024. Variable responses of mineral-bound soil organic carbon to land cover change in southern China’s coastal wetlands. CATENA242, 108129.
CrossRef
Google scholar
|
[81] |
Yang, P., Tang, K.W., Zhang, L.H., Lin, X., Yang, H., Tong, C., Hong, Y., Tan, L.S., Lai, D.Y. F., Tian, Y.L., Zhu, W.Y., Ruan, M.J., Lin, Y.X., 2023. Effects of landscape modification on coastal sediment nitrogen availability, microbial functional gene abundances and N2O production potential across the tropical-subtropical gradient. Environmental Research227, 115829.
|
[82] |
Yang, P., Zhang, L.H., Lai, D.Y. F., Yang, H., Tan, L.S., Luo, L.J., Tong, C., Hong, Y., Zhu, W.Y., Tang, K.W., 2022. Landscape change affects soil organic carbon mineralization and greenhouse gas production in coastal wetlands. Global Biogeochemical Cycles36, e2022GB007469.
CrossRef
Google scholar
|
[83] |
Yang, P., Zhao, G.H., Tong, C., Tang, K.W., Lai, D.Y.F., Li, L., Tang, C., 2021. Assessing nutrient budgets and environmental impacts of coastal land-based aquaculture system in southeastern China. Agriculture, Ecosystems & Environment322, 107662.
|
[84] |
Yang, W., Jeelan, N., Leng, X., Cheng, X.L., An, S.Q., 2016. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China. Scientific Reports6, 26880.
CrossRef
Google scholar
|
[85] |
Yang, X.Y., Ren, W.D., Sun, B.H., Zhang, S.L., 2012. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma 177–178, 177–178.
|
[86] |
Zhang, H., Wu, P.B., Fan, M.M., Zheng, S.Y., Wu, J.T., Yang, X.H., Zhang, M., Yin, A.J., Gao, C., 2018. Dynamics and driving factors of the organic carbon fractions in agricultural land reclaimed from coastal wetlands in eastern China. Ecological Indicators89, 639–647.
|
[87] |
Zhang, J.B., Song, C.C., Yang, W.Y., 2006. Land use effects on the distribution of labile organic carbon fractions through soil profiles. Soil Science Society of America Journal70, 660–667.
CrossRef
Google scholar
|
[88] |
Zhang, Y.H., Ding, W.X., Luo, J.F., Donnison, A., 2010. Changes in soil organic carbon dynamics in an Eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora. Soil Biology and Biochemistry42, 1712–1720.
CrossRef
Google scholar
|
[89] |
Zhang, Y.H., Huang, G.M., Wang, W.Q., Chen, L.Z., Lin, G.H., 2012. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology93, 588–597.
|
[90] |
Zhao, D., Dong, J.Y., Ji, S.P., Huang, M.S., Quan, Q., Liu, J., 2020. Effects of contemporary land use types and conversions from wetland to paddy field or dry land on soil organic carbon fractions. Sustainability12, 2094.
CrossRef
Google scholar
|
[91] |
Zhong, Z.K., Han, X.H., Xu, Y.D., Zhang, W., Fu, S.Y., Liu, W.C., Ren, C.J., Yang, G.H., Ren, G.X., 2019. Effects of land use change on organic carbon dynamics associated with soil aggregate fractions on the Loess Plateau, China. Land Degradation & Development30, 1070–1082.
|
Supplementary files
SEL-00043-OF-QXZ_suppl_1 (1350 KB)
/
〈 |
|
〉 |