Effects of plant invasion and land use change on soil labile organic carbon in southern China’s coastal wetlands
Lihua Wang , Wenjing Liu , Xueya Zhou , Shenglei Fu , Ping Yang , Chuan Tong , Hong Yang , Dongyao Sun , Linhai Zhang , Wanyi Zhu , Kam W. Tang
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (1) : 240275
Effects of plant invasion and land use change on soil labile organic carbon in southern China’s coastal wetlands
Labile organic carbon (LOC) plays a pivotal role in soil biogeochemistry and ecological functions. China’s coastal wetlands have been profoundly impacted due to plant invasion and land use change, but the effects on soil LOC quantity and composition are unclear. This study analyzed the soil LOC components—namely, dissolved organic carbon (DOC), easily oxidizable carbon (EOC), and microbial biomass carbon (MBC)—across twenty-one coastal wetlands in southeastern China. These wetlands underwent a uniform land cover transition from native mudflats (MFs) to Spartina alterniflora marshes (SAs), and eventually to aquaculture ponds (APs). The results indicated that EOC was the dominant component of soil organic carbon (SOC) (57.5%–61.6%), followed by MBC (3.5%–4.5%) and DOC (<0.5%). The transition from MFs to SAs led to a rise in mean EOC and DOC by 18.6% and 41.4%, respectively. Subsequent conversion of SAs to APs resulted in a reduction in mean EOC and DOC by 5.9% and 20.3%, respectively. MBC did not differ significantly among habitat types. Total nitrogen availability was the main driver of changes in LOC across both land cover change scenarios. The mineralization rate of SOC were more strongly correlated with DOC than EOC and MBC. Microbial turnover of EOC was temperature dependent across the geographical range. These finds highlighted that plant invasion and land use change affected LOC fractions and subsequent SOC stability and carbon emissions in coastal wetlands.
labile organic carbon (LOC) / dissolved organic carbon (DOC) / microbial biomass carbon (MBC) / carbon stock / plant invasion / aquaculture reclamation
| ● EOC dominated the labile organic carbon pool in coastal wetland soil. | |
| ● Invasion of mudflats by Spartina alterniflora increased soil EOC and DOC. | |
| ● EOC and DOC decreased when Spartina marshes were converted into aquaculture ponds. | |
| ● SOC mineralization rate increased most strongly with increasing DOC. | |
| ● Latitudinal gradients in EOC and MBC suggest a temperature-dependent effect. |
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
Higher Education Press
/
| 〈 |
|
〉 |