CO2 removal with enhanced wollastonite weathering in acidic and calcareous soils
Chenxia Su , Ronghua Kang , Wentao Huang , Ang Wang , Xue Li , Kai Huang , Qiang Zhou , Yunting Fang
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (1) : 240273
CO2 removal with enhanced wollastonite weathering in acidic and calcareous soils
The application of silicate rock powder to agricultural soils is a promising strategy for atmospheric CO2 removal. However, most research focuses on inorganic carbon sequestration via enhanced rock weathering, overlooking its impact on soil organic carbon (SOC) decomposition, which is essential for quantifying net CO2 removal. To address this gap, we conducted a 233-day incubation experiment to investigate the impact of wollastonite powder on soil CO2 emissions, SOC decomposition, pH, and cation concentrations across three agricultural soils with pH levels of 4.4, 5.6, and 7.7. Results showed 89.0% and 74.4% rock powder weathering in the most acidic and alkaline soils, respectively. In acidic soils, wollastonite powder addition increased CO2 emissions due to the release of intrinsic CaCO3 containing in wollastonite or/and SOC. However, these CO2 emissions accounted for less than 20% of the total CO2 removal by wollastonite weathering. In contrast, alkaline soils experienced a reduction in CO2 emissions with wollastonite powder amendment. Net CO2 removal for soils with pH 4.4 and 7.7 were 1.0 and 1.1 g C kg−1 soil, respectively. This study confirms that wollastonite weathering is effective for CO2 mitigation regardless of soil pH.
enhanced rock weathering / wollastonite powder / soil organic carbon / soil CO 2 emissions / weathering rate
● Wollastonite powder removed CO2 in soils with pH values of 4.4, and 7.7, at 1.0 and 1.1 g C kg−1 soil, respectively. | |
● Wollastonite powder increases CO2 emissions in acidic soils, but these emissions are less than 20% of the total carbon removal by wollastonite weathering. | |
● CO2 emissions in acidic soils result from the acidolysis of CaCO3 within the wollastonite powder and the decomposition of soil organic carbon. |
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |