Rhizosphere Cercozoa reflect the physiological response of wheat plants to salinity stress

Biao Feng , Lin Chen , Jinyong Lou , Meng Wang , Wu Xiong , Ruibo Sun , Zhu Ouyang , Zhigang Sun , Bingzi Zhao , Jiabao Zhang

Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (1) : 240268

PDF (3977KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (1) : 240268 DOI: 10.1007/s42832-024-0268-9
RESEARCH ARTICLE

Rhizosphere Cercozoa reflect the physiological response of wheat plants to salinity stress

Author information +
History +
PDF (3977KB)

Abstract

Protists are essential components of the rhizosphere microbiome, which is crucial for plant growth, but little is known about the relationship between plant growth and rhizosphere protists under salinity stress. Here we investigated wheat (Triticum aestivum L.) rhizosphere protistan communities under naturally occurring salinity (NOS) and irrigation-reduced salinity (IRS), and linked a plant salinity stress index (PSSI) to different protistan groups in a nontidal coastal saline soil. We found that the PSSI was significantly correlated with rhizosphere cercozoan communities (including bacterivores, eukaryvores, and omnivores) and that these communities were important predictors of the PSSI. Structural equation modeling suggested that root exudation-induced change in bacterial community composition affected the communities of bacterivorous and omnivorous Cercozoa, which were significantly associated with the PSSI across wheat cultivars. Network analysis indicated more complex connections between rhizosphere bacteria and their protistan predators under IRS than under NOS, implying that alleviation of salinity stress promotes the predation of specific cercozoans on bacteria in rhizospheres. Moreover, the Cercomonas directa inoculation was conducive to alleviation of salinity stress. Taken together, these results suggest that the physiological response of wheat plants to salinity stress is closely linked to rhizosphere Cercozoa through trophic regulation within the rhizosphere microbiome.

Graphical abstract

Keywords

plant growth / soil salinity / rhizosphere microbiome / trophic interactions / protists / Cercozoa.

Highlight

● Plant salinity stress index correlates with rhizosphere Cercozoa.

● Salinity stress alleviation promotes predation of rhizosphere Cercozoa.

Cercomonas strain inoculation assists alleviation of salinity stress.

Cite this article

Download citation ▾
Biao Feng, Lin Chen, Jinyong Lou, Meng Wang, Wu Xiong, Ruibo Sun, Zhu Ouyang, Zhigang Sun, Bingzi Zhao, Jiabao Zhang. Rhizosphere Cercozoa reflect the physiological response of wheat plants to salinity stress. Soil Ecology Letters, 2025, 7(1): 240268 DOI:10.1007/s42832-024-0268-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ali, A., Zhong, X.X., Wang, Q.L., Xu, H.L., 2024. A community-based bioassay for the salinity stress on periphytic protozoan fauna in marine ecosystems. Continental Shelf Research273, 105177.

[2]

Angst, G., Messinger, J., Greiner, M., Häusler, W., Hertel, D., Kirfel, K., Kögel-Knabner, I., Leuschner, C., Rethemeyer, J., Mueller, C.W., 2018. Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biology and Biochemistry122, 19–30.

[3]

Badri, D.V., Vivanco, J.M., 2009. Regulation and function of root exudates. Plant, Cell & Environment32, 666–681.

[4]

Benjamini, Y., Yekutieli, D., 2001. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics29, 1165–1188.

[5]

Berendsen, R.L., Pieterse, C.M.J., Bakker, P.A.H.M., 2012. The rhizosphere microbiome and plant health. Trends in Plant Science17, 478–486.

[6]

Burki, F., Keeling, P.J., 2014. Rhizaria. Current Biology24, R103–R107.

[7]

Chen, L., Brookes, P.C., Xu, J.M., Zhang, J.B., Zhang, C.Z., Zhou, X.Y., Luo, Y., 2016. Structural and functional differentiation of the root-associated bacterial microbiomes of perennial ryegrass. Soil Biology and Biochemistry98, 1–10.

[8]

Chi, Y., Shi, H.H., Zheng, W., Sun, J.K., Fu, Z.Y., 2018. Spatiotemporal characteristics and ecological effects of the human interference index of the Yellow River Delta in the last 30 years. Ecological Indicators89, 880–892.

[9]

Cooperative Research Group on Chinese Soil Taxonomy, 2001. Chinese Soil Taxonomy. Beijing: Science Press.

[10]

Czech, L., Bremer, E., 2018. With a pinch of extra salt-did predatory protists steal genes from their food?. PLoS Biology16, e2005163.

[11]

Degrune, F., Dumack, K., Fiore-Donno, A.M., Bonkowski, M., Sosa-Hernández, M.A., Schloter, M., Kautz, T., Fischer, D., Rillig, M.C., 2019. Distinct communities of cercozoa at different soil depths in a temperate agricultural field. FEMS Microbiology Ecology95, fiz041.

[12]

Dodd, I.C., Pérez-Alfocea, F., 2012. Microbial amelioration of crop salinity stress. Journal of Experimental Botany63, 3415–3428.

[13]

Dumack, K., Fiore-Donno, A.M., Bass, D., Bonkowski, M., 2020. Making sense of environmental sequencing data: ecologically important functional traits of the protistan groups cercozoa and endomyxa (Rhizaria). Molecular Ecology Resources20, 398–403.

[14]

Fan, K.K., Delgado-Baquerizo, M., Guo, X.S., Wang, D.Z., Zhu, Y.G., Chu, H.Y., 2021. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. The ISME Journal15, 550–561.

[15]

FAO, 2021. Halt soil salinization, boost soil productivity [Online]. available at the website of FAO.

[16]

Fierer, N., 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology15, 579–590.

[17]

Flues, S., Bass, D., Bonkowski, M., 2017. Grazing of leaf-associated cercomonads (Protists: Rhizaria: Cercozoa) structures bacterial community composition and function. Environmental Microbiology19, 3297–3309.

[18]

Gao, Z.L., Karlsson, I., Geisen, S., Kowalchuk, G., Jousset, A., 2019. Protists: puppet masters of the rhizosphere microbiome. Trends in Plant Science24, 165–176.

[19]

Geisen, S., Koller, R., Hünninghaus, M., Dumack, K., Urich, T., Bonkowski, M., 2016. The soil food web revisited: diverse and widespread mycophagous soil protists. Soil Biology and Biochemistry94, 10–18.

[20]

Geisen, S., Mitchell, E.A.D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., Fernández, L.D., Jousset, A., Krashevska, V., Singer, D., Spiegel, F.W., Walochnik, J., Lara, E., 2018. Soil protists: a fertile frontier in soil biology research. FEMS Microbiology Reviews42, 293–323.

[21]

Guo, S., Tao, C.Y., Jousset, A., Xiong, W., Wang, Z., Shen, Z.Z., Wang, B.B., Xu, Z.H., Gao, Z.L., Liu, S.S., Li, R., Ruan, Y.Z., Shen, Q.R., Kowalchuk, G.A., Geisen, S., 2022. Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health. The ISME Journal16, 1932–1943.

[22]

Guo, S., Xiong, W., Hang, X.N., Gao, Z.L., Jiao, Z.X., Liu, H.J., Mo, Y.N., Zhang, N., Kowalchuk, G.A., Li, R., Shen, Q.R., Geisen, S., 2021. Protists as main indicators and determinants of plant performance. Microbiome9, 64.

[23]

Hartman, K., van der Heijden, M.G.A., Wittwer, R.A., Banerjee, S., Walser, J.C., Schlaeppi, K., 2018. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome6, 14.

[24]

Hawxhurst, C.J., Micciulla, J.L., Bridges, C.M., Shor, M., Gage, D.J., Shor, L.M., 2023. Soil protists can actively redistribute beneficial bacteria along Medicago truncatula roots. Applied and Environmental Microbiology89, e01819–22.

[25]

Hooper, D., Coughlan, J., Mullen, M. R., 2008. Structural equation modelling: guidelines for determining model fit. Electronic Journal of Business Research Methods6, 53–60.

[26]

Howe, A.T., Bass, D., Vickerman, K., Chao, E.E., Cavalier-Smith, T., 2009. Phylogeny, taxonomy, and astounding genetic diversity of glissomonadida ord. nov., the dominant gliding zooflagellates in soil (Protozoa: Cercozoa). Protist160, 159–189.

[27]

Ji, X., Bi, L.P., Zou, S.B., Li, W.L., Ji, D.D., Zhang, Q.Q., 2024. Salinity acclimation induces reduced energy metabolism, osmotic pressure regulation and transcriptional reprogramming in hypotrichida ciliate Gastrostyla setifera. Journal of Ocean University of China,23, 539–549.

[28]

Kuppardt, A., Fester, T., Härtig, C., Chatzinotas, A., 2018. Rhizosphere protists change metabolite profiles in Zea mays. Frontiers in Microbiology9, 857.

[29]

Li, H., La, S., Zhang, X., Gao, L.H., Tian, Y.Q., 2021. Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress. The ISME Journal15, 2865–2882.

[30]

McDonald, J.H., 2009. Handbook of Biological Statistics. 2nd ed. Baltimore: Sparky House Publishing.

[31]

McFarlane, D.J., George, R.J., Barrett-Lennard, E.G., Gilfedder, M., 2016. Salinity in dryland agricultural systems: challenges and opportunities. In: Farooq, M., Siddique, K.H.M., eds. Innovations in Dryland Agriculture. Cham: Springer, 521–547.

[32]

Morriën, E., Hannula, S.E., Snoek, L.B., Helmsing, N.R., Zweers, H., de Hollander, M., Soto, R.L., Bouffaud, M.L., Buée, M., Dimmers, W., Duyts, H., Geisen, S., Girlanda, M., Griffiths, R.I., Jørgensen, H.B., Jensen, J., Plassart, P., Redecker, D., Schmelz, R.M., Schmidt, O., Thomson, B.C., Tisserant, E., Uroz, S., Winding, A., Bailey, M.J., Bonkowski, M., Faber, J.H., Martin, F., Lemanceau, P., de Boer, W., van Veen, J.A., van der Putten, W.H., 2017. Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications8, 14349.

[33]

Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology59, 651–681.

[34]

Oliverio, A.M., Geisen, S., Delgado-Baquerizo, M., Maestre, F.T., Turner, B.L., Fierer, N., 2020. The global-scale distributions of soil protists and their contributions to belowground systems. Science Advances6, eaax8787.

[35]

Quinn, T.P., Crowley, T.M., Richardson, M.F., 2018. Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods. BMC Bioinformatics19, 274.

[36]

Rossmann, M., Pérez-Jaramillo, J.E., Kavamura, V.N., Chiaramonte, J.B., Dumack, K., Fiore-Donno, A.M., Mendes, L.W., Ferreira, M.M.C., Bonkowski, M., Raaijmakers, J.M., Mauchline, T.H., Mendes, R., 2020. Multitrophic interactions in the rhizosphere microbiome of wheat: from bacteria and fungi to protists. FEMS Microbiology Ecology96, fiaa032.

[37]

Sapp, M., Ploch, S., Fiore-Donno, A.M., Bonkowski, M., Rose, L.E., 2018. Protists are an integral part of the Arabidopsis thaliana microbiome. Environmental Microbiology20, 30–43.

[38]

Shi, S.J., Nuccio, E.E., Shi, Z.J., He, Z.L., Zhou, J.Z., Firestone, M.K., 2016. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecology Letters19, 926–936.

[39]

Singer, D., Seppey, C.V.W., Lentendu, G., Dunthorn, M., Bass, D., Belbahri, L., Blandenier, Q., Debroas, D., de Groot, G.A., de Vargas, C., Domaizon, I., Duckert, C., Izaguirre, I., Koenig, I., Mataloni, G., Schiaffino, M.R., Mitchell, E.A.D., Geisen, S., Lara, E., 2021. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environment International146, 106262.

[40]

Sun, A.Q., Jiao, X.Y., Chen, Q.L., Trivedi, P., Li, Z.X., Li, F.F., Zheng, Y., Lin, Y.X., Hu, H.W., He, J.Z., 2021. Fertilization alters protistan consumers and parasites in crop-associated microbiomes. Environmental Microbiology23, 2169–2183.

[41]

Thakur, M.P., Geisen, S., 2019. Trophic regulations of the soil microbiome. Trends in Microbiology27, 771–780.

[42]

Trivedi, P., Leach, J.E., Tringe, S.G., Sa, T., Singh, B.K., 2020. Plant-microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology18, 607–621.

[43]

Wu, C.S., Liu, G.H., Huang, C., Liu, Q.S., 2019. Soil quality assessment in Yellow River Delta: establishing a minimum data set and fuzzy logic model. Geoderma334, 82–89.

[44]

Xiong, W., Song, Y.Q., Yang, K.M., Gu, Y.A., Wei, Z., Kowalchuk, G.A., Xu, Y.C., Jousset, A., Shen, Q.R., Geisen, S., 2020. Rhizosphere protists are key determinants of plant health. Microbiome8, 27.

[45]

Zhalnina, K., Louie, K.B., Hao, Z., Mansoori, N., da Rocha, U.N., Shi, S.J., Cho, H., Karaoz, U., Loqué, D., Bowen, B.P., Firestone, M.K., Northen, T.R., Brodie, E.L., 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology3, 470–480.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3977KB)

Supplementary files

SEL-00268-OF-BF_suppl_1

1795

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/