Rhizosphere Cercozoa reflect the physiological response of wheat plants to salinity stress
Biao Feng, Lin Chen, Jinyong Lou, Meng Wang, Wu Xiong, Ruibo Sun, Zhu Ouyang, Zhigang Sun, Bingzi Zhao, Jiabao Zhang
Rhizosphere Cercozoa reflect the physiological response of wheat plants to salinity stress
● Plant salinity stress index correlates with rhizosphere Cercozoa. | |
● Salinity stress alleviation promotes predation of rhizosphere Cercozoa. | |
● Cercomonas strain inoculation assists alleviation of salinity stress. |
Protists are essential components of the rhizosphere microbiome, which is crucial for plant growth, but little is known about the relationship between plant growth and rhizosphere protists under salinity stress. Here we investigated wheat (Triticum aestivum L.) rhizosphere protistan communities under naturally occurring salinity (NOS) and irrigation-reduced salinity (IRS), and linked a plant salinity stress index (PSSI) to different protistan groups in a nontidal coastal saline soil. We found that the PSSI was significantly correlated with rhizosphere cercozoan communities (including bacterivores, eukaryvores, and omnivores) and that these communities were important predictors of the PSSI. Structural equation modeling suggested that root exudation-induced change in bacterial community composition affected the communities of bacterivorous and omnivorous Cercozoa, which were significantly associated with the PSSI across wheat cultivars. Network analysis indicated more complex connections between rhizosphere bacteria and their protistan predators under IRS than under NOS, implying that alleviation of salinity stress promotes the predation of specific cercozoans on bacteria in rhizospheres. Moreover, the Cercomonas directa inoculation was conducive to alleviation of salinity stress. Taken together, these results suggest that the physiological response of wheat plants to salinity stress is closely linked to rhizosphere Cercozoa through trophic regulation within the rhizosphere microbiome.
plant growth / soil salinity / rhizosphere microbiome / trophic interactions / protists / Cercozoa.
[1] |
Ali, A., Zhong, X.X., Wang, Q.L., Xu, H.L., 2024. A community-based bioassay for the salinity stress on periphytic protozoan fauna in marine ecosystems. Continental Shelf Research273, 105177.
CrossRef
Google scholar
|
[2] |
Angst, G., Messinger, J., Greiner, M., Häusler, W., Hertel, D., Kirfel, K., Kögel-Knabner, I., Leuschner, C., Rethemeyer, J., Mueller, C.W., 2018. Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biology and Biochemistry122, 19–30.
CrossRef
Google scholar
|
[3] |
Badri, D.V., Vivanco, J.M., 2009. Regulation and function of root exudates. Plant, Cell & Environment32, 666–681.
|
[4] |
Benjamini, Y., Yekutieli, D., 2001. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics29, 1165–1188.
|
[5] |
Berendsen, R.L., Pieterse, C.M.J., Bakker, P.A.H.M., 2012. The rhizosphere microbiome and plant health. Trends in Plant Science17, 478–486.
CrossRef
Google scholar
|
[6] |
Burki, F., Keeling, P.J., 2014. Rhizaria. Current Biology24, R103–R107.
CrossRef
Google scholar
|
[7] |
Chen, L., Brookes, P.C., Xu, J.M., Zhang, J.B., Zhang, C.Z., Zhou, X.Y., Luo, Y., 2016. Structural and functional differentiation of the root-associated bacterial microbiomes of perennial ryegrass. Soil Biology and Biochemistry98, 1–10.
CrossRef
Google scholar
|
[8] |
Chi, Y., Shi, H.H., Zheng, W., Sun, J.K., Fu, Z.Y., 2018. Spatiotemporal characteristics and ecological effects of the human interference index of the Yellow River Delta in the last 30 years. Ecological Indicators89, 880–892.
CrossRef
Google scholar
|
[9] |
Cooperative Research Group on Chinese Soil Taxonomy, 2001. Chinese Soil Taxonomy. Beijing: Science Press.
|
[10] |
Czech, L., Bremer, E., 2018. With a pinch of extra salt-did predatory protists steal genes from their food?. PLoS Biology16, e2005163.
|
[11] |
Degrune, F., Dumack, K., Fiore-Donno, A.M., Bonkowski, M., Sosa-Hernández, M.A., Schloter, M., Kautz, T., Fischer, D., Rillig, M.C., 2019. Distinct communities of cercozoa at different soil depths in a temperate agricultural field. FEMS Microbiology Ecology95, fiz041.
|
[12] |
Dodd, I.C., Pérez-Alfocea, F., 2012. Microbial amelioration of crop salinity stress. Journal of Experimental Botany63, 3415–3428.
CrossRef
Google scholar
|
[13] |
Dumack, K., Fiore-Donno, A.M., Bass, D., Bonkowski, M., 2020. Making sense of environmental sequencing data: ecologically important functional traits of the protistan groups cercozoa and endomyxa (Rhizaria). Molecular Ecology Resources20, 398–403.
CrossRef
Google scholar
|
[14] |
Fan, K.K., Delgado-Baquerizo, M., Guo, X.S., Wang, D.Z., Zhu, Y.G., Chu, H.Y., 2021. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. The ISME Journal15, 550–561.
CrossRef
Google scholar
|
[15] |
FAO,
|
[16] |
Fierer, N., 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology15, 579–590.
CrossRef
Google scholar
|
[17] |
Flues, S., Bass, D., Bonkowski, M., 2017. Grazing of leaf-associated cercomonads (Protists: Rhizaria: Cercozoa) structures bacterial community composition and function. Environmental Microbiology19, 3297–3309.
CrossRef
Google scholar
|
[18] |
Gao, Z.L., Karlsson, I., Geisen, S., Kowalchuk, G., Jousset, A., 2019. Protists: puppet masters of the rhizosphere microbiome. Trends in Plant Science24, 165–176.
CrossRef
Google scholar
|
[19] |
Geisen, S., Koller, R., Hünninghaus, M., Dumack, K., Urich, T., Bonkowski, M., 2016. The soil food web revisited: diverse and widespread mycophagous soil protists. Soil Biology and Biochemistry94, 10–18.
CrossRef
Google scholar
|
[20] |
Geisen, S., Mitchell, E.A.D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., Fernández, L.D., Jousset, A., Krashevska, V., Singer, D., Spiegel, F.W., Walochnik, J., Lara, E., 2018. Soil protists: a fertile frontier in soil biology research. FEMS Microbiology Reviews42, 293–323.
CrossRef
Google scholar
|
[21] |
Guo, S., Tao, C.Y., Jousset, A., Xiong, W., Wang, Z., Shen, Z.Z., Wang, B.B., Xu, Z.H., Gao, Z.L., Liu, S.S., Li, R., Ruan, Y.Z., Shen, Q.R., Kowalchuk, G.A., Geisen, S., 2022. Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health. The ISME Journal16, 1932–1943.
CrossRef
Google scholar
|
[22] |
Guo, S., Xiong, W., Hang, X.N., Gao, Z.L., Jiao, Z.X., Liu, H.J., Mo, Y.N., Zhang, N., Kowalchuk, G.A., Li, R., Shen, Q.R., Geisen, S., 2021. Protists as main indicators and determinants of plant performance. Microbiome9, 64.
CrossRef
Google scholar
|
[23] |
Hartman, K., van der Heijden, M.G.A., Wittwer, R.A., Banerjee, S., Walser, J.C., Schlaeppi, K., 2018. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome6, 14.
CrossRef
Google scholar
|
[24] |
Hawxhurst, C.J., Micciulla, J.L., Bridges, C.M., Shor, M., Gage, D.J., Shor, L.M., 2023. Soil protists can actively redistribute beneficial bacteria along Medicago truncatula roots. Applied and Environmental Microbiology89, e01819–22.
|
[25] |
Hooper, D., Coughlan, J., Mullen, M. R., 2008. Structural equation modelling: guidelines for determining model fit. Electronic Journal of Business Research Methods6, 53–60.
|
[26] |
Howe, A.T., Bass, D., Vickerman, K., Chao, E.E., Cavalier-Smith, T., 2009. Phylogeny, taxonomy, and astounding genetic diversity of glissomonadida ord. nov., the dominant gliding zooflagellates in soil (Protozoa: Cercozoa). Protist160, 159–189.
|
[27] |
Ji, X., Bi, L.P., Zou, S.B., Li, W.L., Ji, D.D., Zhang, Q.Q., 2024. Salinity acclimation induces reduced energy metabolism, osmotic pressure regulation and transcriptional reprogramming in hypotrichida ciliate Gastrostyla setifera. Journal of Ocean University of China,23, 539–549.
CrossRef
Google scholar
|
[28] |
Kuppardt, A., Fester, T., Härtig, C., Chatzinotas, A., 2018. Rhizosphere protists change metabolite profiles in Zea mays. Frontiers in Microbiology9, 857.
CrossRef
Google scholar
|
[29] |
Li, H., La, S., Zhang, X., Gao, L.H., Tian, Y.Q., 2021. Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress. The ISME Journal15, 2865–2882.
CrossRef
Google scholar
|
[30] |
McDonald, J.H., 2009. Handbook of Biological Statistics. 2nd ed. Baltimore: Sparky House Publishing.
|
[31] |
McFarlane, D.J., George, R.J., Barrett-Lennard, E.G., Gilfedder, M., 2016. Salinity in dryland agricultural systems: challenges and opportunities. In: Farooq, M., Siddique, K.H.M., eds. Innovations in Dryland Agriculture. Cham: Springer, 521–547.
|
[32] |
Morriën, E., Hannula, S.E., Snoek, L.B., Helmsing, N.R., Zweers, H., de Hollander, M., Soto, R.L., Bouffaud, M.L., Buée, M., Dimmers, W., Duyts, H., Geisen, S., Girlanda, M., Griffiths, R.I., Jørgensen, H.B., Jensen, J., Plassart, P., Redecker, D., Schmelz, R.M., Schmidt, O., Thomson, B.C., Tisserant, E., Uroz, S., Winding, A., Bailey, M.J., Bonkowski, M., Faber, J.H., Martin, F., Lemanceau, P., de Boer, W., van Veen, J.A., van der Putten, W.H., 2017. Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications8, 14349.
CrossRef
Google scholar
|
[33] |
Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology59, 651–681.
CrossRef
Google scholar
|
[34] |
Oliverio, A.M., Geisen, S., Delgado-Baquerizo, M., Maestre, F.T., Turner, B.L., Fierer, N., 2020. The global-scale distributions of soil protists and their contributions to belowground systems. Science Advances6, eaax8787.
CrossRef
Google scholar
|
[35] |
Quinn, T.P., Crowley, T.M., Richardson, M.F., 2018. Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods. BMC Bioinformatics19, 274.
|
[36] |
Rossmann, M., Pérez-Jaramillo, J.E., Kavamura, V.N., Chiaramonte, J.B., Dumack, K., Fiore-Donno, A.M., Mendes, L.W., Ferreira, M.M.C., Bonkowski, M., Raaijmakers, J.M., Mauchline, T.H., Mendes, R., 2020. Multitrophic interactions in the rhizosphere microbiome of wheat: from bacteria and fungi to protists. FEMS Microbiology Ecology96, fiaa032.
CrossRef
Google scholar
|
[37] |
Sapp, M., Ploch, S., Fiore-Donno, A.M., Bonkowski, M., Rose, L.E., 2018. Protists are an integral part of the Arabidopsis thaliana microbiome. Environmental Microbiology20, 30–43.
CrossRef
Google scholar
|
[38] |
Shi, S.J., Nuccio, E.E., Shi, Z.J., He, Z.L., Zhou, J.Z., Firestone, M.K., 2016. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecology Letters19, 926–936.
CrossRef
Google scholar
|
[39] |
Singer, D., Seppey, C.V.W., Lentendu, G., Dunthorn, M., Bass, D., Belbahri, L., Blandenier, Q., Debroas, D., de Groot, G.A., de Vargas, C., Domaizon, I., Duckert, C., Izaguirre, I., Koenig, I., Mataloni, G., Schiaffino, M.R., Mitchell, E.A.D., Geisen, S., Lara, E., 2021. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environment International146, 106262.
CrossRef
Google scholar
|
[40] |
Sun, A.Q., Jiao, X.Y., Chen, Q.L., Trivedi, P., Li, Z.X., Li, F.F., Zheng, Y., Lin, Y.X., Hu, H.W., He, J.Z., 2021. Fertilization alters protistan consumers and parasites in crop-associated microbiomes. Environmental Microbiology23, 2169–2183.
CrossRef
Google scholar
|
[41] |
Thakur, M.P., Geisen, S., 2019. Trophic regulations of the soil microbiome. Trends in Microbiology27, 771–780.
CrossRef
Google scholar
|
[42] |
Trivedi, P., Leach, J.E., Tringe, S.G., Sa, T., Singh, B.K., 2020. Plant-microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology18, 607–621.
CrossRef
Google scholar
|
[43] |
Wu, C.S., Liu, G.H., Huang, C., Liu, Q.S., 2019. Soil quality assessment in Yellow River Delta: establishing a minimum data set and fuzzy logic model. Geoderma334, 82–89.
CrossRef
Google scholar
|
[44] |
Xiong, W., Song, Y.Q., Yang, K.M., Gu, Y.A., Wei, Z., Kowalchuk, G.A., Xu, Y.C., Jousset, A., Shen, Q.R., Geisen, S., 2020. Rhizosphere protists are key determinants of plant health. Microbiome8, 27.
CrossRef
Google scholar
|
[45] |
Zhalnina, K., Louie, K.B., Hao, Z., Mansoori, N., da Rocha, U.N., Shi, S.J., Cho, H., Karaoz, U., Loqué, D., Bowen, B.P., Firestone, M.K., Northen, T.R., Brodie, E.L., 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology3, 470–480.
CrossRef
Google scholar
|
/
〈 | 〉 |