Decoding the impact of relic DNA on soil microbiomes: A new soil relic DNA removal method

Yunhao Wang, Chenchen Qu, Hao Liao, Wenli Chen, Qiaoyun Huang

PDF(6240 KB)
PDF(6240 KB)
Soil Ecology Letters ›› 2025, Vol. 7 ›› Issue (1) : 240263. DOI: 10.1007/s42832-024-0263-1
RESEARCH ARTICLE

Decoding the impact of relic DNA on soil microbiomes: A new soil relic DNA removal method

Author information +
History +

Highlights

● Benzonase removes relic DNA twice as efficiently as PMA and is adaptable across more types of soil than DNase I.

● Relic DNA removal leads to an approximately 10% reduction in soil microbial diversity and richness on average.

● The abundance of soil relic DNA is higher than previously expected.

Abstract

Microbes play a crucial ecological role in soils, but the presence of relic DNA left by previous microorganisms can lead to inaccurate estimations of viable microbial function and diversity. To address this, we proposed a new method for removing relic DNA in soil using Benzonase endonuclease and compared it with propidium monoazide (PMA) and DNase I, which have been widely applied in viable microbiome studies. Unlike PMA, Benzonase does not require light activation and is suitable for use in opaque media such as soil. Therefore, its efficiency (40%−60%) in removing soil relic DNA was twice that of PMA (0−30%). Moreover, our results showed that Benzonase outperformed DNase I in most soils, probably due to its broader range of operating conditions compared to DNase I. In addition to higher relic DNA removal efficiency, Benzonase exhibited a weak impact on soil viable microbial communities. Subsequently, Benzonase was used to remove relic DNA in natural soils, and the results showed that relic DNA removal led to an approximately 10% reduction in microbial diversity and richness on average. Notably, it caused significant changes in the relative abundance of specific taxa, such as Bacillus and Sphingomonas. These findings reveal disparities between total and viable microbiomes in soils. Our study not only provides a reliable method for soil relic DNA removal but also highlights the necessity of relic DNA removal for viable soil microbiome assessments, laying the methodological foundation for advancing soil microbial ecology research.

Graphical abstract

Keywords

relic DNA / viable soil microbiome / PMA / DNase I / Benzonase / high-throughput sequencing

Cite this article

Download citation ▾
Yunhao Wang, Chenchen Qu, Hao Liao, Wenli Chen, Qiaoyun Huang. Decoding the impact of relic DNA on soil microbiomes: A new soil relic DNA removal method. Soil Ecology Letters, 2025, 7(1): 240263 https://doi.org/10.1007/s42832-024-0263-1

References

[1]
Amar, Y., Lagkouvardos, I., Silva, R.L., Ishola, O.A., Foesel, B.U., Kublik, S., Schöler, A., Niedermeier, S., Bleuel, R., Zink, A., Neuhaus, K., Schloter, M., Biedermann, T., Köberle, M., 2021. Pre-digest of unprotected DNA by Benzonase improves the representation of living skin bacteria and efficiently depletes host DNA. Microbiome9, 123.
CrossRef Google scholar
[2]
Asaf, S., Numan, M., Khan, A.L., Al-Harrasi, A., 2020. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Critical Reviews in Biotechnology40, 138–152.
CrossRef Google scholar
[3]
Banerjee, S., van der Heijden, M.G.A., 2023. Soil microbiomes and one health. Nature Reviews Microbiology21, 6–20.
CrossRef Google scholar
[4]
Biedermann, K., Jepsen, P.K., Riise, E., Svendsen, I., 1989. Purification and characterization of a serratia marcescens nuclease produced by Escherichia coli. Carlsberg Research Communications54, 17–27.
CrossRef Google scholar
[5]
Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight, R., Huttley, G.A., Gregory Caporaso, J., 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome6, 90.
CrossRef Google scholar
[6]
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J.R., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L.J., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson II, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y.H., Wang, M.X., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y.L., Zhu, Q.Y., Knight, R., Gregory Caporaso, J., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology37, 852–857.
CrossRef Google scholar
[7]
Burkert, A., Douglas, T.A., Waldrop, M.P., Mackelprang, R., 2019. Changes in the active, dead, and dormant microbial community structure across a Pleistocene permafrost chronosequence. Applied and Environmental Microbiology85, e02646–18.
CrossRef Google scholar
[8]
Cai, P., Huang, Q., Chen, W., Zhang, D., Wang, K., Jiang, D., Liang, W., 2007. Soil colloids-bound plasmid DNA: effect on transformation of E. coli and resistance to DNase I degradation. Soil Biology and Biochemistry39, 1007–1013.
CrossRef Google scholar
[9]
Cai, P., Huang, Q.Y., Li, M., Liang, W., 2008. Binding and degradation of DNA on montmorillonite coated by hydroxyl aluminum species. Colloids and Surfaces B: Biointerfaces62, 299–306.
CrossRef Google scholar
[10]
Cai, P., Huang, Q.Y., Zhang, X.W., 2006. Interactions of DNA with clay minerals and soil colloidal particles and protection against degradation by DNase. Environmental Science & Technology40, 2971–2976.
CrossRef Google scholar
[11]
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.
CrossRef Google scholar
[12]
Cangelosi, G.A., Meschke, J.S., 2014. Dead or alive: molecular assessment of microbial viability. Applied and Environmental Microbiology80, 5884–5891.
CrossRef Google scholar
[13]
Carini, P., Delgado-Baquerizo, M., Hinckley, E.L.S., Holland-Moritz, H., Brewer, T.E., Rue, G., Vanderburgh, C., McKnight, D., Fierer, N., 2020. Effects of spatial variability and relic DNA removal on the detection of temporal dynamics in soil microbial communities. mBio11, e02776–19.
CrossRef Google scholar
[14]
Carini, P., Marsden, P.J., Leff, J.W., Morgan, E.E., Strickland, M.S., Fierer, N., 2017. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nature Microbiology2, 16242.
CrossRef Google scholar
[15]
Chen, J., Sinsabaugh, R.L., 2021. Linking microbial functional gene abundance and soil extracellular enzyme activity: implications for soil carbon dynamics. Global Change Biology27, 1322–1325.
CrossRef Google scholar
[16]
Crecchio, C., Stotzky, G., 1998. Binding of DNA on humic acids: effect on transformation of Bacillus subtilis and resistance to DNase. Soil Biology and Biochemistry30, 1061–1067.
CrossRef Google scholar
[17]
Dlott, G., Maul, J.E., Buyer, J., Yarwood, S., 2015. Microbial rRNA: rDNA gene ratios may be unexpectedly low due to extracellular DNA preservation in soils. Journal of Microbiological Methods115, 112–120.
CrossRef Google scholar
[18]
Emerson, J.B., Adams, R.I., Román, C.M.B., Brooks, B., Coil, D.A., Dahlhausen, K., Ganz, H.H., Hartmann, E.M., Hsu, T., Justice, N.B., Paulino-Lima, I.G., Luongo, J.C., Lymperopoulou, D.S., Gomez-Silvan, C., Rothschild-Mancinelli, B., Balk, M., Huttenhower, C., Nocker, A., Vaishampayan, P., Rothschild, L.J.., 2017. Schrödinger’s microbes: tools for distinguishing the living from the dead in microbial ecosystems. Microbiome5, 86.
CrossRef Google scholar
[19]
Faulwetter, J.L., Burr, M.D., Parker, A.E., Stein, O.R., Camper, A.K., 2013. Influence of season and plant species on the abundance and diversity of sulfate reducing bacteria and ammonia oxidizing bacteria in constructed wetland microcosms. Microbial Ecology65, 111–127.
CrossRef Google scholar
[20]
Fittipaldi, M., Nocker, A., Codony, F., 2012. Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. Journal of Microbiological Methods91, 276–289.
CrossRef Google scholar
[21]
Guo, X., Gao, Q., Yuan, M.T., Wang, G.S., Zhou, X.S., Feng, J.J., Shi, Z., Hale, L., Wu, L.W., Zhou, A.F., Tian, R.M., Liu, F.F., Wu, B., Chen, L.J., Jung, C.G., Niu, S.L., Li, D.J., Xu, X., Jiang, L.F., Escalas, A., Wu, L.Y., He, Z.L., Van Nostrand, J.D., Ning, D.L., Liu, X.D., Yang, Y.F., Schuur, E.A.G., Konstantinidis, K.T., Cole, J.R., Penton, C.R., Luo, Y.Q., Tiedje, J.M., Zhou, J.Z., 2020. Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming. Nature Communications11, 4897.
CrossRef Google scholar
[22]
Horinaka, J.I., Nakura, H., Maeda, S., 2004. In situ measurement of circular dichroism of DNA adsorbing onto a solid surface. Journal of Biochemical and Biophysical Methods61, 349–357.
CrossRef Google scholar
[23]
Johnson, D.R., Lee, P.K.H., Holmes, V.F., Alvarez-Cohen, L., 2005. An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with application to the tceA reductive dehalogenase gene. Applied and Environmental Microbiology71, 3866–3871.
CrossRef Google scholar
[24]
Jousset, A., Bienhold, C., Chatzinotas, A., Gallien, L., Gobet, A., Kurm, V., Küsel, K., Rillig, M.C., Rivett, D.W., Salles, J.F., van der Heijden, M.G.A., Youssef, N.H., Zhang, X.W., Wei, Z., Hol, W.H.G., 2017. Where less may be more: how the rare biosphere pulls ecosystems strings. The ISME Journal11, 853–862.
CrossRef Google scholar
[25]
Katoh, K., Rozewicki, J., Yamada, K.D., 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics20, 1160–1166.
CrossRef Google scholar
[26]
Khanna, M., Stotzky, G., 1992. Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Applied and Environmental Microbiology58, 1930–1939.
CrossRef Google scholar
[27]
Knight, R., Vrbanac, A., Taylor, B.C., Aksenov, A., Callewaert, C., Debelius, J., Gonzalez, A., Kosciolek, T., McCall, L.I., McDonald, D., Melnik, A.V., Morton, J.T., Navas, J., Quinn, R.A., Sanders, J.G., Swafford, A.D., Thompson, L.R., Tripathi, A., Xu, Z.Z., Zaneveld, J.R., Zhu, Q.Y., Caporaso, J.G., Dorrestein, P.C., 2018. Best practices for analysing microbiomes. Nature Reviews Microbiology16, 410–422.
CrossRef Google scholar
[28]
Lennon, J.T., Muscarella, M.E., Placella, S.A., Lehmkuhl, B.K., 2018. How, when, and where relic DNA affects microbial diversity. mBio9, e00637–18.
CrossRef Google scholar
[29]
Levy-Booth, D.J., Campbell, R.G., Gulden, R.H., Hart, M.M., Powell, J.R., Klironomos, J.N., Pauls, K.P., Swanton, C.J., Trevors, J.T., Dunfield, K.E., 2007. Cycling of extracellular DNA in the soil environment. Soil Biology and Biochemistry39, 2977–2991.
CrossRef Google scholar
[30]
Lorenz, M.G., Wackernagel, W., 1987. Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Applied and Environmental Microbiology53, 2948–2952.
CrossRef Google scholar
[31]
Malard, L.A., Šabacká, M., Magiopoulos, I., Mowlem, M., Hodson, A., Tranter, M., Siegert, M.J., Pearce, D.A., 2019. Spatial variability of antarctic surface snow bacterial communities. Frontiers in Microbiology10, 461.
CrossRef Google scholar
[32]
Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal17, 10–12.
CrossRef Google scholar
[33]
Mennerat, A., Sheldon, B.C., 2014. How to deal with PCR contamination in molecular microbial ecology. Microbial Ecology68, 834–841.
CrossRef Google scholar
[34]
Miller, M.D., Tanner, J., Alpaugh, M., Benedik, M.J., Krause, K.L., 1994. 2.1 Å structure of Serratia endonuclease suggests a mechanism for binding to double-stranded DNA. Nature Structural Biology 1, 461–468.
[35]
Moreno, J.M., Sanchezmontero, J.M., Sinisterra, J.V., Nielsen, L.B., 1991. Contribution to the study of the enzymatic activity of benzonase. Journal of Molecular Catalysis69, 419–427.
CrossRef Google scholar
[36]
Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta27, 31–36.
CrossRef Google scholar
[37]
Nelson, M.T., Pope, C.E., Marsh, R.L., Wolter, D.J., Weiss, E.J., Hager, K.R., Vo, A.T., Brittnacher, M.J., Radey, M.C., Hayden, H.S., Eng, A., Miller, S.I., Borenstein, E., Hoffman, L.R., 2019. Human and extracellular DNA depletion for metagenomic analysis of complex clinical infection samples yields optimized viable microbiome profiles. Cell Reports26, 2227–2240.e5.
CrossRef Google scholar
[38]
Ni, H.W., Jing, X.Y., Xiao, X., Zhang, N., Wang, X.Y., Sui, Y., Sun, B., Liang, Y.T., 2021. Microbial metabolism and necromass mediated fertilization effect on soil organic carbon after long-term community incubation in different climates. The ISME Journal15, 2561–2573.
CrossRef Google scholar
[39]
Nocker, A., Cheung, C.Y., Camper, A.K., 2006. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. Journal of Microbiological Methods67, 310–320.
CrossRef Google scholar
[40]
Nocker, A., Sossa-Fernandez, P., Burr, M.D., Camper, A.K., 2007. Use of propidium monoazide for live/dead distinction in microbial ecology. Applied and Environmental Microbiology73, 5111–5117.
CrossRef Google scholar
[41]
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research41, D590–D596.
CrossRef Google scholar
[42]
Ragland, S.A., Criss, A.K., 2017. From bacterial killing to immune modulation: recent insights into the functions of lysozyme. PLoS Pathogens13, e1006512.
CrossRef Google scholar
[43]
Romanowski, G., Lorenz, M.G., Wackernagel, W., 1991. Adsorption of plasmid DNA to mineral surfaces and protection against DNase I. Applied and Environmental Microbiology57, 1057–1061.
CrossRef Google scholar
[44]
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., Huttenhower, C., 2011. Metagenomic biomarker discovery and explanation. Genome Biology12, R60.
CrossRef Google scholar
[45]
Sirois, S.H., Buckley, D.H., 2019. Factors governing extracellular DNA degradation dynamics in soil. Environmental Microbiology Reports11, 173–184.
CrossRef Google scholar
[46]
Sokol, N.W., Slessarev, E., Marschmann, G.L., Nicolas, A., Blazewicz, S.J., Brodie, E.L., Firestone, M.K., Foley, M.M., Hestrin, R., Hungate, B.A., Koch, B.J., Stone, B.W., Sullivan, M.B., Zablocki, O., Pett-Ridge, J., 2022. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nature Reviews Microbiology20, 415–430.
CrossRef Google scholar
[47]
Sorensen, J.W., Zinke, L.A., ter Horst, A.M., Santos-Medellín, C., Schroeder, A., Emerson, J.B., 2021. DNase treatment improves viral enrichment in agricultural soil viromes. mSystems6, e0061421.
CrossRef Google scholar
[48]
Stoddard, S.F., Smith, B.J., Hein, R., Roller, B.R.K., Schmidt, T.M., 2015. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Research43, D593–D598.
CrossRef Google scholar
[49]
Vlamakis, H., Chai, Y.R., Beauregard, P., Losick, R., Kolter, R., 2013. Sticking together: building a biofilm the Bacillus subtilis way. Nature Reviews Microbiology11, 157–168.
CrossRef Google scholar
[50]
Wang, H.Z., Lou, J., Gu, H.P., Luo, X.Y., Yang, L., Wu, L.S., Liu, Y., Wu, J.J., Xu, J.M., 2016. Efficient biodegradation of phenanthrene by a novel strain Massilia sp. WF1 isolated from a PAH-contaminated soil. Environmental Science and Pollution Research 23, 13378–13388. DOI:10.1007/s11356–016-1356–016.
[51]
Wang, Y., Thompson, K.N., Yan, Y., Short, M.I., Zhang, Y.C., Franzosa, E.A., Shen, J.X., Hartmann, E.M., Huttenhower, C., 2023. RNA-based amplicon sequencing is ineffective in measuring metabolic activity in environmental microbial communities. Microbiome11, 131.
CrossRef Google scholar
[52]
Wei, X.M., Ge, T.D., Wu, C.F., Wang, S., Mason-Jones, K., Li, Y., Zhu, Z.K., Hu, Y.J., Liang, C., Shen, J.L., Wu, J.S., Kuzyakov, Y., 2021. T4-like phages reveal the potential role of viruses in soil organic matter mineralization. Environmental Science & Technology55, 6440–6448.
CrossRef Google scholar
[53]
Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., Chun, J., 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology67, 1613–1617.
CrossRef Google scholar
[54]
Zhang, M., Tan, Y.F., Fan, Y.J., Gao, J., Liu, Y.Z., Lv, X.F., Ge, L.Y., Wu, J., 2022. Nitrite accumulation, denitrification kinetic and microbial evolution in the partial denitrification process: the combined effects of carbon source and nitrate concentration. Bioresource Technology361, 127604.
CrossRef Google scholar

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 32100094 to Y. Wang and 42020104003 to Q. Huang). We thank Nan Xiao (Huazhong Agricultural University) and Fei Qin (Huazhong Agricultural University) for technical support on the analysis of soil physico-chemical properties.

Declaration of competing interest

The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

All raw sequences were deposited in NCBI Sequence Read Archive under the accession number of PRJNA961957.

Electronic supplementary material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s42832-024-0263-1 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(6240 KB)

Accesses

Citations

Detail

Sections
Recommended

/