Characterization of microbial structure and function in the rhizosphere of Boehmeria nivea L.: A comparative study of volcanic cone and crater

Jin Chen , Yiming Zhang , Qingchen Xiao , Boyan Wang , Zishan Li , Keqing Lin , Xiaowan Geng , Xiaoyu Li

Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (4) : 240259

PDF (3930KB)
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (4) : 240259 DOI: 10.1007/s42832-024-0259-x
RESEARCH ARTICLE

Characterization of microbial structure and function in the rhizosphere of Boehmeria nivea L.: A comparative study of volcanic cone and crater

Author information +
History +
PDF (3930KB)

Abstract

● Rhizosphere microbial network in crater had higher complexity than in volcanic cone.

● Bacteria were more prone to enrichment than fungi in volcanic soils.

● The bacteria exhibited greater resistance and resilience than fungi.

Volcanic eruptions are significant natural disturbances that provide valuable opportunities to study their impacts on soil microorganisms. However, no previous studies have compared the rhizosphere microbial communities of Boehmeria nivea L. in volcanic craters and cones. To address this gap, we conducted a comprehensive investigation using Illumina MiSeq high-throughput sequencing to compare the rhizosphere microbial communities in volcanic craters and cones. Principal Coordinate Analysis revealed significant differences in the rhizosphere microbial communities between the crater and cone. The bacterial communities in the rhizosphere of the crater exhibited higher diversity and evenness compared to the cones. Moreover, the cones displayed more intricate bacterial networks than the crater (nodes 556 vs. 440). Conversely, fungal networks were more complex in the crater than the cone (nodes 943 vs. 967). Additionally, bacterial communities demonstrated greater stability than fungal ones within these volcanic soils (avgK 241.1 vs. 499.7) and (avgCC 1.047 vs. 1.092). Furthermore, the Structural Equation Model demonstrated a direct positive impact of alpha diversity on soil microbial community multifunctionality in the crater (λ = 0.920, P < 0.001). Our findings have presented the opportunity to investigate the characteristics of the rhizosphere microbial communities of Boehmeria nivea L. in the crater and cone.

Graphical abstract

Keywords

Boehmeria nivea L . / rhizosphere microorganisms / Illumina MiSeq high-throughput sequencing / volcanic disturbances

Cite this article

Download citation ▾
Jin Chen, Yiming Zhang, Qingchen Xiao, Boyan Wang, Zishan Li, Keqing Lin, Xiaowan Geng, Xiaoyu Li. Characterization of microbial structure and function in the rhizosphere of Boehmeria nivea L.: A comparative study of volcanic cone and crater. Soil Ecology Letters, 2024, 6(4): 240259 DOI:10.1007/s42832-024-0259-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams, R.I., Miletto, M., Taylor, J.W., Bruns, T.D., 2013. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. The ISME Journal7, 1262–1273.

[2]

An, S.S., Zheng, F.L., Zhang, F., van Pelt, S., Hamer, U., Makeschin, F., 2008. Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. CATENA75, 248–256.

[3]

Anderson, M.J., Willis, T.J., 2003. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology84, 511–525.

[4]

Barka, E.A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H.P., Clément, C., Ouhdouch, Y., van Wezel, G.P., 2016. Taxonomy, physiology, and natural products of Actinobacteria. Microbiology and Molecular Biology Reviews80, 1–43.

[5]

Bennie, J., Hill, M.O., Baxter, R., Huntley, B., 2006. Influence of slope and aspect on long-term vegetation change in British chalk grasslands. Journal of Ecology94, 355–368.

[6]

Binkley, D., Fisher, R. F., 2019. Ecology and Management of Forest Soils. Colorado, John Wiley & Sons83–108.

[7]

Blagodatskaya, E., Kuzyakov, Y., 2013. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biology and Biochemistry67, 192–211.

[8]

Branney, M., Acocella, V., 2015. Calderas. In: Sigurdsson, H., eds. The Encyclopedia of Volcanoes. 2nd ed. Boston: Academic Press, 299–315.

[9]

Chagnon, P.L., Bradley, R.L., Maherali, H., Klironomos, J.N., 2013. A trait-based framework to understand life history of mycorrhizal fungi. Trends in Plant Science18, 484–491.

[10]

Chang, E.H., Chung, R.S., Tsai, Y.H., 2007. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Science & Plant Nutrition53, 132–140.

[11]

Chen, J., Guo, Y.Q., Li, F.S., Zheng, Y.X., Xu, D.L., Liu, H.J., Liu, X.Y., Wang, X.Y., Bao, Y.Y., 2020. Exploring the effects of volcanic eruption disturbances on the soil microbial communities in the montane meadow steppe. Environmental Pollution267, 115600.

[12]

Chen, J., Li, Z.S., Xu, D.L., Xiao, Q.C., Liu, H.J., Li, X.Y., Chao, L.M., Qu, H.T., Zheng, Y.X., Liu, X.Y., Wang, P.F., Bao, Y.Y., 2023a. Patterns and drivers of microbiome in different rock surface soil under the volcanic extreme environment. iMeta2, e122.

[13]

Chen, J., Xiao, Q.C., Xu, D.L., Li, Z.S., Chao, L.M., Li, X.Y., Liu, H.J., Wang, P.F., Zheng, Y.X., Liu, X.Y., Qu, H.T., Bao, Y.Y., 2023b. Soil microbial community composition and co-occurrence network responses to mild and severe disturbances in volcanic areas. Science of the Total Environment901, 165889.

[14]

Chen, J., Zheng, Y.X., Guo, Y.Q., Li, F.S., Xu, D.L., Chao, L.M., Qu, H.T., Wang, B.J., Ma, X.D., Wang, S.Y., Bao, Y.Y., 2021. Differences in microbial communities from Quaternary volcanic soils at different stages of development: evidence from late Pleistocene and Holocene volcanoes. CATENA201, 105211.

[15]

Chen, L.J., Jiang, Y.J., Liang, C., Luo, Y., Xu, Q.S., Han, C., Zhao, Q.G., Sun, B., 2019. Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome7, 77.

[16]

Chen, T., Liu, Y.X., Huang. L.Q., 2022. ImageGP: an easy-to-use data visualization web server for scientific researchers. iMeta1, e5.

[17]

Chmura, D., 2008. The slope aspect affects the heterogeneity and growth of ground vegetation in deciduous temperate forest. Polish Journal of Ecology56, 463–470.

[18]

Cui, Y., Xiao, Q., Wang, B., Li, Z., Zhai, Y., Xie, K., Cao, G., Li, X., Chen, J., 2024. Rhizospheric soil bacterial and fungal co-occurrence networks of Artemisia lavandulifolia present opposite stability patterns in volcanic areas. Rhizosphere31, 100927.

[19]

Deligne, N.I., Sigurdsson, H., 2015. Global rates of volcanism and volcanic episodes. In: Sigurdsson, H., ed. The Encyclopedia of Volcanoes. 2nd ed. Amsterdam: Academic Press, 265–272.

[20]

Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A., Sundaresan, V., 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America112, E911–E920.

[21]

Eisenhauer, N., Bowker, M.A., Grace, J.B., Powell, J.R., 2015. From patterns to causal understanding: structural equation modeling (SEM) in soil ecology. Pedobiologia58, 65–72.

[22]

Ettema, C.H., Wardle, D.A., 2002. Spatial soil ecology. Trends in Ecology & Evolution17, 177–183.

[23]

Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nature Reviews Microbiology10, 538–550.

[24]

Feng, K., Peng, X., Zhang, Z., Gu, S.S., He, Q., Shen, W.L., Wang, Z.J., Wang, D.R., Hu, Q.L., Li, Y., Wang, S., Deng, Y., 2022. iNAP: an integrated network analysis pipeline for microbiome studies. iMeta1, e13.

[25]

Fisk, M.C., Schmidt, S.K., Seastedt, T.R., 1998. Topographic patterns of above- and belowground production and nitrogen cycling in alpine tundra. Ecology79, 2253–2266.

[26]

Gao, Y.Y., Peng, K., Bai, D.F., Bai, X.Y., Bi, Y.J., Chen, A.Q., Chen, B.D., Chen, F., Chen, J., Chen, L., Chen, T., Chen, W., Cheng, X., Cheng, Y.F., Cui, J., Dai, J.J., Dai, J.B., Dai, Z.L., Deng, Y., Deng, Y.Z., Ding, W., Fang, Z.C., Fu, W., Gao, H.B., Gu, S.H., Guo, X., Guo, X.G., Han, D.F., He, L.L., He, Y.T., Hou, H.Y., Jia, B.L., Jia, G.J., Jiao, S., Jin, W., Ju, F., Ju, Z.C., Kong, S.Y., Lan, C.H., Li, B., Li, D., Li, D.Y., Li, J.D., Li, M., Li, Q., Li, Q., Li, W.J., Li, X.F., Li, X.M., Li, Y.H., Li, Y.G., Liang, Z.B., Ling, N., Liu, F.F., Liu, Q., Liu, S.J., Lu, H.Y., Lu, Q., Luo, G.W., Luo, H., Luo, Y.H., Lyu, H.J., Ma, C., Ma, L.Y., Ma, T.F., Ni, J.F., Pang, Z.Q., Qiang, X.J., Qin, Y., Qu, Q.Y., Ran, C., Ren, S.Q., Shang, H.T., Song, L.Y., Sun, L.Y., Sun, W.M., Tang, L.P., Tian, J., Wang, K., Wang, M.Z., Wang, M.K., Wang, T., Wang, X.Y., Wang, Y., Wang, Y.W., Wang, Y.S., Wei, H.L., Wei, H., Wei, Z., Wen, T., Wu, J.Q., Wu, L.H., Wu, L.K., Xi, J., Xie, B., Xu, G.F., Xu, J., Xu, S.S., Xue, Q., Yan, L.P., Yang, H.F., Yang, J., Yang, J.B., Yang, R.F., Yang, Y.L., Yang, Y.J., Yao, X.F., Yao, Y.P., Yousuf, S., Yu, K., Yuan, Z.R., Yuan, Z.L., Zhang, D., Zhang, T.Y., Zhang, W.P., Zhang, Y.Z., Zhang, Z.N., Zhang, Z., Zhang, Z.F., Zhao, S.G., Zhao, W., Zheng, M.S., Zheng, Z.Q., Zhou, X., Zhou, Y.P., Zhou, Z.G., Zhu, M., Zhu, Y.G., Chu, H.Y., Bai, Y., Liu, Y.X., 2024. The Microbiome Protocols eBook initiative: building a bridge to microbiome research. iMeta3, e182.

[27]

Gaudel, G., Xing, L., Shrestha, S., Poudel, M., Sherpa, P., Raseduzzaman, M., Zhang, X.F., 2024. Microbial mechanisms regulate soil organic carbon mineralization under carbon with varying levels of nitrogen addition in the above-treeline ecosystem. Science of the Total Environment917, 170497.

[28]

Gong, X.M., Liu, Y.G., Huang, D.L., Zeng, G.M., Liu, S.B., Tang, H., Zhou, L., Hu, X., Zhou, Y.Y., Tan, X.F., 2016. Effects of exogenous calcium and spermidine on cadmium stress moderation and metal accumulation in Boehmeria nivea (L. ) Gaudich. Environmental Science and Pollution Research23, 8699–8708.

[29]

Gudmundsson, M.T., Jónsdóttir, K., Hooper, A., Holohan, E.P., Halldórsson, S.A., Ófeigsson, B.G., Cesca, S., Vogfjörd, K.S., Sigmundsson, F., Högnadóttir, T., Einarsson, P., Sigmarsson, O., Jarosch, A.H., Jónasson, K., Magnússon, E., Hreinsdóttir, S., Bagnardi, M., Parks, M.M., Hjörleifsdóttir, V., Pálsson, F., Walter, T.R., Schöpfer, M.P.J., Heimann, S., Reynolds, H.I., Dumont, S., Bali, E., Gudfinnsson, G.H., Dahm, T., Roberts, M.J., Hensch, M., Belart, J.M.C., Spaans, K., Jakobsson, S., Gudmundsson, G.B., Fridriksdóttir, H.M., Drouin, V., Dürig, T., Aðalgeirsdóttir, G., Riishuus, M.S., Pedersen, G.B.M., van Boeckel, T., Oddsson, B., Pfeffer, M.A., Barsotti, S., Bergsson, B., Donovan, A., Burton, M.R., Aiuppa, A., 2016. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science353, aaf8988.

[30]

Hart, S.C., DeLuca, T.H., Newman, G.S., MacKenzie, M.D., Boyle, S.I., 2005. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. Forest Ecology and Management220, 166–184.

[31]

Hernández, M., Calabi, M., Conrad, R., Dumont, M.G., 2020. Analysis of the microbial communities in soils of different ages following volcanic eruptions. Pedosphere30, 126–134.

[32]

Hu, M.J., Sardans, J., Sun, D.Y., Yan, R.B., Wu, H., Ni, R.X., Peñuelas, J., 2024. Microbial diversity and keystone species drive soil nutrient cycling and multifunctionality following mangrove restoration. Environmental Research251, 118715.

[33]

Jiang, S.W., Zhou, X., Tu, L.Y., Luo, W.H., Ding, M., Zhu, A.Q., Liu, X.Y., Liu, X.Q., Zhang, J.Z., Shen, Y.N., 2022. Radiocarbon age offset of lake sediments from central eastern China modulated by both hydroclimate and human activity. Quaternary Science Reviews293, 107726.

[34]

Jiao, S., Chen, W.M., Wang, J.L., Du, N.N., Li, Q.P., Wei, G.H., 2018. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome6, 146.

[35]

Juan-Ovejero, R., Briones, M.J.I., Öpik, M., 2020. Fungal diversity in peatlands and its contribution to carbon cycling. Applied Soil Ecology146, 103393.

[36]

Lacombe-Harvey, M.È., Brzezinski, R., Beaulieu, C., 2018. Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution. Microbiology and Biotechnology102, 7219–7230.

[37]

Lee, J., Kim, A.R., Lee, J.J., 2016. Ramie leaf extracts suppresses adipogenic differentiation in 3T3-L1 cells and pig preadipocytes. Asian-Australasian Journal of Animal Sciences29, 1338–1344.

[38]

Li, J.Y., Yuan, X.L., Ge, L., Li, Q., Li, Z.G., Wang, L., Liu, Y., 2020. Rhizosphere effects promote soil aggregate stability and associated organic carbon sequestration in rocky areas of desertification. Agriculture, Ecosystems & Environment304, 107126.

[39]

Liu, T.M., Zhu, S.Y., Tang, Q.M., Tang, S.W., 2015. Genome-wide transcriptomic profiling of ramie (Boehmeria nivea L. Gaud) in response to cadmium stress. Gene558, 131–137.

[40]

Liu, W., Cen, H., Wu, Z.L., Zhou, H.K., Chen, S., Yang, X.L., Zhao, G.P., Zhang, G.Q., 2023a. Mycobacteriaceae phenome atlas (MPA): a standardized atlas for the mycobacteriaceae phenome based on heterogeneous sources. Phenomics3, 439–456.

[41]

Liu, X., Wang, Y.Z., Liu, Y.H., Chen, H., Hu, Y.L., 2020. Response of bacterial and fungal soil communities to Chinese fir (Cunninghamia lanceolate) long-term monoculture plantations. Frontiers in Microbiology11, 181.

[42]

Liu, Y.X., Chen, L., Ma. T. F., Li, X.F., Zheng, M.S., Zhou, X., Chen, L., Qian, X.B., Xi, J., Lu, H.Y., Cao, H.L., Ma, X.Y., Bian, B., Zhang, P.F., Wu, J.Q., Gan, R.Y., Jia, B.L., Sun, L.Y., Ju, Z.C., Gao, Y.Y., Wen, T., Chen, T., 2023b. EasyAmplicon: an easy-to-use, open-source, reproducible, and community-based pipeline for amplicon data analysis in microbiome research. iMeta2, e83.

[43]

Mabuhay, J.A., Nakagoshi, N., Isagi, Y., 2004. Influence of erosion on soil microbial biomass, abundance and community diversity. Land Degradation & Development15, 183–195.

[44]

Moreno-de las Heras, M., 2009. Development of soil physical structure and biological functionality in mining spoils affected by soil erosion in a Mediterranean-Continental environment. Geoderma149, 249–256.

[45]

Muñoz, G., Orlando, J., Zuñiga-Feest, A., 2021. Plants colonizing volcanic deposits: root adaptations and effects on rhizosphere microorganisms. Plant and Soil461, 265–279.

[46]

Orwin, K.H., Wardle, D.A., Greenfield, L.G., 2006. Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology87, 580–593.

[47]

Parada, A.E., Needham, D.M., Fuhrman, J.A., 2016. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology18, 1403–1414.

[48]

Pereira, C.M.R., da Silva, D.K.A., Goto, B.T., Rosendahl, S., Maia, L.C., 2018. Management practices may lead to loss of arbuscular mycorrhizal fungal diversity in protected areas of the Brazilian Atlantic Forest. Fungal Ecology34, 50–58.

[49]

Philippot, L., Raaijmakers, J.M., Lemanceau, P., van der Putten, W.H., 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology11, 789–799.

[50]

Powell, J.R., Karunaratne, S., Campbell, C.D., Yao, H.Y., Robinson, L., Singh, B.K., 2015. Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nature Communications6, 8444.

[51]

Qin, S., Fan, Y., Liu, H.B., Wang, Z.Y., 2008. Study on the relations between topographical factors and the spatial distributions of soil nutrients. Research of Soil and Water Conservation,15, 45–49,52.

[52]

Rashid, M.I., Mujawar, L.H., Shahzad, T., Almeelbi, T., Ismail, I.M.I., Oves, M., 2016. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research183, 26–41.

[53]

Santos, F., Abney, R., Barnes, M., Bogie, N., Ghezzehei, T. A., Jin, L., Moreland, K., Sulman, B. N., Berhe, A. A. 2019. The role of the physical properties of soil in determining biogeochemical responses to soil warming. In Elsevier eBooks209–244.

[54]

Seibert, J., Stendahl, J., Sørensen, R., 2007. Topographical influences on soil properties in boreal forests. Geoderma141, 139–148.

[55]

Shao, P.S., Liang, C., Rubert-Nason, K., Li, X.Z., Xie, H.T., Bao, X.L., 2019. Secondary successional forests undergo tightly-coupled changes in soil microbial community structure and soil organic matter. Soil Biology and Biochemistry128, 56–65.

[56]

Shi, M.Z., Zhao, X.Y., Zhu, L.J., Wu, J.Q., Mohamed, T.A., Zhang, X., Chen, X.M., Zhao, Y., Wei, Z.M., 2020. Elucidating the negative effect of denitrification on aromatic humic substance formation during sludge aerobic fermentation. Journal of Hazardous Materials388, 122086.

[57]

Sigmundsson, F., Hooper, A., Hreinsdóttir, S., Vogfjörd, K.S., Ófeigsson, B.G., Heimisson, E.R., Dumont, S., Parks, M., Spaans, K., Gudmundsson, G.B., Drouin, V., Árnadóttir, T., Jónsdóttir, K., Gudmundsson, M.T., Högnadóttir, T., Fridriksdóttir, H.M., Hensch, M., Einarsson, P., Magnússon, E., Samsonov, S., Brandsdóttir, B., White, R.S., Ágústsdóttir, T., Greenfield, T., Green, R.G., Hjartardóttir, Á.R., Pedersen, R., Bennett, R.A., Geirsson, H., La Femina, P.C., Björnsson, H., Pálsson, F., Sturkell, E., Bean, C.J., Möllhoff, M., Braiden, A.K., Eibl, E.P.S., 2015. Segmented lateral dyke growth in a rifting event at Bardarbunga volcanic system, Iceland. Nature517, 191–195.

[58]

Sun, L.L., Zhang, W.H., He, J.W., Li, Q., 2010. Asexual reproduction and regeneration of artificial Caragana korshinskill population in different habitats in hilly area of the Loess Plateau. Journal of Northwest Forestry University,25, 1–6.

[59]

Sun, Q.Q., Hu, Y.X., Wang, R., Guo, S.L., Yao, L.G., Duan, P.F., 2018. Spatial distribution of microbial community composition along a steep slope plot of the Loess Plateau. Applied Soil Ecology130, 226–236.

[60]

Tang, H., Liu, Y., Gong, X., Zeng, G., Zheng, B., Wang, D., Sun, Z., Zhou, L., Zeng, X., 2015. Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress. Environmental Science and Pollution Research International22, 9999–10008..

[61]

Tateno, R., Takeda, H., 2003. Forest structure and tree species distribution in relation to topography-mediated heterogeneity of soil nitrogen and light at the forest floor. Ecological Research18, 559–571.

[62]

Thormann, M.N., Info, A., Affiliations, 2006. Diversity and function of fungi in peatlands: a carbon cycling perspective. Canadian Journal of Soil Science86, 281–293.

[63]

Tong, X.Z., Leung, M.H.Y., Wilkins, D., Lee, P.K.H., 2017. City-scale distribution and dispersal routes of mycobiome in residences. Microbiome5, 131.

[64]

Tsui, C.C., Chen, Z.S., Hsieh, C.F., 2004. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma123, 131–142.

[65]

van der Heijden, M.G.A., Bardgett, R.D., van Straalen, N.M., 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters11, 296–310.

[66]

Veach, A.M., Morris, R., Yip, D.Z., Yang, Z.K., Engle, N.L., Cregger, M.A., Tschaplinski, T.J., Schadt, C.W., 2019. Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin. Microbiome7, 76.

[67]

Wagg, C., Bender, S.F., Widmer, F., van der Heijden, M.G.A., 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America111, 5266–5270.

[68]

Wang, B.Y., Xiao, Q.C., Geng, X.W., Lin, K.Q., Li, Z.S., Li, Y.Y., Chen, J., Li, X.Y., 2024. Arbuscular mycorrhizal fungi alter rhizosphere bacterial diversity, network stability and function of lettuce in barren soil. Scientia Horticulturae323, 112533.

[69]

Wang, M., Chen, S.B., Chen, L., Wang, D., 2019. Responses of soil microbial communities and their network interactions to saline-alkaline stress in Cd-contaminated soils. Environmental Pollution252, 1609–1621.

[70]

Wei, Y.Q., Zhang, H., Yuan, Y., Zhao, Y.S., Li, G.H., Zhang, F., 2020. Indirect effect of nutrient accumulation intensified toxicity risk of metals in sediments from urban river network. Environmental Science and Pollution Research27, 6193–6204.

[71]

Wilkinson, S.C., Anderson, J.M., Scardelis, S.P., Tisiafouli, M., Taylor, A., Wolters, V., 2002. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress. Soil Biology and Biochemistry34, 189–200.

[72]

Wilson, J.M., Griffin, D.M., 1975. Water potential and the respiration of microorganisms in the soil. Soil Biology and Biochemistry7, 199–204.

[73]

Witt, T., Walter, T.R., Müller, D., Guðmundsson, M.T., Schöepa, A., 2018. The relationship between lava fountaining and vent morphology for the 2014–2015 Holuhraun eruption, Iceland, analyzed by video monitoring and topographic mapping. Frontiers in Earth Science6, 235.

[74]

Wu, J.Q., Yao, W.K., Zhao, L., Zhao, Y., Qi, H.S., Zhang, R.J., Song, C.H., Wei, Z.M., 2022. Estimating the synergistic formation of humus by abiotic and biotic pathways during composting. Journal of Cleaner Production363, 132470.

[75]

Xu, Z.M., Li, R.H., Zhang, X., Wang, S.W., Xu, X.R., Ho Daniel Tang, K., Emmanuel Scriber II, K., Zhang, Z.Q., Quan, F.S., 2024. Molecular mechanisms of humus formation mediated by new ammonifying microorganisms in compost. Chemical Engineering Journal483, 149341.

[76]

Yang, B., Zhou, M., Zhou, L.L., Xue, N.D., Zhang, S.L., Lan, C.Y., 2015. Variability of cadmium, lead, and zinc tolerance and accumulation among and between germplasms of the fiber crop Boehmeria nivea with different root-types. Environmental Science and Pollution Research22, 13960–13969.

[77]

Yang, Y., Qiu, K.Y., Xie, Y.Z., Li, X.C., Zhang, S., Liu, W.S., Huang, Y.Y., Cui, L.Y., Wang, S.Y., Bao, P.G., 2023. Geographical, climatic, and soil factors control the altitudinal pattern of rhizosphere microbial diversity and its driving effect on root zone soil multifunctionality in mountain ecosystems. Science of the Total Environment904, 166932.

[78]

Yoshitake, S., Fujiyoshi, M., Watanabe, K., Masuzawa, T., Nakatsubo, T., Koizumi, H., 2013. Successional changes in the soil microbial community along a vegetation development sequence in a subalpine volcanic desert on Mount Fuji, Japan. Plant and Soil364, 261–272.

[79]

Zhang, G.H., Liu, G.B., Wang, G.L., 2010. Effects of Caragana Korshinskii Kom. cover on runoff, sediment yield and nitrogen loss. International Journal of Sediment Research25, 245–257.

[80]

Zhang, Z.H., Xu, D.L., Huang, T., Zhang, Q., Li, Y.Y., Zhou, J., Zou, R.F., Li. X. Y., Chen, J., 2024. High levels of cadmium altered soil archaeal activity, assembly, and co-occurrence network in volcanic areas. Science of the Total Environment924, 171529.

[81]

Zhang, Z., Huang, T., Zhao, M., Hu, Z., Ni, Y., Jiang, J., Cheng, B., Li, X., Chen, J., 2024. Comparison of soil microbial abundances and co-occurrence networks in the volcanic soil of the cone and crater. Catena236, 107734.

[82]

Zhou, Y.P., Bastida, F., Zhou, B., Sun, Y.F., Gu, T., Li, S.Q., Li, Y.K., 2020. Soil fertility and crop production are fostered by micro-nano bubble irrigation with associated changes in soil bacterial community. Soil Biology and Biochemistry141, 107663.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3930KB)

Supplementary files

SEL-00259-OF-JC_suppl_1

830

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/