Sea-crossing bridge construction interference reduced soil microbial biomass and diversity in mangrove ecosystems
Gui-Feng Gao, Yin He, Jiasui Li, Subo Yan, Luyao Song, Haiyan Chu
Sea-crossing bridge construction interference reduced soil microbial biomass and diversity in mangrove ecosystems
● Bridge constructions decreased soil bacterial alpha and beta diversity.
● Bridge constructions reduced soil microbial biomass carbon and nitrogen.
● Stochastic process dominates soil bacterial community assembly.
● Bridge constructions increased the relative importance of stochasticity.
Soils in mangrove ecosystems are home to diverse and unique microbes, which support many crucial ecosystem services. Despite their vulnerability, the impact of bridge construction on the soil microbiome in mangroves is poorly understood. This study assessed the bacterial community profiles and microbial biomass in mangrove soils under different bridge construction techniques: Sheet Pile Cofferdam (SP) and Steel Casing Pipe (SC), compared to the non-disturbed (ND) counterpart. Bridge construction significantly decreased the alpha diversity and caused biotic homogenization of soil bacterial communities, indicating a loss of microbial biodiversity due to human disturbance. Bridge construction also reduced the microbial biomass carbon and nitrogen. The assembly of soil bacterial communities was dominated by stochastic processes, and bridge construction increased the relative importance of stochasticity. However, the impacts on ecological networks varied with the construction technique, with SC soils showing higher network complexity and stability compared to the ND habitats. Changes in soil bacterial communities were primarily attributed to the shifts in soil pH and nutrient levels. This study identified the effects of sea-crossing bridge construction on the soil microbiome in mangrove ecosystems, aiding in careful planning and environmental impact assessments to minimize the negative effects of urbanization on mangrove ecosystems.
biodiversity / community assembly / ecological network / mangrove ecosystem / bridge construction
[1] |
Alongi, D.M., 2014. Carbon cycling and storage in mangrove forests. Annual Review of Marine Science6, 195–219.
CrossRef
Google scholar
|
[2] |
Anthony, M.A., Bender, S.F., van der Heijden, M.G.A., 2023. Enumerating soil biodiversity. Proceedings of the National Academy of Sciences of the United States of America120, e2304663120.
|
[3] |
Barberán, A., Bates, S.T., Casamayor, E.O., Fierer, N., 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal6, 343–351.
CrossRef
Google scholar
|
[4] |
Blanco, J.F., Estrada, E.A., Ortiz, L.F., Urrego, L.E., 2012. Ecosystem-wide impacts of deforestation in mangroves: the Urabá Gulf (Colombian Caribbean) case study. ISRN Ecology2012, 958709.
|
[5] |
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J.R., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L.J., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson II, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y.H., Wang, M.X., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y.L., Zhu, Q.Y., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology37, 852–857.
CrossRef
Google scholar
|
[6] |
[7] |
Carugati, L., Gatto, B., Rastelli, E., Lo Martire, M., Coral, C., Greco, S., Danovaro, R., 2018. Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Scientific Reports8, 13298.
CrossRef
Google scholar
|
[8] |
Chen, W.Q., Wang, J.Y., Chen, X., Meng, Z.X., Xu, R., Duoji, D., Zhang, J.H., He, J., Wang, Z.G., Chen, J., Liu, K.X., Hu, T.M., Zhang, Y.J., 2022. Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau. Soil Biology and Biochemistry172, 108766.
CrossRef
Google scholar
|
[9] |
Chu, H.Y., Gao, G.F., Ma, Y.Y., Fan, K.K., Delgado-Baquerizo, M., 2020. Soil microbial biogeography in a changing world: recent advances and future perspectives. mSystems5, e00803–19.
|
[10] |
Cornell, C.R., Zhang, Y., Ning, D.L., Xiao, N.J., Wagle, P., Xiao, X.M., Zhou, J.Z., 2023. Land use conversion increases network complexity and stability of soil microbial communities in a temperate grassland. The ISME Journal17, 2210–2220.
CrossRef
Google scholar
|
[11] |
Curnick, D.J., Pettorelli, N., Amir, A.A., Balke, T., Barbier, E.B., Crooks, S., Dahdouh-Guebas, F., Duncan, C., Endsor, C., Friess, D.A., Quarto, A., Zimmer, M., Lee, S.Y., 2019. The value of small mangrove patches. Science363, 239–239.
CrossRef
Google scholar
|
[12] |
Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro, F.D., Bastida, F., Berhe, A.A., Cutler, N.A., Gallardo, A., García-Velázquez, L., Hart, S.C., Hayes, P.E., He, J.Z., Hseu, Z.Y., Hu, H.W., Kirchmair, M., Neuhauser, S., Pérez, C.A., Reed, S.C., Santos, F., Sullivan, B.W., Trivedi, P., Wang, J.T., Weber-Grullon, L., Williams, M.A., Singh, B.K., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution4, 210–220.
|
[13] |
Dini-Andreote, F., Stegen, J.C., van Elsas, J.D., Salles, J.F., 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America112, E1326–E1332.
|
[14] |
Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods10, 996–998.
CrossRef
Google scholar
|
[15] |
Edgar, R.C., 2018. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics34, 2371–2375.
CrossRef
Google scholar
|
[16] |
Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nature Reviews Microbiology10, 538–550.
CrossRef
Google scholar
|
[17] |
Friess, D.A., Rogers, K., Lovelock, C.E., Krauss, K.W., Hamilton, S.E., Lee, S.Y., Lucas, R., Primavera, J., Rajkaran, A., Shi, S.H., 2019. The state of the world's mangrove forests: past, present, and future. Annual Review of Environment and Resources44, 89–115.
CrossRef
Google scholar
|
[18] |
Gao, G.F., 2024. Keystone species for mangrove soils under bridge constructions. Dataset.
|
[19] |
Gao, G.F., Li, H., Shi, Y., Yang, T., Gao, C.H., Fan, K.K., Zhang, Y.H., Zhu, Y.G., Delgado-Baquerizo, M., Zheng, H.L., Chu, H.Y., 2022. Continental-scale plant invasions reshuffle the soil microbiome of blue carbon ecosystems. Global Change Biology28, 4423–4438.
CrossRef
Google scholar
|
[20] |
Gao, G.F., Peng, D., Wu, D., Zhang, Y.H., Chu, H.Y., 2021a. Increasing inundation frequencies enhance the stochastic process and network complexity of the soil archaeal community in coastal wetlands. Applied and Environmental Microbiology87, e02560–20.
|
[21] |
Gao, G.F., Peng, D., Zhang, Y.H., Li, Y.T., Fan, K.K., Tripathi, B.M., Adams, J.M., Chu, H.Y., 2021b. Dramatic change of bacterial assembly process and co-occurrence pattern in Spartina alterniflora salt marsh along an inundation frequency gradient. Science of the Total Environment755, 142546.
CrossRef
Google scholar
|
[22] |
Guseva, K., Darcy, S., Simon, E., Alteio, L.V., Montesinos-Navarro, A., Kaiser, C., 2022. From diversity to complexity: Microbial networks in soils. Soil Biology and Biochemistry169, 108604.
CrossRef
Google scholar
|
[23] |
Hance, J., 2010. Bridge development in Kalimantan threatens rainforest, mangroves, and coral reef. Available at the website of Mongabay.
|
[24] |
Herren, C.M., McMahon, K.D., 2017. Cohesion: a method for quantifying the connectivity of microbial communities. The ISME Journal11, 2426–2438.
CrossRef
Google scholar
|
[25] |
Huang, X., Wang, X.P., Li, X.Z., Yan, Z.Z., Sun, Y.G., 2020. Occurrence and transfer of heavy metals in sediments and plants of Aegiceras corniculatum community in the Qinzhou Bay, Southwestern China. Acta Oceanologica Sinica39, 79–88.
|
[26] |
Karmakar, M., Leavitt, P.R., Patoine, A., 2019. Effects of bridge construction and wastewater effluent on phytoplankton abundance and sediment geochemistry in an atlantic temperate coastal bay since 1930. Estuaries and Coasts42, 365–377.
CrossRef
Google scholar
|
[27] |
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Glöckner, F.O., 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research41, e1.
CrossRef
Google scholar
|
[28] |
Kurtz, Z.D., Müller, C.L., Miraldi, E.R., Littman, D.R., Blaser, M.J., Bonneau, R.A., 2015. Sparse and compositionally robust inference of microbial ecological networks. PLoS Computational Biology11, e1004226.
CrossRef
Google scholar
|
[29] |
Li, D., Tang, C., Hou, X.Y., Zhang, H., 2019. Morphological changes in the Qinzhou Bay, Southwest China. Journal of Coastal Conservation23, 829–841.
CrossRef
Google scholar
|
[30] |
Li, Q., Qian, R., Gao, J.F., Huang, J.C., 2022a. Environmental impacts and risks of bridges and tunnels across lakes: an overview. Journal of Environmental Management319, 115684.
CrossRef
Google scholar
|
[31] |
Li, T., Lai, X.Y., Xiang, J., Sun, H.M., Lei, D., Xu, S.Y., 2022b. Ecological impacts of sea-crossing bridge construction on local sediment microbiome in East China. Regional Studies in Marine Science53, 102363.
CrossRef
Google scholar
|
[32] |
Lin, Q.Y., Yu, S., 2018. Losses of natural coastal wetlands by land conversion and ecological degradation in the urbanizing Chinese coast. Scientific Reports8, 15046.
CrossRef
Google scholar
|
[33] |
Malik, A., Fensholt, R., Mertz, O., 2015. Mangrove exploitation effects on biodiversity and ecosystem services. Biodiversity and Conservation24, 3543–3557.
CrossRef
Google scholar
|
[34] |
McDonald, D., Jiang, Y.Y., Balaban, M., Cantrell, K., Zhu, Q.Y., Gonzalez, A., Morton, J.T., Nicolaou, G., Parks, D.H., Karst, S.M., Albertsen, M., Hugenholtz, P., DeSantis, T., Song, S.J., Bartko, A., Havulinna, A.S., Jousilahti, P., Cheng, S.S., Inouye, M., Niiranen, T., Jain, M., Salomaa, V., Lahti, L., Mirarab, S., Knight, R., 2024. Greengenes2 unifies microbial data in a single reference tree. Nature Biotechnology42, 715–718.
CrossRef
Google scholar
|
[35] |
Mombauer, D., 2019. The bridge between land and sea. Availble at the website of Earth Island Journal.
|
[36] |
Nelson, D.W., Sommers, L.E., 1982. Total Carbon, Organic Carbon, and Organic Matter. In: Page, A.L., ed. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. Madison: American Society of Agronomy, 539–579
|
[37] |
Ning, D.L., Deng, Y., Tiedje, J.M., Zhou, J.Z., 2019. A general framework for quantitatively assessing ecological stochasticity. Proceedings of the National Academy of Sciences of the United States of America116, 16892–16898.
|
[38] |
Novoa, V., Rojas, O., Ahumada-Rudolph, R., Sáez, K., Fierro, P., Rojas, C., 2020. Coastal wetlands: ecosystems affected by urbanization? Water 12, 698
|
[39] |
Oren, A., Rotbart, N., Borisover, M., Bar-Tal, A., 2018. Chloroform fumigation extraction for measuring soil microbial biomass: the validity of using samples approaching water saturation. Geoderma319, 204–207.
CrossRef
Google scholar
|
[40] |
Osburn, E.D., Yang, G.W., Rillig, M.C., Strickland, M.S., 2023. Evaluating the role of bacterial diversity in supporting soil ecosystem functions under anthropogenic stress. ISME Communications3, 66.
CrossRef
Google scholar
|
[41] |
Permeh, S., 2021. Microbiologically influenced corrosion of submerged steel bridge piles in natural waters in presence of marine-fouling. Ph.D. Dissertation. Florida International University, Miami, FL, USA
|
[42] |
Philippot, L., Griffiths, B.S., Langenheder, S., 2021. Microbial community resilience across ecosystems and multiple disturbances. Microbiology and Molecular Biology Reviews85, e00026–20.
|
[43] |
Poudel, R., Jumpponen, A., Schlatter, D.C., Paulitz, T.C., Gardener, B.B.M., Kinkel, L.L., Garrett, K.A., 2016. Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathology106, 1083–1096.
CrossRef
Google scholar
|
[44] |
Ruhl, I.A., Sheremet, A., Smirnova, A.V., Sharp, C.E., Grasby, S.E., Strous, M., Dunfield, P.F., 2022. Microbial functional diversity correlates with species diversity along a temperature gradient. mSystems7, e0099121.
CrossRef
Google scholar
|
[45] |
Salehi, M.H., Beni, O.H., Harchegani, H.B., Borujeni, I.E., Motaghian, H.R., 2011. Refining soil organic matter determination by loss-on-ignition. Pedosphere21, 473–482.
CrossRef
Google scholar
|
[46] |
Shade, A., Peter, H., Allison, S.D., Baho, D.L., Berga, M., Bürgmann, H., Huber, D.H., Langenheder, S., Lennon, J.T., Martiny, J.B.H., Matulich, K.L., Schmidt, T.M., Handelsman, J., 2012. Fundamentals of microbial community resistance and resilience. Frontiers in Microbiology3, 417.
|
[47] |
Sloan, W.T., Lunn, M., Woodcock, S., Head, I.M., Nee, S., Curtis, T.P., 2006. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environmental Microbiology8, 732–740.
CrossRef
Google scholar
|
[48] |
Sokol, N.W., Slessarev, E., Marschmann, G.L., Nicolas, A., Blazewicz, S.J., Brodie, E.L., Firestone, M.K., Foley, M.M., Hestrin, R., Hungate, B.A., Koch, B.J., Stone, B.W., Sullivan, M.B., Zablocki, O., Consortium, L.S.M., Pett-Ridge, J., 2022. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nature Reviews Microbiology20, 415–430.
CrossRef
Google scholar
|
[49] |
Stegen, J.C., Lin, X.J., Fredrickson, J.K., Chen, X.Y., Kennedy, D.W., Murray, C.J., Rockhold, M.L., Konopka, A., 2013. Quantifying community assembly processes and identifying features that impose them. The ISME Journal7, 2069–2079.
CrossRef
Google scholar
|
[50] |
Stegen, J.C., Lin, X.J., Konopka, A.E., Fredrickson, J.K., 2012. Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal6, 1653–1664.
CrossRef
Google scholar
|
[51] |
Tao, Y.H., Huang, X., Wang, X.P., Zhong, Q.P., Kang, Z.J., 2020. Spatial distribution of soil carbon and nitrogen stocks in mangrove wetland of Xiandao Park and Shajing in Guangxi. Progress in Fishery Sciences41, 38–45.
|
[52] |
Wang, S.P., Loreau, M., de Mazancourt, C., Isbell, F., Beierkuhnlein, C., Connolly, J., Deutschman, D.H., Doležal, J., Eisenhauer, N., Hector, A., Jentsch, A., Kreyling, J., Lanta, V., Lepš, J., Polley, H.W., Reich, P.B., van Ruijven, J., Schmid, B., Tilman, D., Wilsey, B., Craven, D., 2021. Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony. Ecology102, e03332.
CrossRef
Google scholar
|
[53] |
West, J.R., Whitman, T., 2022. Disturbance by soil mixing decreases microbial richness and supports homogenizing community assembly processes. FEMS Microbiology Ecology98, fiac089.
CrossRef
Google scholar
|
[54] |
Wimmler, M.C., Bathmann, J., Peters, R., Jiang, J., Walther, M., Lovelock, C.E., Berger, U., 2021. Plant–soil feedbacks in mangrove ecosystems: establishing links between empirical and modelling studies. Trees35, 1423–1438.
CrossRef
Google scholar
|
[55] |
Xiao, Y.D., Angulo, M.T., Friedman, J., Waldor, M.K., Weiss, S.T., Liu, Y.Y., 2017. Mapping the ecological networks of microbial communities. Nature Communications8, 2042.
CrossRef
Google scholar
|
[56] |
Xu, W.F., Yuan, W.P., 2017. Responses of microbial biomass carbon and nitrogen to experimental warming: A meta-analysis. Soil Biology and Biochemistry115, 265–274.
CrossRef
Google scholar
|
[57] |
Yan, Y.C., Wang, C., Zhang, J.M., Sun, Y., Xu, X.L., Zhu, N., Cai, Y.R., Xu, D.W., Wang, X., Xin, X.P., Chen, J.Q., 2022. Response of soil microbial biomass C, N, and P and microbial quotient to agriculture and agricultural abandonment in a meadow steppe of northeast China. Soil and Tillage Research223, 105475.
CrossRef
Google scholar
|
[58] |
Yang, L.Y., Zhou, S.Y.D., Lin, C.S., Huang, X.R., Neilson, R., Yang, X.R., 2022. Effects of biofertilizer on soil microbial diversity and antibiotic resistance genes. Science of the Total Environment820, 153170.
CrossRef
Google scholar
|
[59] |
Zhang, C.J., Pan, J., Duan, C.H., Wang, Y.M., Liu, Y., Sun, J., Zhou, H.C., Song, X., Li, M., 2019. Prokaryotic diversity in mangrove sediments across Southeastern China fundamentally differs from that in other biomes. mSystems4, e00442–19.
|
/
〈 | 〉 |