Long-term cropping rotation with soybean enhances soil health as evidenced by improved nutrient cycles through keystone phylotypes interaction

Xiaowei Huang, Jing Yuan, Yuxuan Chen, Xueling Yang, Wencheng Lu, Surong Ding, Yu Jiang, Xuechao Zhou, Gang Mi, Jianming Xu, Yan He

PDF(1206 KB)
PDF(1206 KB)
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (4) : 240251. DOI: 10.1007/s42832-024-0251-5
RESEARCH ARTICLE

Long-term cropping rotation with soybean enhances soil health as evidenced by improved nutrient cycles through keystone phylotypes interaction

Author information +
History +

Highlights

● We estimated the effect of three crop strategies on soil health based on 63 functional genes in long-term fields.

● The keystone microbial phylotypes support the agroecosystem sustainability.

● Rotation management thrives keystone phylotypes and soil functions.

● Rotation with soybean is beneficial for the subsequent crops.

Abstract

Given the often-independent study of microbial diversity and function, the comprehensive impact of various cropping patterns on both aspects, as well as the interconnections between them, remains unclear. This gap constrainsus from evaluating the impact of soil microbiome shifts on soil health across varying agricultural management regimes. Here, we examined the associations between microbial diversity and soil multifunctionality in three long-term cropping patterns: continuous soybean cropping, soybean-corn rotation, and continuous corn cropping. We targeted 63 functional genes associated with carbon, nitrogen, phosphorus and sulfur cycling to assess soil multifunctionality. Our study demonstrated that the biodiversity and interactions of keystone phylotypes had significant positive associations with multiple soil functional genes, such as organic carbon degradation and fixation, nitrogen fixation and phosphorus solubilization. The analysis of retrieved complete genome revealed that the keystone bacteria identified in our study harbored these functional genes. Moreover, these keystone phylotypes showed associations with the dissipation of herbicide residues. Above all, we revealed that rotation of soybean with corn cropping enhanced a greater diversity of keystone phylotypes and thus fueled soil functions. Collectively, our results highlighted the importance of rotation with soybean in maintaining soil health, which could give a mechanism-based guidance for a sustainable agroecosystem.

Graphical abstract

Keywords

soil nutrient cycles / keystone phylotypes / rotation / soybean / sustainable agroecosystem

Cite this article

Download citation ▾
Xiaowei Huang, Jing Yuan, Yuxuan Chen, Xueling Yang, Wencheng Lu, Surong Ding, Yu Jiang, Xuechao Zhou, Gang Mi, Jianming Xu, Yan He. Long-term cropping rotation with soybean enhances soil health as evidenced by improved nutrient cycles through keystone phylotypes interaction. Soil Ecology Letters, 2024, 6(4): 240251 https://doi.org/10.1007/s42832-024-0251-5

References

[1]
Agler, M.T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.T., Weigel, D., Kemen, E.M., 2016. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology14, e1002352.
CrossRef Google scholar
[2]
Allen, W.J., Bufford, J.L., Barnes, A.D., Barratt, B.I.P., Deslippe, J.R., Dickie, I.A., Goldson, S.L., Howlett, B.G., Hulme, P.E., Lavorel, S., O’Brien, S.A., Waller, L.P., Tylianakis, J.M., 2022. A network perspective for sustainable agroecosystems. Trends in Plant Science27, 769–780.
CrossRef Google scholar
[3]
Banerjee, S., Schlaeppi, K., van der Heijden, M.G.A., 2018. Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology16, 567–576.
CrossRef Google scholar
[4]
Banerjee, S., van der Heijden, M.G.A., 2023. Soil microbiomes and one health. Nature Reviews Microbiology21, 6–20.
CrossRef Google scholar
[5]
Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A.Y., Gattinger, A., Keller, T., Charles, R., van der Heijden, M.G.A., 2019. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. The ISME Journal13, 1722–1736.
CrossRef Google scholar
[6]
Barberán, A., Bates, S.T., Casamayor, E.O., Fierer, N., 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal6, 343–351.
CrossRef Google scholar
[7]
Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature515, 505–511.
CrossRef Google scholar
[8]
Bender, S.F., Wagg, C., van der Heijden, M.G.A., 2016. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution31, 440–452.
[9]
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J.R., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L.J., Kaehler, B.D., Bin Kang, K., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y.H., Wang, M.X., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y.L., Zhu, Q.Y., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology37, 852–857.
CrossRef Google scholar
[10]
Bradford, M.A., Wood, S.A., Bardgett, R.D., Black, H.I.J., Bonkowski, M., Eggers, T., Grayston, S.J., Kandeler, E., Manning, P., Setälä, H., Jones, T.H., 2014. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proceedings of the National Academy of Sciences of the United States of America111, 14478–14483.
[11]
Byrnes, J.E.K., Gamfeldt, L., Isbell, F., Lefcheck, J.S., Griffin, J.N., Hector, A., Cardinale, B.J., Hooper, D.U., Dee, L.E., Duffy, J.E., 2014. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution5, 111–124.
CrossRef Google scholar
[12]
Cardinale, B.J., Matulich, K.L., Hooper, D.U., Byrnes, J.E., Duffy, E., Gamfeldt, L., Balvanera, P., O'Connor, M.I., Gonzalez, A., 2011. The functional role of producer diversity in ecosystems. American Journal of Botany98, 572–592.
CrossRef Google scholar
[13]
Carrión, V.J., Perez-Jaramillo, J., Cordovez, V., Tracanna, V., de Hollander, M., Ruiz-Buck, D., Mendes, L.W., van Ijcken, W.F.J., Gomez-Exposito, R., Elsayed, S.S., Mohanraju, P., Arifah, A., van der Oost, J., Paulson, J.N., Mendes, R., van Wezel, G.P., Medema, M.H., Raaijmakers, J.M., 2019. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science366, 606–612.
CrossRef Google scholar
[14]
Chamberlain, L.A., Bolton, M.L., Cox, M.S., Suen, G., Conley, S.P., Ané, J.M., 2020. Crop rotation, but not cover crops, influenced soil bacterial community composition in a corn-soybean system in southern Wisconsin. Applied Soil Ecology154, 103603.
CrossRef Google scholar
[15]
Chen, J., Zhang, Y., Kuzyakov, Y., Wang, D., Olesen, J.E., 2023. Challenges in upscaling laboratory studies to ecosystems in soil microbiology research. Global Change Biology29, 569–574.
CrossRef Google scholar
[16]
Chen, Q.L., Ding, J., Zhu, D., Hu, H.W., Delgado-Baquerizo, M., Ma, Y.B., He, J.Z., Zhu, Y.G., 2020. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology and Biochemistry141, 107686.
CrossRef Google scholar
[17]
Chen, W.Q., Wang, J.Y., Chen, X., Meng, Z.X., Xu, R., Duoji, D.Z., Zhang, J.H., He, J., Wang, Z.G., Chen, J., Liu, K.X., Hu, T.M., Zhang, Y.J., 2022. Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau. Soil Biology and Biochemistry,172, 108766.
CrossRef Google scholar
[18]
Cheng, Z.Y., Shi, J.C., He, Y., Chen, Y.X., Wang, Y.J., Yang, X.L., Wang, T.Y., Wu, L.S., Xu, J.M., 2023. Enhanced soil function and health by soybean root microbial communities during in situ remediation of Cd-contaminated soil with the application of soil amendments. mSystems8, e0104922.
CrossRef Google scholar
[19]
Cumbo, F., Paci, P., Santoni, D., Di Paola, L., Giuliani, A., 2014. GIANT: a cytoscape plugin for modular networks. PLoS One9, e105001.
CrossRef Google scholar
[20]
Dai, T.J., Wen, D.H., Bates, C.T., Wu, L.W., Guo, X., Liu, S., Su, Y.F., Lei, J.S., Zhou, J.Z., Yang, Y.F., 2022. Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities. Nature Communications13, 175.
CrossRef Google scholar
[21]
Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., Singh, B.K., 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications7, 10541.
CrossRef Google scholar
[22]
Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro, F.D., Bastida, F., Berhe, A.A., Cutler, N.A., Gallardo, A., García-Velázquez, L., Hart, S.C., Hayes, P.E., He, J.Z., Hseu, Z.Y., Hu, H.W., Kirchmair, M., Neuhauser, S., Pérez, C.A., Reed, S.C., Santos, F., Sullivan, B.W., Trivedi, P., Wang, J.T., Weber-Grullon, L., Williams, M.A., Singh, B.K., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution4, 210–220.
[23]
Ditzler, L., van Apeldoorn, D.F., Pellegrini, F., Antichi, D., Bàrberi, P., Rossing, W.A.H., 2021. Current research on the ecosystem service potential of legume inclusive cropping systems in Europe. A review. Agronomy for Sustainable Development41, 26.
CrossRef Google scholar
[24]
Fan, K.K., Delgado-Baquerizo, M., Guo, X.S., Wang, D.Z., Zhu, Y.G., Chu, H.Y., 2021. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. The ISME Journal15, 550–561.
CrossRef Google scholar
[25]
Fierer, N., 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology15, 579–590.
CrossRef Google scholar
[26]
Fontaine, S., Mariotti, A., Abbadie, L., 2003. The priming effect of organic matter: a question of microbial competition? Soil Biology and Biochemistry 35, 837–843
[27]
French, E., Kaplan, I., Iyer-Pascuzzi, A., Nakatsu, C.H., Enders, L., 2021. Emerging strategies for precision microbiome management in diverse agroecosystems. Nature Plants7, 256–267.
CrossRef Google scholar
[28]
Graham, E.B., Crump, A.R., Resch, C.T., Fansler, S., Arntzen, E., Kennedy, D.W., Fredrickson, J.K., Stegen, J.C., 2017. Deterministic influences exceed dispersal effects on hydrologically-connected microbiomes. Environmental Microbiology19, 1552–1567.
CrossRef Google scholar
[29]
Gu, S.H., Wei, Z., Shao, Z.Y., Friman, V.P., Cao, K.H., Yang, T.J., Kramer, J., Wang, X.F., Li, M., Mei, X.L., Xu, Y.C., Shen, Q.R., Kümmerli, R., Jousset, A., 2020. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nature Microbiology5, 1002–1010.
CrossRef Google scholar
[30]
Guimerà, R., Amaral, L.A.N., 2005. Functional cartography of complex metabolic networks. Nature433, 895–900.
CrossRef Google scholar
[31]
Guo, T.F., Zhang, Q., Ai, C., Liang, G.Q., He, P., Lei, Q.L., Zhou, W., 2020. Analysis of microbial utilization of rice straw in paddy soil using a DNA-SIP approach. Soil Science Society of America Journal84, 99–114.
CrossRef Google scholar
[32]
Herren, C.M., McMahon, K.D., 2017. Cohesion: a method for quantifying the connectivity of microbial communities. The ISME Journal11, 2426–2438.
CrossRef Google scholar
[33]
Huang, X.W., Yang, X.L., Lin, J.H., Franks, A.E., Cheng, J., Zhu, Y.J., Shi, J.C., Xu, J.M., Yuan, M., Fu, X.J., He, Y., 2022. Biochar alleviated the toxicity of atrazine to soybeans, as revealed by soil microbial community and the assembly process. Science of the Total Environment834, 155261.
CrossRef Google scholar
[34]
Huang, Y.L., Dai, Z.M., Lin, J.H., Li, D.M., Ye, H.C., Dahlgren, R.A., Xu, J.M., 2021. Labile carbon facilitated phosphorus solubilization as regulated by bacterial and fungal communities in Zea mays. Soil Biology and Biochemistry163, 108465.
CrossRef Google scholar
[35]
Jiao, S., Lu, Y.H., Wei, G.H., 2022. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Global Change Biology28, 140–153.
CrossRef Google scholar
[36]
Jing, J.Y., Cong, W.F., Bezemer, T.M., 2022. Legacies at work: plant–soil–microbiome interactions underpinning agricultural sustainability. Trends in Plant Science27, 781–792.
CrossRef Google scholar
[37]
Kosubová, P., Škulcová, L., Poláková, Š., Hofman, J., Bielská, L., 2020. Spatial and temporal distribution of the currently-used and recently-banned pesticides in arable soils of the Czech Republic. Chemosphere254, 126902.
CrossRef Google scholar
[38]
Kuzyakov, Y., Gunina, A., Zamanian, K., Tian, J., Luo, Y., Xu, X.L., Yudina, A., Aponte, H., Alharbi, H., Ovsepyan, L., Kurganova, I., Ge, T.D., Guillaume, T., 2020. New approaches for evaluation of soil health, sensitivity and resistance to degradation. Frontiers of Agricultural Science and Engineering7, 282–288.
CrossRef Google scholar
[39]
Kwak, M.J., Kong, H.G., Choi, K., Kwon, S.K., Song, J.Y., Lee, J., Lee, P.A., Choi, S.Y., Seo, M., Lee, H.J., Jung, E.J., Park, H., Roy, N., Kim, H., Lee, M.M., Rubin, E.M., Lee, S.W., Kim, J.F., 2018. Correction: author correction: rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology36, 1117.
CrossRef Google scholar
[40]
Leibold, M.A., Chase, J.M., Ernest, S.K.M., 2017. Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology98, 909–919.
CrossRef Google scholar
[41]
Liu, Y., Evans, S.E., Friesen, M.L., Tiemann, L.K., 2022. Root exudates shift how N mineralization and N fixation contribute to the plant-available N supply in low fertility soils. Soil Biology and Biochemistry165, 108541.
CrossRef Google scholar
[42]
Liu, Z.X., Liu, J.J., Yu, Z.H., Yao, Q., Li, Y.S., Liang, A.Z., Zhang, W., Mi, G., Jin, J., Liu, X.B., Wang, G.H., 2020. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition. Soil and Tillage Research197, 104503.
CrossRef Google scholar
[43]
Luo, F., Zhong, J.X., Yang, Y.F., Scheuermann, R.H., Zhou, J.Z., 2006. Application of random matrix theory to biological networks. Physics Letters A357, 420–423.
CrossRef Google scholar
[44]
Ma, B., Stirling, E., Liu, Y.H., Zhao, K.K., Zhou, J.Z., Singh, B.K., Tang, C.X., Dahlgren, R.A., Xu, J.M., 2021. Soil biogeochemical cycle couplings inferred from a function-taxon network. Research2021, 7102769.
[45]
Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., García-Gómez, M., Bowker, M.A., Soliveres, S., Escolar, C., García-Palacios, P., Berdugo, M., Valencia, E., Gozalo, B., Gallardo, A., Aguilera, L., Arredondo, T., Blones, J., Boeken, B., Bran, D., Conceição, A.A., Cabrera, O., Chaieb, M., Derak, M., Eldridge, D.J., Espinosa, C.I., Florentino, A., Gaitán, J., Gatica, M.G., Ghiloufi, W., Gómez-González, S., Gutiérrez, J.R., Hernández, R.M., Huang, X.W., Huber-Sannwald, E., Jankju, M., Miriti, M., Monerris, J., Mau, R.L., Morici, E., Naseri, K., Ospina, A., Polo, V., Prina, A., Pucheta, E., Ramírez-Collantes, D.A., Romão, R., Tighe, M., Torres-Díaz, C., Val, J., Veiga, J.P., Wang, D.L., Zaady, E., 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science335, 214–218.
CrossRef Google scholar
[46]
Mariotte, P., Mehrabi, Z., Bezemer, T.M., De Deyn, G.B., Kulmatiski, A., Drigo, B., Veen, G.F., van der Heijden, M.G.A., Kardol, P., 2018. Plant-soil feedback: bridging natural and agricultural sciences. Trends in Ecology & Evolution33, 129–142.
[47]
Masiá, A., Vásquez, K., Campo, J., Picó, Y., 2015. Assessment of two extraction methods to determine pesticides in soils, sediments and sludges. Application to the Túria River Basin. Journal of Chromatography A1378, 19–31.
[48]
Mendes, L.W., Raaijmakers, J.M., de Hollander, M., Mendes, R., Tsai, S.M., 2018. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. The ISME Journal12, 212–224.
CrossRef Google scholar
[49]
Olesen, J.M., Bascompte, J., Dupont, Y.L., Jordano, P., 2007. The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America104, 19891–19896.
[50]
Ramirez, K.S., Geisen, S., Morriën, E., Snoek, B.L., van der Putten, W.H., 2018. Network analyses can advance above-belowground ecology. Trends in Plant Science23, 759–768.
CrossRef Google scholar
[51]
Ratzke, C., Barrere, J., Gore, J., 2020. Strength of species interactions determines biodiversity and stability in microbial communities. Nature Ecology & Evolution4, 376–383.
[52]
Rodriguez, C., Mårtensson, L.M.D., Jensen, E.S., Carlsson, G., 2021. Combining crop diversification practices can benefit cereal production in temperate climates. Agronomy for Sustainable Development41, 48.
CrossRef Google scholar
[53]
Röttjers, L., Faust, K., 2019. Can we predict keystones? Nature Reviews Microbiology 17, 193
[54]
Singh, R., Kumari, T., Verma, P., Singh, B.P., Raghubanshi, A.S., 2022. Compatible package-based agriculture systems: an urgent need for agro-ecological balance and climate change adaptation. Soil Ecology Letters4, 187–212.
CrossRef Google scholar
[55]
Stegen, J.C., Lin, X.J., Konopka, A.E., Fredrickson, J.K., 2012. Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal6, 1653–1664.
CrossRef Google scholar
[56]
Taylor, C.R., Hardiman, E.M., Ahmad, M., Sainsbury, P.D., Norris, P.R., Bugg, T.D.H., 2012. Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. Journal of Applied Microbiology113, 521–530.
CrossRef Google scholar
[57]
Tiemann, L.K., Grandy, A.S., Atkinson, E.E., Marin-Spiotta, E., McDaniel, M.D., 2015. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters18, 761–771.
CrossRef Google scholar
[58]
Toju, H., Peay, K.G., Yamamichi, M., Narisawa, K., Hiruma, K., Naito, K., Fukuda, S., Ushio, M., Nakaoka, S., Onoda, Y., Yoshida, K., Schlaeppi, K., Bai, Y., Sugiura, R., Ichihashi, Y., Minamisawa, K., Kiers, E.T., 2018. Core microbiomes for sustainable agroecosystems. Nature Plants4, 247–257.
CrossRef Google scholar
[59]
Trivedi, P., Mattupalli, C., Eversole, K., Leach, J.E., 2021. Enabling sustainable agriculture through understanding and enhancement of microbiomes. New Phytologist230, 2129–2147.
CrossRef Google scholar
[60]
Tsiafouli, M.A., Thébault, E., Sgardelis, S.P., de Ruiter, P.C., van der Putten, W.H., Birkhofer, K., Hemerik, L., de Vries, F.T., Bardgett, R.D., Brady, M.V., Bjornlund, L., Jørgensen, H.B., Christensen, S., D' Hertefeldt, T., Hotes, S., Hol, W.H.G., Frouz, J., Liiri, M., Mortimer, S.R., Setälä, H., Tzanopoulos, J., Uteseny, K., Pižl, V., Stary, J., Wolters, V., Hedlund, K., 2015. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology21, 973–985.
CrossRef Google scholar
[61]
Venter, Z.S., Jacobs, K., Hawkins, H.J., 2016. The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia59, 215–223.
CrossRef Google scholar
[62]
Vitousek, P.M., Naylor, R., Crews, T., David, M.B., Drinkwater, L.E., Holland, E., Johnes, P.J., Katzenberger, J., Martinelli, L.A., Matson, P.A., Nziguheba, G., Ojima, D., Palm, C.A., Robertson, G.P., Sanchez, P.A., Townsend, A.R., Zhang, F.S., 2009. Nutrient imbalances in agricultural development. Science324, 1519–1520.
CrossRef Google scholar
[63]
Wagg, C., Bender, S.F., Widmer, F., van der Heijden, M.G.A., 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America111, 5266–5270.
[64]
Wang, F.H., Qiao, M., Su, J.Q., Chen, Z., Zhou, X., Zhu, Y.G., 2014. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environmental Science & Technology48, 9079–9085.
[65]
Wang, X.W., Sun, Z., Jia, H.J., Michel-Mata, S., Angulo, M.T., Dai, L., He, X.S., Weiss, S.T., Liu, Y.Y., 2024. Identifying keystone species in microbial communities using deep learning. Nature Ecology & Evolution8, 22–31.
[66]
Wang, Y., Chen, G.W., Sun, Y.F., Zhu, K., Jin, Y., Li, B.G., Wang, G., 2022. Different agricultural practices specify bacterial community compositions in the soil rhizosphere and root zone. Soil Ecology Letters4, 18–31.
CrossRef Google scholar
[67]
Wang, Y., Ji, H.F., Wang, R., Guo, S.L., Gao, C.Q., 2017. Impact of root diversity upon coupling between soil C and N accumulation and bacterial community dynamics and activity: result of a 30 year rotation experiment. Geoderma292, 87–95.
CrossRef Google scholar
[68]
Xiao, J.J., Xu, X., Wang, F., Ma, J.J., Liao, M., Shi, Y.H., Fang, Q.K., Cao, H.Q., 2019. Analysis of exposure to pesticide residues from Traditional Chinese Medicine. Journal of Hazardous Materials365, 857–867.
CrossRef Google scholar
[69]
Xie, Y.Y., Wang, F.H., Wang, K., Yue, H.Z., Lan, X.F., 2020. Responses of bacterial phoD gene abundance and diversity to crop rotation and feedbacks to phosphorus uptake in wheat. Applied Soil Ecology154, 103604.
CrossRef Google scholar
[70]
Xu, Y., He, Y., Zhang, Q., Xu, J.M., Crowley, D., 2015. Coupling between pentachlorophenol dechlorination and soil redox as revealed by stable carbon isotope, microbial community structure, and biogeochemical data. Environmental Science & Technology49, 5425–5433.
[71]
Xu, Y.X., Liu, J.J., Liu, X.F., Li, H., Yang, Z., Wang, H.B., Huang, X.Y., Lan, L., An, Y.T., Li, L.J., Yao, Q., Wang, G.H., 2022. Continuous cropping of alfalfa (Medicago sativa L. ) reduces bacterial diversity and simplifies cooccurrence networks in aeolian sandy soil. Soil Ecology Letters4, 131–143.
[72]
Xun, W.B., Li, W., Xiong, W., Ren, Y., Liu, Y.P., Miao, Y.Z., Xu, Z.H., Zhang, N., Shen, Q.R., Zhang, R.F., 2019. Diversity-triggered deterministic bacterial assembly constrains community functions. Nature Communications10, 3833.
CrossRef Google scholar
[73]
Xun, W.B., Liu, Y.P., Li, W., Ren, Y., Xiong, W., Xu, Z.H., Zhang, N., Miao, Y.Z., Shen, Q.R., Zhang, R.F., 2021. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome9, 35.
CrossRef Google scholar
[74]
Yachi, S., Loreau, M., 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America96, 1463–1468.
[75]
Yang, X.L., Cheng, J., Franks, A.E., Huang, X.W., Yang, Q., Cheng, Z.Y., Liu, Y.H., Ma, B., Xu, J.M., He, Y., 2023. Loss of microbial diversity weakens specific soil functions, but increases soil ecosystem stability. Soil Biology and Biochemistry177, 108916.
CrossRef Google scholar
[76]
Yang, X.L., Yuan, J., Li, N.N., Franks, A.E., Shentu, J., Luo, Y., Xu, J.M., He, Y., 2021. Loss of microbial diversity does not decrease γ-HCH degradation but increases methanogenesis in flooded paddy soil. Soil Biology and Biochemistry156, 108210.
CrossRef Google scholar
[77]
Yuan, J., Li, S.Y., Cheng, J., Guo, C.X., Shen, C.F., He, J.Z., Yang, Y., Hu, P.J., Xu, J.M., He, Y., 2021a. Potential role of methanogens in microbial reductive dechlorination of organic chlorinated pollutants in situ. Environmental Science & Technology55, 5917–5928.
[78]
Yuan, M.M., Guo, X., Wu, L.W., Zhang, Y., Xiao, N.J., Ning, D.L., Shi, Z., Zhou, X.S., Wu, L.Y., Yang, Y.F., Tiedje, J.M., Zhou, J.Z., 2021b. Climate warming enhances microbial network complexity and stability. Nature Climate Change11, 343–348.
CrossRef Google scholar
[79]
Yue, H., Yue, W.J., Jiao, S., Kim, H., Lee, Y.H., Wei, G.H., Song, W.N., Shu, D.T., 2023. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. Microbiome11, 70.
CrossRef Google scholar
[80]
Zhang, K.L., Maltais-Landry, G., Liao, H.L., 2021. How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biology and Biochemistry156, 108219.
CrossRef Google scholar
[81]
Zhang, Y., Chen, J., Cheng, X.L., 2023. Revisiting the relationships between soil nitrous oxide emissions and microbial functional gene abundances. Global Change Biology29, 4697–4699.
CrossRef Google scholar
[82]
Zhang, Y., Cheng, X.L., van Groenigen, K.J., García-Palacios, P., Cao, J.J., Zheng, X.H., Luo, Y.Q., Hungate, B.A., Terrer, C., Butterbach-Bahl, K., Olesen, J.E., Chen, J., 2024. Shifts in soil ammonia-oxidizing community maintain the nitrogen stimulation of nitrification across climatic conditions. Global Change Biology30, e16989.
CrossRef Google scholar
[83]
Zhao, J., Chen, J., Beillouin, D., Lambers, H., Yang, Y.D., Smith, P., Zeng, Z.H., Olesen, J.E., Zang, H.D., 2022. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nature Communications13, 4926.
CrossRef Google scholar
[84]
Zhao, J., Yang, Y.D., Zhang, K., Jeong, J., Zeng, Z.H., Zang, H.D., 2020. Does crop rotation yield more in China? A meta-analysis. Field Crops Research245, 107659.
CrossRef Google scholar
[85]
Zhao, K.K., Ma, B., Xu, Y., Stirling, E., Xu, J.M., 2021. Light exposure mediates circadian rhythms of rhizosphere microbial communities. The ISME Journal15, 2655–2664.
CrossRef Google scholar
[86]
Zheng, B.X., Zhu, Y.G., Sardans, J., Peñuelas, J., Su, J.Q., 2018. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Science China Life Sciences61, 1451–1462.
CrossRef Google scholar
[87]
Zhou, X., Wang, J.T., Liu, F., Liang, J.M., Zhao, P., Tsui, C.K.M., Cai, L., 2022. Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease. Nature Communications13, 7890.
CrossRef Google scholar
[88]
Zhu, Z.K., Ge, T.D., Luo, Y., Liu, S.L., Xu, X.L., Tong, C.L., Shibistova, O., Guggenberger, G., Wu, J.S., 2018. Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biology and Biochemistry121, 67–76.
CrossRef Google scholar

Acknowledgements

This research was financially supported by Zhejiang Provincial Key Research and Development Program of China (Grant No. 2023C02004), the National Natural Science Foundation of China (Grant Nos. 42225705 and 42177006), and China Agriculture Research System of MOF and MARA (Grant No. CARS-04).

Competing interests

The authors declare no competing interests.

Data availability

The raw data were deposited in the NCBI Sequence Read Archive (SRA) database with accession ID of PRJNA895965 and PRJNA895966 for the bacteria and the fungus, respectively.

Electronic supplementary material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s42832-024-0251-5 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(1206 KB)

Accesses

Citations

Detail

Sections
Recommended

/