Soil type and temperature determine soil respiration seasonal dynamics in dairy grassland

Yulin Liu , Jingjing Zhang , Martin Karl-Friedrich Bader , Sebastian Leuzinger

Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (4) : 240250

PDF (1076KB)
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (4) : 240250 DOI: 10.1007/s42832-024-0250-6
RESEARCH ARTICLE

Soil type and temperature determine soil respiration seasonal dynamics in dairy grassland

Author information +
History +
PDF (1076KB)

Abstract

● Soil respiration rates ( R s) were measured in New Zealand dairy grassland.

● Both season and soil type significantly affected R s.

● Soil temperature and soil type dominated overall R s.

Soil respiration (Rs), the CO2 release from root respiration and microbial metabolism, affects global soil carbon storage and cycling. Only few studies have looked at Rs in the southern hemisphere, especially regarding the interaction between soil type and environmental factors on Rs in dairy grassland. We investigated the relationship between Rs and soil temperature (Ts), soil water content (SWC), soil type, and other environmental factors based on summer and winter measurements at four sites in New Zealand. Across sites, soil respiration rates ranged from 0.29 to 14.58 with a mean of 5.38 ± 0.13 (mean ± standard error) µmol CO2 m−2 s−1. Mean summer Rs was 86.5% higher than mean winter Rs, largely driven by organic/gley and pumice soils while ultic soils showed very little seasonal temperature sensitivity. Overall mean Rs in organic/gley soils was 108.0% higher than that in ultic soils. The high Rs rate observed in organic/gley was likely due to high soil organic matter content, while low Rs in ultic and pallic soils resulted from high clay content and low hydraulic conductance. Soil temperature drove overall Rs. Our findings indicate that soil type and soil temperature together best explain Rs. This implies that a mere classification of land use type may be insufficient for global C models and should be supplemented with soil type information, at least locally.

Graphical abstract

Keywords

agriculture / agricultural soils / land use / livestock farming / soil carbon emission / soil temperature

Cite this article

Download citation ▾
Yulin Liu, Jingjing Zhang, Martin Karl-Friedrich Bader, Sebastian Leuzinger. Soil type and temperature determine soil respiration seasonal dynamics in dairy grassland. Soil Ecology Letters, 2024, 6(4): 240250 DOI:10.1007/s42832-024-0250-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bader, M.K.F., Körner, C., 2010. No overall stimulation of soil respiration under mature deciduous forest trees after 7 years of CO2 enrichment. Global Change Biology16, 2830–2843.

[2]

Bardgett, R.D., Freeman, C., Ostle, N.J., 2008. Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal2, 805–814.

[3]

Bond-Lamberty, B., Wang, C.K., Gower, S.T., 2004. A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology 10, 1756–1766.

[4]

Borken, W., Matzner, E., 2009. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology15, 808–824.

[5]

Bouma, T.J., Bryla, D.R., 2000. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations. Plant and Soil227, 215–221.

[6]

Brown, M., Whitehead, D., Hunt, J.E., Clough, T.J., Arnold, G.C., Baisden, W.T., Sherlock, R.R., 2009. Regulation of soil surface respiration in a grazed pasture in New Zealand. Agricultural and Forest Meteorology149, 205–213.

[7]

Cable, J.M., Ogle, K., Williams, D.G., Weltzin, J.F., Huxman, T.E., 2008. Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran desert: implications for climate change. Ecosystems11, 961–979.

[8]

Caprez, R., Niklaus, P.A., Körner, C., 2012. Forest soil respiration reflects plant productivity across a temperature gradient in the Alps. Oecologia170, 1143–1154.

[9]

Carey, J.C., Tang, J.W., Templer, P.H., Kroeger, K.D., Crowther, T.W., Burton, A.J., Dukes, J.S., Emmett, B., Frey, S.D., Heskel, M.A., Jiang, L.F., Machmuller, M.B., Mohan, J., Panetta, A.M., Reich, P.B., Reinsch, S., Wang, X., Allison, S.D., Bamminger, C., Bridgham, S., Collins, S.L., de Dato. G., Eddy, W.C., Enquist B.J., Estiarte, M., Harte, J., Henderson, A., Johnson B. R., Larsen, K.S., Luo, Y.Q., Marhan, S., Melillo, J.M., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Rastetter, E., Reinmann, A.B., Reynolds, L.L., Schmidt, I.K., Shaver G. R., Strong, A.L., Suseela, V., Tietema, A., 2016. Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences of the United States of America113, 13797–13802.

[10]

Crowther, T.W., Bradford, M.A., 2013. Thermal acclimation in widespread heterotrophic soil microbes. Ecology Letters16, 469–477.

[11]

Davidson, E.A., Verchot, L.V., Henrique Cattânio, J., Ackerman, I.L., Carvalho, J.E.M., 2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry48, 53–69.

[12]

FAO, 2023. Land Statistics and Indicators 2000–2021. Global, Regional and Country Trends.

[13]

Francioni, M., Trozzo, L., Toderi, M., Baldoni, N., Allegrezza, M., Tesei, G., Kishimoto-Mo, A.W., Foresi, L., Santilocchi, R., D’ottavio, P., 2019. Soil respiration dynamics in Bromus erectus-dominated grasslands under different management intensities. Agriculture10, 9.

[14]

Friedlingstein, P., Jones, M.W., O’Sullivan, M., Andrew, R.M., Bakker, D.C.E., Hauck, J., le Quéré, C., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Canadell, J.G., Ciais, P., Jackson, R.B., Alin, S.R., Anthoni, P., Bates, N.R., Becker, M., Bellouin, N., Bopp, L., Chau, T.T.T., Chevallier, F., Chini, L.P., Cronin, M., Currie, K.I., Decharme, B., Djeutchouang, L.M., Dou, X.Y., Evans, W., Feely, R.A., Feng, L., Gasser, T., Gilfillan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Houghton, R.A., Hurtt, G.C., Iida, Y., Ilyina, T., Luijkx, I.T., Jain, A., Jones, S.D., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J.I., Körtzinger, A., Landschützer, P., Lauvset, S.K., Lefèvre, N., Lienert, S., Liu, J.J., Marland, G., Mcguire, P.C., Melton, J.R., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S.I., Niwa, Y., Ono, T., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T.M., Schwinger, J., Schwingshackl, C., Séférian, R., Sutton, A.J., Sweeney, C., Tanhua, T., Tans, P.P., Tian, H.Q., Tilbrook, B., Tubiello, F., Van Der Werf, G.R., Vuichard, N., Wada, C., Wanninkhof, R., Watson, A.J., Willis, D., Wiltshire, A.J., Yuan, W.P., Yue, C., Yue, X., Zaehle, S., Zeng, J., 2022. Global carbon budget 2021. Earth System Science Data14, 1917–2005.

[15]

Giltrap, D.L., Kirschbaum, M.U.F., Laubach, J., Hunt, J.E., 2020. The effects of irrigation on carbon balance in an irrigated grazed pasture system in New Zealand. Agricultural Systems182, 102851.

[16]

Goulding, K.W.T., 2016. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management32, 390–399.

[17]

Graham, S.L., Millard, P., Hunt, J.E., Rogers, G.N.D., Whitehead, D., 2012. Roots affect the response of heterotrophic soil respiration to temperature in tussock grass microcosms. Annals of Botany110, 253–258.

[18]

Green, C., Byrne, K.A., 2004. Biomass: Impact on Carbon Cycle and Greenhouse Gas Emissions. In: Cleveland, C.J., ed. Encyclopedia of Energy. Amsterdam: Elsevier, 223–236.

[19]

Hewitt, A.E., 2010. New Zealand Soil Classification. 3rd ed. Lincoln: Manaaki Whenua Press, 136

[20]

Hewitt, A.E., Balks, M.R., Lowe, D.J., 2021a. Organic Soils. In: Hewitt, A.E., Balks, M.R., Lowe, D.J., eds. The Soils of Aotearoa New Zealand. Cham: Springer, 113–132.

[21]

Hewitt, A.E., Balks, M.R., Lowe, D.J., 2021b. Pallic Soils. In: Hewitt, A.E., Balks, M.R., Lowe, D.J., eds. The Soils of Aotearoa New Zealand. Cham: Springer, 145–162.

[22]

Hewitt, A.E., Balks, M.R., Lowe, D.J., 2021c. Pumice Soils. In: Hewitt, A.E., Balks, M.R., Lowe, D.J., eds. The Soils of Aotearoa New Zealand. Cham: Springer, 179–198.

[23]

Hewitt, A.E., Balks, M.R., Lowe, D.J., 2021d. Ultic Soils. In: Hewitt, A.E., Balks, M.R., Lowe, D.J., eds. The Soils of Aotearoa New Zealand. Cham: Springer, 249–265.

[24]

Howard, D.M., Howard, P.J.A., 1993. Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biology and Biochemistry25, 1537–1546.

[25]

Hunt, J.E., Kelliher, F.M., McSeveny, T.M., Byers, J.N., 2002. Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought. Agricultural and Forest Meteorology111, 65–82.

[26]

Hunt, J.E., Laubach, J., Barthel, M., Fraser, A., Phillips, R.L., 2016. Carbon budgets for an irrigated intensively grazed dairy pasture and an unirrigated winter-grazed pasture. Biogeosciences13, 2927–2944.

[27]

Iiyama, I., Osawa, K., Nagata, O., 2012. Soil O2 profile affected by gas diffusivity and water retention in a drained peat layer. Soils and Foundations52, 49–58.

[28]

Jian, J.S., Vargas, R., Anderson-Teixeira, K., Stell, E., Herrmann, V., Horn, M., Kholod, N., Manzon, J., Marchesi, R., Paredes, D., Bond-Lamberty, B., 2020. A restructured and updated global soil respiration database (SRDB-V5). Earth System Science Data Discussions, 1–19.

[29]

Jones, S.E., Lennon, J.T., 2010. Dormancy contributes to the maintenance of microbial diversity. Proceedings of the National Academy of Sciences of the United States of America107, 5881–5886.

[30]

Jordon, M.W., Buffet, J.C., Dungait, J.A.J., Galdos, M.V., Garnett, T., Lee, M.R.F., Lynch, J., Röös, E., Searchinger, T.D., Smith, P., Godfray, H.C.J., 2024. A restatement of the natural science evidence base concerning grassland management, grazing livestock and soil carbon storage. Proceedings of the Royal Society B: Biological Sciences291, 20232669.

[31]

Keiluweit, M., Wanzek, T., Kleber, M., Nico, P., Fendorf, S., 2017. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nature Communications8, 1771.

[32]

Kirschbaum, M.U.F., Rutledge, S., Kuijper, I.A., Mudge, P.L., Puche, N., Wall, A.M., Roach, C.G., Schipper, L.A., Campbell, D.I., 2015. Modelling carbon and water exchange of a grazed pasture in New Zealand constrained by eddy covariance measurements. Science of the Total Environment 512–513, 273–286.

[33]

Lilburne, L.R., Hewitt, A.E., Webb, T.W., 2012. Soil and informatics science combine to develop S-map: a new generation soil information system for New Zealand. Geoderma170, 232–238.

[34]

Liu, H.S., Li, L.H., Han, X.G., Huang, J.H., Sun, J.X., Wang, H.Y., 2006. Respiratory substrate availability plays a crucial role in the response of soil respiration to environmental factors. Applied Soil Ecology32, 284–292.

[35]

Liu, W.X., Zhang, Z., Wan, S.Q., 2009. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology15, 184–195.

[36]

Lloyd, J., Taylor, J.A., 1994. On the temperature dependence of soil respiration. Functional Ecology8, 315–323.

[37]

Lohila, A., Aurela, M., Regina, K., Laurila, T., 2003. Soil and total ecosystem respiration in agricultural fields: effect of soil and crop type. Plant and Soil251, 303–317.

[38]

Manzoni, S., Schimel, J.P., Porporato, A., 2012. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology93, 930–938.

[39]

McCourty, M.A., Gyawali, A.J., Stewart, R.D., 2018. Of macropores and tillage: influence of biomass incorporation on cover crop decomposition and soil respiration. Soil Use and Management34, 101–110.

[40]

FAO, 2023. Land statistics and indicators 2000–2021. Global, regional and country trends. https://doi.org/10.4060/cc6907en

[41]

Ministry for the Environment, 2023. New Zealand’s Greenhouse Gas Inventory 1990–2021. Available at the website of Ministry for the Environment-New Zealand

[42]

Ministry for the Environment, Stats NZ, 2021. New Zealand’s Environmental Reporting Series: Our land 2021.

[43]

Moinet, G.Y.K., Cieraad, E., Hunt, J.E., Fraser, A., Turnbull, M.H., Whitehead, D., 2016. Soil heterotrophic respiration is insensitive to changes in soil water content but related to microbial access to organic matter. Geoderma274, 68–78.

[44]

Moinet, G.Y.K., Cieraad, E., Turnbull, M.H., Whitehead, D., 2017. Effects of irrigation and addition of nitrogen fertiliser on net ecosystem carbon balance for a grassland. Science of the Total Environment579, 1715–1725.

[45]

Moonis, M., Lee, J.K., Jin, H., Kim, D.G., Park, J.H., 2021. Effects of warming, wetting and nitrogen addition on substrate-induced respiration and temperature sensitivity of heterotrophic respiration in a temperate forest soil. Pedosphere31, 363–372.

[46]

Moyano, F.E., Manzoni, S., Chenu, C., 2013. Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biology and Biochemistry59, 72–85.

[47]

Mukumbuta, I., Shimizu, M., Hatano, R., 2019. Short-term land-use change from grassland to cornfield increases soil organic carbon and reduces total soil respiration. Soil and Tillage Research186, 1–10.

[48]

Nadelhoffer, K.J., Raich, J.W., 1992. Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology73, 1139–1147.

[49]

National Institute of Water and Atmospheric Research, n.d. CliFlo: NIWA’s National Climate Database on the Web [Online]

[50]

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B., Ranke, J., R Core Team, 2023. Nlme: Linear and Nonlinear Mixed Effects Models [Online]

[51]

Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinistö, S., Lohila, A., Larmola, T., Morero, M., Pihlatie, M., Janssens, I., Yuste, J.C., Grünzweig, J.M., Reth, S., Subke, J.A., Savage, K., Kutsch, W., Østreng, G., Ziegler, W., Anthoni, P., Lindroth, A., Hari, P., 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology123, 159–176.

[52]

R Core Team, 2021. R: A Language and Environment for Statistical Computing [Online]

[53]

Raich, J.W., Nadelhoffer, K.J., 1989. Belowground carbon allocation in forest ecosystems: global trends. Ecology70, 1346–1354.

[54]

Raich, J.W., Potter, C.S., 1995. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles9, 23–36.

[55]

Raich, J.W., Tufekciogul, A., 2000. Vegetation and soil respiration: correlations and controls. Biogeochemistry48, 71–90.

[56]

Ramos, F.T., de Carvalho Dores, E.F.G., dos Santos Weber, O.L., Beber, D.C., Campelo, J.H.Jr., de Souza Maia, J.C., 2018. Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil. Journal of the Science of Food and Agriculture98, 3595–3602.

[57]

Rutherford, P.M., Juma, N.G., 1992. Influence of soil texture on protozoa-induced mineralization of bacterial carbon and nitrogen. Canadian Journal of Soil Science72, 183–200.

[58]

Schad, P., 2023. World reference base for soil resources—its fourth edition and its history. Journal of Plant Nutrition and Soil Science186, 151–163.

[59]

Schimel, J.P., 2018. Life in dry soils: effects of drought on soil microbial communities and processes. Annual Review of Ecology, Evolution, and Systematics49, 409–432.

[60]

Sierra, C.A., Trumbore, S.E., Davidson, E.A., Vicca, S., Janssens, I., 2015. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. Journal of Advances in Modeling Earth Systems7, 335–356.

[61]

Smith, K.A., Ball, T., Conen, F., Dobbie, K.E., Massheder, J., Rey, A., 2003. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science54, 779–791.

[62]

Subke, J.A., Inglima, I., Cotrufo, M.F., 2006. Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Global Change Biology12, 921–943.

[63]

Suseela, V., Conant, R.T., Wallenstein, M.D., Dukes, J.S., 2012. Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biology18, 336–348.

[64]

van’t Hoff, J.H., 1898. The Arrangement of Atoms in Space. Cambridge: Cambridge University Press

[65]

Wan, S.Q., Luo, Y.Q., 2003. Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Global Biogeochemical Cycles17, 1054.

[66]

Wang, W., Fang, J.Y., 2009. Soil respiration and human effects on global grasslands. Global and Planetary Change67, 20–28.

[67]

Wang, W., Feng, J., Oikawa, T., 2009. Contribution of root and microbial respiration to soil CO2 efflux and their environmental controls in a humid temperate grassland of Japan. Pedosphere19, 31–39.

[68]

Wang, W.J., Dalal, R.C., Moody, P.W., Smith, C.J., 2003. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biology and Biochemistry35, 273–284.

[69]

Wood, S., 2021. MGCV: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation [Online]. available at the website of cran.r-project.org

[70]

Xu, M., Shang, H., 2016. Contribution of soil respiration to the global carbon equation. Journal of Plant Physiology203, 16–28.

[71]

Yang, P., van Elsas, J.D., 2018. Mechanisms and ecological implications of the movement of bacteria in soil. Applied Soil Ecology129, 112–120.

[72]

Zarafshar, M., Rousta, M.J., Matinizadeh, M., Talebi, K.S., Bordbar, S.K., Alizadeh, T., Nouri, E., Bader, M.K.F., 2023. Scattered wild pistachio trees profoundly modify soil quality in semi-arid woodlands. CATENA224, 106983.

[73]

Zhang, Y.J., Zou, J.L., Meng, D.L., Dang, S.N., Zhou, J.H., Osborne, B., Ren, Y.Y., Liang, T., Yu, K.K., 2020. Effect of soil microorganisms and labile C availability on soil respiration in response to litter inputs in forest ecosystems: a meta-analysis. Ecology and Evolution10, 13602–13612.

[74]

Zhou, G.Y., Luo, Q., Chen, Y.J., Hu, J.Q., He, M., Gao, J., Zhou, L.Y., Liu, H.Y., Zhou, X.H., 2019. Interactive effects of grazing and global change factors on soil and ecosystem respiration in grassland ecosystems: a global synthesis. Journal of Applied Ecology56, 2007–2019.

RIGHTS & PERMISSIONS

The Author(s) 2024. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (1076KB)

546

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/