Effects of tourism development on ecological network and function of sediment microbial communities in the urban wetland park
Binhao Wang, Kaiming Hu, Lin Chen, Wei Zhang, Congcong Zhang, Wenbing Li, Hangjun Zhang
Effects of tourism development on ecological network and function of sediment microbial communities in the urban wetland park
● Tourism development influenced the ecological network of microbial communities.
● Regulating mechanism of intra- and inter-domain networks was clarified.
● Macrophyte coverage reduces microbial network complexity and stability.
● Landscaping may promote nitrogen and phosphorus cycle in wetland watershed.
Numerous urban wetland parks have been established, yet the understanding of microbial interactions in response to tourism development is still limited. This study aims to elucidate the impact of tourism development on the complexity and stability of molecular ecological networks within the microbial communities of wetland sediments. Through an analysis of sediments properties, microorganism intra- and inter-domain co-occurrence characteristics in three different wetland functional areas (conservation, landscaping, and recreation areas), we found that tourism development influenced sediment physicochemical properties. These changes regulated the diversity and ecological networks of archaeal and bacterial communities. Specifically, areas with landscaping (LA) exhibited reduced network connectivity and robustness, suggesting that macrophyte coverage diminishes the complexity and stability of microbial communities in wetland parks. Notably, the transition from conservation areas (CA) to LA strengthened the correlations between microbial network modules and sediment total nitrogen (TN) and total phosphorus (TP), potentially enhancing the nitrogenand phosphorus cycles in wetlands. Structural equation modeling analysisrevealed that both abiotic factors (TC, TP, TN, K, Mg, pH) and biotic factors (archaeal and bacterial α-diversity) can influence interdomain network complexity, accounting for 42% of the variation. Among these factors, sediment TN exerted the largest positive effect on network complexity (37.9%), while Mg had the most negative impact (59.8%). This study provides valuable insights for ecological assessments of urban wetlands and can inform strategies for effective wetland ecosystem management.
urban wetlands / tourism development / microbial communities / interdomain interactions / network complexity
[1] |
Arif, M., Behzad, H.M., Tahir, M., Li, C.X., 2022. Nature-based tourism influences ecosystem functioning along waterways: Implications for conservation and management. Science of the Total Environment842, 156935.
CrossRef
Google scholar
|
[2] |
Arsić, S., Nikolić, D., Mihajlović, I., Fedajev, A., Živković, Ž., 2018. A new approach within ANP-SWOT framework for prioritization of ecosystem management and case study of National Park Djerdap, Serbia. Ecological Economics146, 85–95.
CrossRef
Google scholar
|
[3] |
Banerjee, S., Schlaeppi, K., Van Der Heijden, M.G.A., 2018. Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology16, 567–576.
CrossRef
Google scholar
|
[4] |
Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A.Y., Gattinger, A., Keller, T., Charles, R., Van Der Heijden, M.G.A., 2019. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. The ISME Journal13, 1722–1736.
CrossRef
Google scholar
|
[5] |
Boetius, A., 2019. Global change microbiology-big questions about small life for our future. Nature Reviews Microbiology17, 331–332.
CrossRef
Google scholar
|
[6] |
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.
CrossRef
Google scholar
|
[7] |
Chatterjee, K., Bandyopadhyay, A., Ghosh, A., Kar, S., 2015. Assessment of environmental factors causing wetland degradation, using Fuzzy Analytic Network Process: A case study on Keoladeo National Park, India. Ecological Modelling316, 1–13.
CrossRef
Google scholar
|
[8] |
Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., Van Den Belt, M., 1997. The value of the world's ecosystem services and natural capital. Nature387, 253–260.
CrossRef
Google scholar
|
[9] |
Coux, C., Rader, R., Bartomeus, I., Tylianakis, J.M., 2016. Linking species functional roles to their network roles. Ecology Letters19, 762–770.
CrossRef
Google scholar
|
[10] |
De Vries, F.T., Griffiths, R.I., Bailey, M., Craig, H., Girlanda, M., Gweon, H.S., Hallin, S., Kaisermann, A., Keith, A.M., Kretzschmar, M., Lemanceau, P., Lumini, E., Mason, K.E., Oliver, A., Ostle, N., Prosser, J.I., Thion, C., Thomson, B., Bardgett, R.D., 2018. Soil bacterial networks are less stable under drought than fungal networks. Nature Communications9, 303.
CrossRef
Google scholar
|
[11] |
Delgado-Baquerizo, M., Reith, F., Dennis, P.G., Hamonts, K., Powell, J.R., Young, A., Singh, B.K., Bissett, A., 2018. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology99, 583–596.
CrossRef
Google scholar
|
[12] |
Deng, Y., Jiang, Y.H., Yang, Y.F., He, Z.L., Luo, F., Zhou, J.Z., 2012. Molecular ecological network analyses. BMC Bioinformatics13, 113.
CrossRef
Google scholar
|
[13] |
Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nature Reviews Microbiology10, 538–550.
CrossRef
Google scholar
|
[14] |
Feng, K., Zhang, Y.G., He, Z.L., Ning, D.L., Deng, Y., 2019. Interdomain ecological networks between plants and microbes. Molecular Ecology Resources19, 1565–1577.
CrossRef
Google scholar
|
[15] |
Fu, G.P., Wu, J.F., Han, J.Y., Zhao, L., Chan, G., Leong, K., 2020. Effects of substrate type on denitrification efficiency and microbial community structure in constructed wetlands. Bioresource Technology307, 123222.
CrossRef
Google scholar
|
[16] |
Fuhrman, J.A., 2009. Microbial community structure and its functional implications. Nature459, 193–199.
CrossRef
Google scholar
|
[17] |
Guo, Y.P., Song, B., Li, A.Q., Wu, Q.L., Huang, H.L., Li, N., Yang, Y., Adams, J.M., Yang, L., 2022. Higher pH is associated with enhanced co-occurrence network complexity, stability and nutrient cycling functions in the rice rhizosphere microbiome. Environmental Microbiology24, 6200–6219.
CrossRef
Google scholar
|
[18] |
Haase, P., Tonkin, J.D., Stoll, S., Burkhard, B., Frenzel, M., Geijzendorffer, I.R., Häuser, C., Klotz, S., Kühn, I., McDowell, W.H., Mirtl, M., Müller, F., Musche, M., Penner, J., Zacharias, S., Schmeller, D.S., 2018. The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Science of the Total Environment 613–614, 613–614
|
[19] |
Heilmayr, R., 2014. Conservation through intensification? The effects of plantations on natural forests.. Ecological Economics105, 204–210.
CrossRef
Google scholar
|
[20] |
Ji, M.K., Williams, T.J., Montgomery, K., Wong, H.L., Zaugg, J., Berengut, J.F., Bissett, A., Chuvochina, M., Hugenholtz, P., Ferrari, B.C., 2021. Candidatus eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations. The ISME Journal15, 2692–2707.
CrossRef
Google scholar
|
[21] |
Kiersztyn, B., Chróst, R., Kaliński, T., Siuda, W., Bukowska, A., Kowalczyk, G., Grabowska, K., 2019. Structural and functional microbial diversity along a eutrophication gradient of interconnected lakes undergoing anthropopressure. Scientific Reports9, 11144.
CrossRef
Google scholar
|
[22] |
Kuypers, M.M.M., Marchant, H.K., Kartal, B., 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology16, 263–276.
CrossRef
Google scholar
|
[23] |
Li, C., Hambright, K.D., Bowen, H.G., Trammell, M.A., Grossart, H.P., Burford, M.A., Hamilton, D.P., Jiang, H.L., Latour, D., Meyer, E.I., Padisák, J., Zamor, R.M., Krumholz, L.R., 2021. Global co-occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates. Environmental Microbiology23, 6503–6519.
CrossRef
Google scholar
|
[24] |
Li, H.J., Chang, J.L., Liu, P.F., Fu, L., Ding, D.W., Lu, Y.H., 2015. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments. Environmental Microbiology17, 1533–1547.
CrossRef
Google scholar
|
[25] |
Li, Q.J., Dai, M.Q., Luo, F., 2022. Influence of tourism disturbance on soil microbial community structure in Dawei Mountain national forest park. Sustainability14, 1162.
CrossRef
Google scholar
|
[26] |
Louca, S., Polz, M.F., Mazel, F., Albright, M.B.N., Huber, J.A., O’Connor, M.I., Ackermann, M., Hahn, A.S., Srivastava, D.S., Crowe, S.A., Doebeli, M., Parfrey, L.W., 2018. Function and functional redundancy in microbial systems. Nature Ecology & Evolution2, 936–943.
|
[27] |
Mamet, S.D., Lamb, E.G., Piper, C.L., Winsley, T., Siciliano, S.D., 2017. Archaea and bacteria mediate the effects of native species root loss on fungi during plant invasion. The ISME Journal11, 1261–1275.
CrossRef
Google scholar
|
[28] |
Mamet, S.D., Redlick, E., Brabant, M., Lamb, E.G., Helgason, B.L., Stanley, K., Siciliano, S.D., 2019. Structural equation modeling of a winnowed soil microbiome identifies how invasive plants re-structure microbial networks. The ISME Journal13, 1988–1996.
CrossRef
Google scholar
|
[29] |
Mandakovic, D., Rojas, C., Maldonado, J., Latorre, M., Travisany, D., Delage, E., Bihouée, A., Jean, G., Díaz, F.P., Fernández-Gómez, B., Cabrera, P., Gaete, A., Latorre, C., Gutiérrez, R.A., Maass, A., Cambiazo, V., Navarrete, S.A., Eveillard, D., González, M., 2018. Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience. Scientific Reports8, 5875.
CrossRef
Google scholar
|
[30] |
Mentes, A., Szabó, A., Somogyi, B., Vajna, B., Tugyi, N., Csitári, B., Vörös, L., Felföldi, T., 2018. Differences in planktonic microbial communities associated with three types of macrophyte stands in a shallow lake. FEMS Microbiology Ecology94, fix164.
|
[31] |
Mitsch, W.J., Cronk, J.K., Zhang, L., 2014. Creating a living laboratory on a college campus for wetland research–the olentangy river wetland research park, 1991–2012. Ecological Engineering72, 1–10.
CrossRef
Google scholar
|
[32] |
Montesinos-Navarro, A., Hiraldo, F., Tella, J.L., Blanco, G., 2017. Network structure embracing mutualism–antagonism continuums increases community robustness. Nature Ecology & Evolution1, 1661–1669.
|
[33] |
Nelson, C.E., Kelly, L.W., Haas, A.F., 2023. Microbial interactions with dissolved organic matter are central to coral reef ecosystem function and resilience. Annual Review of Marine Science15, 431–460.
CrossRef
Google scholar
|
[34] |
Pang, S., Zhang, S.H., Lv, X.Y., Han, B., Liu, K.H., Qiu, C.H., Wang, C., Wang, P.F., Toland, H., He, Z.L., 2016. Characterization of bacterial community in biofilm and sediments of wetlands dominated by aquatic macrophytes. Ecological Engineering97, 242–250.
CrossRef
Google scholar
|
[35] |
Peter, H., Sommaruga, R., 2016. Shifts in diversity and function of lake bacterial communities upon glacier retreat. The ISME Journal10, 1545–1554.
CrossRef
Google scholar
|
[36] |
Piano, E., Biagioli, F., Nicolosi, G., Coleine, C., Poli, A., Prigione, V., Zanellati, A., Addesso, R., Varese, G.C., Selbmann, L., Isaia, M., 2023. Tourism affects microbial assemblages in show caves. Science of the Total Environment871, 162106.
CrossRef
Google scholar
|
[37] |
R Development Core Team, 2014. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing
|
[38] |
Raza, T., Qadir, M.F., Khan, K.S., Eash, N.S., Yousuf, M., Chatterjee, S., Manzoor, R., Rehman, S.U., Oetting, J.N., 2023. Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem. Journal of Environmental Management344, 118529.
CrossRef
Google scholar
|
[39] |
Russi, D., Brink, P.T., Farmer, A., Badura, T., Coates, D., Förster, J., Kumar, R., Davidson, N., 2013. The economics of ecosystems and biodiversity for water and wetlands. IEEP, London and Brussels, 78.
|
[40] |
Sagova-Mareckova, M., Boenigk, J., Bouchez, A., Cermakova, K., Chonova, T., Cordier, T., Eisendle, U., Elersek, T., Fazi, S., Fleituch, T., Frühe, L., Gajdosova, M., Graupner, N., Haegerbaeumer, A., Kelly, A.M., Kopecky, J., Leese, F., Nõges, P., Orlic, S., Panksep, K., Pawlowski, J., Petrusek, A., Piggott, J.J., Rusch, J.C., Salis, R., Schenk, J., Simek, K., Stovicek, A., Strand, D.A., Vasquez, M.I., Vrålstad, T., Zlatkovic, S., Zupancic, M., Stoeck, T., 2021. Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Research191, 116767.
|
[41] |
Sanna, S., Eja, P., 2017. Recreational cultural ecosystem services: How do people describe the value?. Ecosystem Services26, 1–9.
CrossRef
Google scholar
|
[42] |
Sims, A., Zhang, Y.Y., Gajaraj, S., Brown, P.B., Hu, Z.Q., 2013. Toward the development of microbial indicators for wetland assessment. Water Research47, 1711–1725.
CrossRef
Google scholar
|
[43] |
Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M.C., Schneider, K., Stabentheiner, E., Toome-Heller, M., Thor, G., Mayrhofer, H., Johannesson, H., Mccutcheon, J.P., 2016. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science353, 488–492.
CrossRef
Google scholar
|
[44] |
Sun, P., Wang, Y., Huang, X., Huang, B.Q., Wang, L., 2022. Water masses and their associated temperature and cross-domain biotic factors co-shape upwelling microbial communities. Water Research215, 118274.
CrossRef
Google scholar
|
[45] |
Thackeray, S.J., Hampton, S.E., 2020. The case for research integration, from genomics to remote sensing, to understand biodiversity change and functional dynamics in the world's lakes. Global Change Biology26, 3230–3240.
CrossRef
Google scholar
|
[46] |
Tromas, N., Fortin, N., Bedrani, L., Terrat, Y., Cardoso, P., Bird, D., Greer, C.W., Shapiro, B.J., 2017. Characterising and predicting cyanobacterial blooms in an 8-year amplicon sequencing time course. The ISME Journal11, 1746–1763.
CrossRef
Google scholar
|
[47] |
Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E., van der Heijden, M.G.A., 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications10, 4841.
CrossRef
Google scholar
|
[48] |
Wahlroos, O., Valkama, P., Mäkinen, E., Ojala, A., Vasander, H., Väänänen, V.M., Halonen, A., Lindén, L., Nummi, P., Ahponen, H., Lahti, K., Vessman, T., Rantakokko, K., Nikinmaa, E., 2015. Urban wetland parks in Finland: improving water quality and creating endangered habitats. International Journal of Biodiversity Science, Ecosystem Services & Management11, 46–60.
|
[49] |
Wan, Y., Ruan, X.H., Zhang, Y.P., Li, R.F., 2017. Illumina sequencing-based analysis of sediment bacteria community in different trophic status freshwater lakes. MicrobiologyOpen6, e00450.
CrossRef
Google scholar
|
[50] |
Wang, B.H., Ma, B., Stirling, E., He, Z.L., Zhang, H.J., Yan, Q.Y., 2023a. Freshwater trophic status mediates microbial community assembly and interdomain network complexity. Environmental Pollution316, 120690.
CrossRef
Google scholar
|
[51] |
Wang, B.H., Stirling, E., He, Z.L., Ma, B., Zhang, H.J., Zheng, X.F., Xiao, F.S., Yan, Q.Y., 2021a. Pollution alters methanogenic and methanotrophic communities and increases dissolved methane in small ponds. Science of the Total Environment801, 149723.
CrossRef
Google scholar
|
[52] |
Wang, B.H., Zheng, X.F., Zhang, H.J., Xiao, F.S., Gu, H., Zhang, K.K., He, Z.L., Liu, X., Yan, Q.Y., 2020a. Bacterial community responses to tourism development in the Xixi National Wetland Park, China. Science of the Total Environment720, 137570.
CrossRef
Google scholar
|
[53] |
Wang, B.H., Zheng, X.F., Zhang, H.J., Xiao, F.S., He, Z.L., Yan, Q.Y., 2020b. Keystone taxa of water microbiome respond to environmental quality and predict water contamination. Environmental Research187, 109666.
CrossRef
Google scholar
|
[54] |
Wang, B.H., Zheng, X.F., Zhang, H.J., Yu, X.L., Lian, Y.L., Yang, X.Q., Yu, H., Hu, R.W., He, Z.L., Xiao, F.S., Yan, Q.Y., 2021b. Metagenomic insights into the effects of submerged plants on functional potential of microbial communities in wetland sediments. Marine Life Science & Technology3, 405–415.
|
[55] |
Wang, C., Liu, S.Y., Zhang, Y., Liu, B.Y., He, F., Xu, D., Zhou, Q.H., Wu, Z.B., 2018. Bacterial communities and their predicted functions explain the sediment nitrogen changes along with submerged macrophyte restoration. Microbial Ecology76, 625–636.
CrossRef
Google scholar
|
[56] |
Wang, C., Liu, S.Y., Zhang, Y., Liu, B.Y., Zeng, L., He, F., Zhou, Q.H., Wu, Z.B., 2017. Effects of planted versus naturally growing Vallisneria natans on the sediment microbial community in west lake, China. Microbial Ecology74, 278–288.
CrossRef
Google scholar
|
[57] |
Wang, T., Zhumabieke, M., Zhang, N., Liu, C., Zhong, J.C., Liao, Q.J.H., Zhang, L., 2023b. Variable promotion of algae and macrophyte organic matter on methanogenesis in anaerobic lake sediment. Environmental Research237, 116922.
CrossRef
Google scholar
|
[58] |
Wu, H.P., Hao, B.B., Cai, Y.P., Liu, G.H., Xing, W., 2021. Effects of submerged vegetation on sediment nitrogen-cycling bacterial communities in Honghu Lake (China). Science of the Total Environment755, 142541.
CrossRef
Google scholar
|
[59] |
Wu, H.P., Zeng, G.M., Liang, J., Chen, J., Xu, J.J., Dai, J., Li, X.D., Chen, M., Xu, P., Zhou, Y.Y., Li, F., Hu, L., Wan, J., 2016. Responses of bacterial community and functional marker genes of nitrogen cycling to biochar, compost and combined amendments in soil. Applied Microbiology and Biotechnology100, 8583–8591.
CrossRef
Google scholar
|
[60] |
Wu, H.P., Zeng, G.M., Liang, J., Guo, S.L., Dai, J., Lu, L.H., Wei, Z., Xu, P., Li, F., Yuan, Y.J., He, X.X., 2015. Effect of early dry season induced by the Three Gorges Dam on the soil microbial biomass and bacterial community structure in the Dongting Lake wetland. Ecological Indicators53, 129–136.
CrossRef
Google scholar
|
[61] |
Xue, P.P., Minasny, B., McBratney, A.B., 2022. Land-use affects soil microbial co-occurrence networks and their putative functions. Applied Soil Ecology169, 104184.
CrossRef
Google scholar
|
[62] |
Yu, X.F., E, M.J., Sun, M.Y., Xue, Z.S., Lu, X.G., Jiang, M., Zou, Y.C., 2018. Wetland recreational agriculture: Balancing wetland conservation and agro-development. Environmental Science & Policy87, 11–17.
|
[63] |
Yuan, M.M., Guo, X., Wu, L.W., Zhang, Y., Xiao, N.J., Ning, D.L., Shi, Z., Zhou, X.S., Wu, L.Y., Yang, Y.F., Tiedje, J.M., Zhou, J.Z., 2021a. Climate warming enhances microbial network complexity and stability. Nature Climate Change11, 343–348.
CrossRef
Google scholar
|
[64] |
Yuan, M.M., Kakouridis, A., Starr, E., Nguyen, N., Shi, S.J., Pett-Ridge, J., Nuccio, E., Zhou, J.Z., Firestone, M., 2021b. Fungal-bacterial cooccurrence patterns differ between arbuscular mycorrhizal fungi and nonmycorrhizal fungi across soil niches. mBio12, e03509–20.
|
[65] |
Yun, J.L., Deng, Y.C., Zhang, H.X., 2017. Anthropogenic protection alters the microbiome in intertidal mangrove wetlands in Hainan Island. Applied Microbiology and Biotechnology101, 6241–6252.
CrossRef
Google scholar
|
[66] |
Zeng, L.P., Dai, Y., Zhang, X.M., Man, Y., Tai, Y.P., Yang, Y., Tao, R., 2021. Keystone species and niche differentiation promote microbial N, P, and COD removal in pilot scale constructed wetlands treating domestic sewage. Environmental Science & Technology55, 12652–12663.
|
[67] |
Zhan, P.F., Liu, Y.S., Wang, H.C., Wang, C.L., Xia, M., Wang, N., Cui, W.Z., Xiao, D.R., Wang, H., 2021. Plant litter decomposition in wetlands is closely associated with phyllospheric fungi as revealed by microbial community dynamics and co-occurrence network. Science of the Total Environment753, 142194.
CrossRef
Google scholar
|
[68] |
Zhang, C., Nie, S., Liang, J., Zeng, G.M., Wu, H.P., Hua, S.S., Liu, J.Y., Yuan, Y.J., Xiao, H.B., Deng, L.J., Xiang, H.Y., 2016. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Science of the Total Environment 557–558, 557–558
|
[69] |
Zhang, Z.Q., Yu, H.W., Tao, M., Lv, T., Li, D.X., Yu, D., Liu, C.H., 2023. Shifting enzyme activity and microbial composition in sediment coregulate the structure of an aquatic plant community under polyethylene microplastic exposure. Science of the Total Environment901, 166497.
CrossRef
Google scholar
|
[70] |
Zhao, J.S., Yang, P., Lin, Y.Y., Zhu, X.Y., Wang, J.X., Gan, X.Y., Zheng, X.Y., Zhao, M., Fan, C.Z., Du, L.N., Miu, H.Y., 2023. The effect of underwater supplemental light on the growth of V.spinulosa Yan and the restoration process of water. Process Safety and Environmental Protection169, 328–336.
CrossRef
Google scholar
|
[71] |
Zhou, L., Zhou, Y.Q., Tang, X.M., Zhang, Y.L., Zhu, G.W., Székely, A.J., Jeppesen, E., 2021a. Eutrophication alters bacterial co-occurrence networks and increases the importance of chromophoric dissolved organic matter composition. Limnology and Oceanography66, 2319–2332.
CrossRef
Google scholar
|
[72] |
Zhou, Y.Q., Sun, B.Y., Xie, B.H., Feng, K., Zhang, Z.J., Zhang, Z., Li, S.Z., Du, X.F., Zhang, Q., Gu, S.S., Song, W., Wang, L.L., Xia, J.Y., Han, G.X., Deng, Y., 2021b. Warming reshaped the microbial hierarchical interactions. Global Change Biology27, 6331–6347.
CrossRef
Google scholar
|
[73] |
Zhu, J.L., Li, Y.H., Huang, M.H., Xu, D., Zhang, Y., Zhou, Q.H., Wu, Z.B., Wang, C., 2023. Restoration effects of submerged macrophytes on methane production and oxidation potential of lake sediments. Science of the Total Environment866, 161218.
CrossRef
Google scholar
|
/
〈 | 〉 |