Sporocarp-associated fungal co-occurrence networks in a corn field revealed by long-read high-throughput sequencing

Teng Yang, Luyao Song, Xu Liu, Xia Luo, Qiuyan Tan, Cunzhi Zhang, Jonathan M. Adams, Haiyan Chu

PDF(1392 KB)
PDF(1392 KB)
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (4) : 240245. DOI: 10.1007/s42832-024-0245-3
RESEARCH ARTICLE

Sporocarp-associated fungal co-occurrence networks in a corn field revealed by long-read high-throughput sequencing

Author information +
History +

Highlights

● We identified a sporocarp as Agrocybe dura growing next to a living corn using PacBio sequencing.

● The mycoparasitism of Trichoderma spp. on A. dura were revealed by the co-occurrence network analysis.

● For long-read HTS data, we updated a bioinformatic pipeline to enhance fungal taxonomic resolution.

Abstract

In forests, fungal sporocarps house the diverse fungicolous fungi; however, the relationships of sporocarps and associated fungal communities are rarely explored in agroecosystems. In a corn field near Gongzhuling City, Jilin Province, China, we found an epigeous sporocarp with agaricoid morphology that could grow next to the living corn plants. Using PacBio metabarcoding combined with an updated bioinformatic pipeline, we surveyed the fungal community profile along its cap, rhizomorph and hyphosphere soil at a much-improved taxonomic resolution. We identified the sporocarp, at a high probability, as Agrocybe dura, and this mushroom was significantly negatively correlated with Trichoderma hamatum and T. harzianum in the co-occurrence network. Fungal diversity in hyphosphere habitat was significantly higher than that in cap and rhizomorph habitats. Consistent with the pattern in fungal diversity, the node number, edge number, network diameter and average degree were significantly higher in hyphosphere habitat than other habitats. However, both the negative and positive cohesion were significantly higher in rhizomorph habitat than other habitats. Moreover, the z-c plot identified A. dura as the only network hub, linking multiple fungal species. The results give us a glimpse of the ecological relevance of saprobic mushrooms across the extensive northeastern black soil region of China. Our findings will aid in the assessment and forecasting of fungal diversity hotspots and their relationships with soil fertility in the ‘Golden Corn Belt’ of northeast China.

Graphical abstract

Keywords

PacBio metabarcoding / saprobic mushroom / species identification / co-occurrence network / corn field / northeast China

Cite this article

Download citation ▾
Teng Yang, Luyao Song, Xu Liu, Xia Luo, Qiuyan Tan, Cunzhi Zhang, Jonathan M. Adams, Haiyan Chu. Sporocarp-associated fungal co-occurrence networks in a corn field revealed by long-read high-throughput sequencing. Soil Ecology Letters, 2024, 6(4): 240245 https://doi.org/10.1007/s42832-024-0245-3

References

[1]
Baldrian, P., Větrovský, T., Lepinay, C., Kohout, P., 2022. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Diversity114, 539–547.
CrossRef Google scholar
[2]
Banerjee, S., Zhao, C., Garland, G., Edlinger, A., García-Palacios, P., Romdhane, S., Degrune, F., Pescador, D.S., Herzog, C., Camuy-Velez, L.A., Bascompte, J., Hallin, S., Philippot, L., Maestre, F.T., Rillig, M.C., Van Der Heijden, M.G.A., 2024. Biotic homogenization, lower soil fungal diversity and fewer rare taxa in arable soils across Europe. Nature Communications15, 327.
CrossRef Google scholar
[3]
Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the International AAAI Conference on Web and Social Media. San Jose: AAAI, 361–362
[4]
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods7, 335–336.
CrossRef Google scholar
[5]
Das, K., Ghosh, A., Chakraborty, D., Datta, S., Bera, I., Layola, R., Banu, F., Vizzini, A., Wisitrassameewong, K., 2023. Four novel species and two new records of boletes from India. Journal of Fungi9, 754.
CrossRef Google scholar
[6]
Deng, Y., Jiang, Y.H., Yang, Y.F., He, Z.L., Luo, F., Zhou, J.Z., 2012. Molecular ecological network analyses. BMC Bioinformatics13, 113.
CrossRef Google scholar
[7]
Duan, Y., Chen, L., Li, Y.M., Li, J.Y., Zhang, C.Z., Ma, D.H., Zhou, G.X., Zhang, J.B., 2023. Nitrogen input level modulates straw-derived organic carbon physical fractions accumulation by stimulating specific fungal groups during decomposition. Soil and Tillage Research225, 105560.
CrossRef Google scholar
[8]
Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods10, 996–998.
CrossRef Google scholar
[9]
Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., Knight, R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics27, 2194–2200.
CrossRef Google scholar
[10]
Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nature Reviews Microbiology10, 538–550.
CrossRef Google scholar
[11]
Frąc, M., Hannula, S.E., Bełka, M., Jędryczka, M., 2018. Fungal biodiversity and their role in soil health. Frontiers in Microbiology9, 707.
CrossRef Google scholar
[12]
Friedman, J., Alm, E.J., 2012. Inferring correlation networks from genomic survey data. PLoS Computational Biology8, e1002687.
CrossRef Google scholar
[13]
Gábor, C., Nepusz, T., 2006. The igraph software package for complex network research. InterJournal Complex Systems1695, 1.
[14]
Gan, H.Y., Li, X.C., Wang, Y.L., Lü, P.P., Ji, N.N., Yao, H., Li, S., Guo, L.D., 2022. Plants play stronger effects on soil fungal than bacterial communities and co-occurrence network structures in a subtropical tree diversity experiment. Microbiology Spectrum10, e00134–22.
[15]
Hatvani, L., Antal, Z., Manczinger, L., Szekeres, A., Druzhinina, I.S., Kubicek, C.P., Nagy, A., Nagy, E., Vágvölgyi, C., Kredics, L., 2007. Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology97, 532–537.
[16]
Hernandez, D.J., David, A.S., Menges, E.S., Searcy, C.A., Afkhami, M.E., 2021. Environmental stress destabilizes microbial networks. The ISME Journal15, 1722–1734.
CrossRef Google scholar
[17]
Herren, C.M., McMahon, K.D., 2017. Cohesion: a method for quantifying the connectivity of microbial communities. The ISME Journal11, 2426–2438.
CrossRef Google scholar
[18]
Jayasiri, S.C., Hyde, K.D., Ariyawansa, H.A., Bhat, J., Buyck, B., Cai, L., Dai, Y.C., Abd-Elsalam, K.A., Ertz, D., Hidayat, I., Jeewon, R., Jones, E.B.G., Bahkali, A.H., Karunarathna, S.C., Liu, J.K., Luangsa-Ard, J.J., Lumbsch, H.T., Maharachchikumbura, S.S.N., McKenzie, E.H.C., Moncalvo, J.M., Ghobad-Nejhad, M., Nilsson, H., Pang, K.L., Pereira, O.L., Phillips, A.J.L., Raspé, O., Rollins, A.W., Romero, A.I., Etayo, J., Selçuk, F., Stephenson, S.L., Suetrong, S., Taylor, J.E., Tsui, C.K.M., Vizzini, A., Abdel-Wahab, M.A., Wen, T.C., Boonmee, S., Dai, D.Q., Daranagama, D.A., Dissanayake, A.J., Ekanayaka, A.H., Fryar, S.C., Hongsanan, S., Jayawardena, R.S., Li, W.J., Perera, R.H., Phookamsak, R., De Silva, N.I., Thambugala, K.M., Tian, Q., Wijayawardene, N.N., Zhao, R.L., Zhao, Q., Kang, J.C., Promputtha, I., 2015. The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity74, 3–18.
CrossRef Google scholar
[19]
Karunarathna, S.C., Ashwath, N., Jeewon, R., 2021. Editorial: the potential of fungi for enhancing crops and forestry systems. Frontiers in Microbiology12, 813051.
CrossRef Google scholar
[20]
Kou, X.C., Morriën, E., Tian, Y.J., Zhang, X.K., Lu, C.Y., Xie, H.T., Liang, W.J., Li, Q., Liang, C., 2023. Exogenous carbon turnover within the soil food web strengthens soil carbon sequestration through microbial necromass accumulation. Global Change Biology29, 4069–4080.
CrossRef Google scholar
[21]
Krah, F.S., 2023. The unresolved ecological and evolutionary role of fungal fruit body coloration. Frontiers in Ecology and Evolution11, 1326710.
CrossRef Google scholar
[22]
Liu, X., Zhang, C.Z., Yang, T., Gao, G.F., Shi, Y., Chu, H.Y., 2023. Phylogenetic relatedness enhances the understanding of soil microbial coexistence in alpine wetlands of the Tibetan Plateau. Soil Biology and Biochemistry185, 109160.
CrossRef Google scholar
[23]
Ma, Y.J., Gao, W.Q., Zhang, F., Zhu, X.T., Kong, W.B., Niu, S.Q., Gao, K., Yang, H.Q., 2022. Community composition and trophic mode diversity of fungi associated with fruiting body of medicinal Sanghuangporus vaninii. BMC Microbiology22, 251.
CrossRef Google scholar
[24]
Ma, Y.Y., Zhang, H.C., Wang, D.Z., Guo, X.S., Yang, T., Xiang, X.J., Walder, F., Chu, H.Y., 2021. Differential responses of arbuscular mycorrhizal fungal communities to long-term fertilization in the wheat rhizosphere and root Endosphere. Applied and Environmental Microbiology87, e0034921.
CrossRef Google scholar
[25]
Maurice, S., Arnault, G., Nordén, J., Botnen, S.S., Miettinen, O., Kauserud, H., 2021. Fungal sporocarps house diverse and host-specific communities of fungicolous fungi. The ISME Journal15, 1445–1457.
CrossRef Google scholar
[26]
Mešić, A., Šamec, D., Jadan, M., Bahun, V., Tkalčec, Z., 2020. Integrated morphological with molecular identification and bioactive compounds of 23 Croatian wild mushrooms samples. Food Bioscience37, 100720.
CrossRef Google scholar
[27]
Mikryukov, V., Dulya, O., Zizka, A., Bahram, M., Hagh-Doust, N., Anslan, S., Prylutskyi, O., Delgado-Baquerizo, M., Maestre, F.T., Nilsson, H., Pärn, J., Öpik, M., Moora, M., Zobel, M., Espenberg, M., Mander, Ü., Khalid, A.N., Corrales, A., Agan, A., Vasco-Palacios, A.M., Saitta, A., Rinaldi, A., Verbeken, A., Sulistyo, B., Tamgnoue, B., Furneaux, B., Duarte Ritter, C., Nyamukondiwa, C., Sharp, C., Marín, C., Gohar, D., Klavina, D., Sharmah, D., Dai, D.Q., Nouhra, E., Biersma, E.M., Rähn, E., Cameron, E., De Crop, E., Otsing, E., Davydov, E., Albornoz, F., Brearley, F., Buegger, F., Zahn, G., Bonito, G., Hiiesalu, I., Barrio, I., Heilmann-Clausen, J., Ankuda, J., Doležal, J., Kupagme, J., Maciá-Vicente, J., Djeugap Fovo, J., Geml, J., Alatalo, J., Alvarez-Manjarrez, J., Põldmaa, K., Runnel, K., Adamson, K., Bråthen, K.A., Pritsch, K., Tchan Issifou, K., Armolaitis, K., Hyde, K., Newsham, K.K., Panksep, K., Lateef, A.A., Hansson, L., Lamit, L., Saba, M., Tuomi, M., Gryzenhout, M., Bauters, M., Piepenbring, M., Wijayawardene, N.N., Yorou, N., Kurina, O., Mortimer, P., Meidl, P., Kohout, P., Puusepp, R., Drenkhan, R., Garibay-Orijel, R., Godoy, R., Alkahtani, S., Rahimlou, S., Dudov, S., Põlme, S., Ghosh, S., Mundra, S., Ahmed, T., Netherway, T., Henkel, T., Roslin, T., Nteziryayo, V., Fedosov, V., Onipchenko, V., Yasanthika, W.A.E., Lim, Y., Van Nuland, M., Soudzilovskaia, N., Antonelli, A., Kõljalg, U., Abarenkov, K., Tedersoo, L., 2023. Connecting the multiple dimensions of global soil fungal diversity. Science Advances9, eadj8016.
CrossRef Google scholar
[28]
Mukherjee, P.K., Mendoza-Mendoza, A., Zeilinger, S., Horwitz, B.A., 2022. Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biology Reviews39, 15–33.
CrossRef Google scholar
[29]
Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F.O., Tedersoo, L., Saar, I., Kõljalg, U., Abarenkov, K., 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research47, D259–D264.
CrossRef Google scholar
[30]
Olesen, J.M., Bascompte, J., Dupont, Y.L., Jordano, P., 2007. The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America104, 19891–19896.
[31]
Ondov, B.D., Bergman, N.H., Phillippy, A.M., 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics12, 385.
CrossRef Google scholar
[32]
Ovaskainen, O., Schigel, D., Ali-Kovero, H., Auvinen, P., Paulin, L., Nordén, B., Nordén, J., 2013. Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. The ISME Journal7, 1696–1709.
CrossRef Google scholar
[33]
Põlme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B.D., Clemmensen, K.E., Kauserud, H., Nguyen, N., Kjøller, R., Bates, S.T., Baldrian, P., Frøslev, T.G., Adojaan, K., Vizzini, A., Suija, A., Pfister, D., Baral, H.O., Järv, H., Madrid, H., Nordén, J., Liu, J.K., Pawlowska, J., Põldmaa, K., Pärtel, K., Runnel, K., Hansen, K., Larsson, K.H., Hyde, K.D., Sandoval-Denis, M., Smith, M.E., Toome-Heller, M., Wijayawardene, N.N., Menolli, N., Reynolds, N.K., Drenkhan, R., Maharachchikumbura, S.S.N., Gibertoni, T.B., Læssøe, T., Davis, W., Tokarev, Y., Corrales, A., Soares, A.M., Agan, A., Machado, A.R., Argüelles-Moyao, A., Detheridge, A., De Meiras-Ottoni, A., Verbeken, A., Dutta, A.K., Cui, B.K., Pradeep, C.K., Marín, C., Stanton, D., Gohar, D., Wanasinghe, D.N., Otsing, E., Aslani, F., Griffith, G.W., Lumbsch, T.H., Grossart, H.P., Masigol, H., Timling, I., Hiiesalu, I., Oja, J., Kupagme, J.Y., Geml, J., Alvarez-Manjarrez, J., Ilves, K., Loit, K., Adamson, K., Nara, K., Küngas, K., Rojas-Jimenez, K., Bitenieks, K., Irinyi, L., Nagy, L.G., Soonvald, L., Zhou, L.W., Wagner, L., Aime, M.C., Öpik, M., Mujica, M.I., Metsoja, M., Ryberg, M., Vasar, M., Murata, M., Nelsen, M.P., Cleary, M., Samarakoon, M.C., Doilom, M., Bahram, M., Hagh-Doust, N., Dulya, O., Johnston, P., Kohout, P., Chen, Q., Tian, Q., Nandi, R., Amiri, R., Perera, R.H., Dos Santos Chikowski, R., Mendes-Alvarenga, R.L., Garibay-Orijel, R., Gielen, R., Phookamsak, R., Jayawardena, R.S., Rahimlou, S., Karunarathna, S.C., Tibpromma, S., Brown, S.P., Sepp, S.K., Mundra, S., Luo, Z.H., Bose, T., Vahter, T., Netherway, T., Yang, T., May, T., Varga, T., Li, W., Coimbra, V.R.M., De Oliveira, V.R.T., De Lima, V.X., Mikryukov, V.S., Lu, Y.Z., Matsuda, Y., Miyamoto, Y., Kõljalg, U., Tedersoo, L., 2020. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity105, 1–16.
CrossRef Google scholar
[34]
R Core Team., 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. available at the website of R-project.org.
[35]
Royse, D.J., Baars, J., Tan, Q., 2017. Current Overview of Mushroom Production in the World. In: Diego, C.Z., Pardo-Giménez, A., eds. Edible and Medicinal Mushrooms: Technology and Applications. Hoboken: John Wiley & Sons, 5–13
[36]
Runnel, K., Abarenkov, K., Copoț, O., Mikryukov, V., Kõljalg, U., Saar, I., Tedersoo, L., 2022. DNA barcoding of fungal specimens using PacBio long-read high-throughput sequencing. Molecular Ecology Resources22, 2871–2879.
CrossRef Google scholar
[37]
Sahithya K., Mouli T., Ankita B., Mercy Scorlet T., 2022. Remediation potential of mushrooms and their spent substrate against environmental contaminants: an overview. Biocatalysis and Agricultural Biotechnology 42, 102323
[38]
Sharma, R., 2017. Ectomycorrhizal mushrooms: their diversity, ecology and practical applications, In: Varma, A., Prasad, R., Tuteja, N., eds. Mycorrhiza - Function, Diversity, State of the Art. 4th ed. Cham: Springer, 99–131
[39]
Shendure, J., Balasubramanian, S., Church, G.M., Gilbert, W., Rogers, J., Schloss, J.A., Waterston, R.H., 2017. DNA sequencing at 40: past, present and future. Nature550, 345–353.
CrossRef Google scholar
[40]
Sun, J.Z., Liu, X.Z., McKenzie, E.H.C., Jeewon, R., Liu, J.K., Zhang, X.L., Zhao, Q., Hyde, K.D., 2019. Fungicolous fungi: terminology, diversity, distribution, evolution, and species checklist. Fungal Diversity95, 337–430.
CrossRef Google scholar
[41]
Tedersoo, L., Albertsen, M., Anslan, S., Callahan, B., 2021a. Perspectives and benefits of high-throughput long-read sequencing in microbial ecology. Applied and Environmental Microbiology87, e0062621.
CrossRef Google scholar
[42]
Tedersoo, L., Anslan, S., 2019. Towards PacBio-based pan-eukaryote metabarcoding using full-length ITS sequences. Environmental Microbiology Reports11, 659–668.
CrossRef Google scholar
[43]
Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N.S., Wijesundera, R., Villarreal Ruiz, L., Vasco-Palacios, A.M., Thu, P.Q., Suija, A., Smith, M.E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Põldmaa, K., Piepenbring, M., Phosri, C., Peterson, M., Parts, K., Pärtel, K., Otsing, E., Nouhra, E., Njouonkou, A.L., Nilsson, R.H., Morgado, L.N., Mayor, J., May, T.W., Majuakim, L., Lodge, D.J., Lee, S.S., Larsson, K.H., Kohout, P., Hosaka, K., Hiiesalu, I., Henkel, T.W., Harend, H., Guo, L.D., Greslebin, A., Grelet, G., Geml, J., Gates, G., Dunstan, W., Dunk, C., Drenkhan, R., Dearnaley, J., De Kesel, A., Dang, T., Chen, X., Buegger, F., Brearley, F.Q., Bonito, G., Anslan, S., Abell, S., Abarenkov, K., 2014. Fungal biogeography. Global diversity and geography of soil fungi. Science346, 1256688.
[44]
Tedersoo, L., Bahram, M., Zinger, L., Nilsson, R.H., Kennedy, P.G., Yang, T., Anslan, S., Mikryukov, V., 2022. Best practices in metabarcoding of fungi: From experimental design to results. Molecular Ecology31, 2769–2795.
CrossRef Google scholar
[45]
Tedersoo, L., Mikryukov, V., Anslan, S., Bahram, M., Khalid, A.N., Corrales, A., Agan, A., Vasco-Palacios, A.M., Saitta, A., Antonelli, A., Rinaldi, A.C., Verbeken, A., Sulistyo, B.P., Tamgnoue, B., Furneaux, B., Ritter, C.D., Nyamukondiwa, C., Sharp, C., Marín, C., Dai, D.Q., Gohar, D., Sharmah, D., Biersma, E.M., Cameron, E.K., De Crop, E., Otsing, E., Davydov, E.A., Albornoz, F.E., Brearley, F.Q., Buegger, F., Gates, G., Zahn, G., Bonito, G., Hiiesalu, I., Hiiesalu, I., Zettur, I., Barrio, I.C., Pärn, J., Heilmann-Clausen, J., Ankuda, J., Kupagme, J.Y., Sarapuu, J., Maciá-Vicente, J.G., Fovo, J.D., Geml, J., Alatalo, J.M., Alvarez-Manjarrez, J., Monkai, J., Põldmaa, K., Runnel, K., Adamson, K., Bråthen, K.A., Pritsch, K., Tchan, K.I., Armolaitis, K., Hyde, K.D., Newsham, K.K., Panksep, K., Adebola, L.A., Lamit, L.J., Saba, M., Da Silva Cáceres, M.E., Tuomi, M., Gryzenhout, M., Bauters, M., Bálint, M., Wijayawardene, N., Hagh-Doust, N., Yorou, N.S., Kurina, O., Mortimer, P.E., Meidl, P., Nilsson, R.H., Puusepp, R., Casique-Valdés, R., Drenkhan, R., Garibay-Orijel, R., Godoy, R., Alfarraj, S., Rahimlou, S., Põlme, S., Dudov, S.V., Mundra, S., Ahmed, T., Netherway, T., Henkel, T.W., Roslin, T., Fedosov, V.E., Onipchenko, V.G., Yasanthika, W.A.E., Lim, Y.W., Piepenbring, M., Klavina, D., Kõljalg, U., Abarenkov, K., 2021b. The global soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Diversity111, 573–588.
CrossRef Google scholar
[46]
Tian, M., Whalley, W.R., Zhou, H., Ren, T.S., Gao, W.D., 2023. Does no-tillage mitigate the negative effects of harvest compaction on soil pore characteristics in Northeast China? Soil and Tillage Research 233, 105787
[47]
Torbati, M., Arzanlou, M., Da Silva Santos, A.C., 2021. Fungicolous Fusarium species: ecology, diversity, isolation, and identification. Current Microbiology78, 2850–2859.
CrossRef Google scholar
[48]
Větrovský, T., Morais, D., Kohout, P., Lepinay, C., Algora, C., Awokunle Hollá, S., Bahnmann, B.D., Bílohnědá, K., Brabcová, V., D'Alò, F., Human, Z.R., Jomura, M., Kolařík, M., Kvasničková, J., Lladó, S., López-Mondéjar, R., Martinović, T., Mašínová, T., Meszárošová, L., Michalčíková, L., Michalová, T., Mundra, S., Navrátilová, D., Odriozola, I., Piché-Choquette, S., Štursová, M., Švec, K., Tláskal, V., Urbanová, M., Vlk, L., Voříšková, J., Žifčáková, L., Baldrian, P., 2020. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Scientific Data7, 228.
CrossRef Google scholar
[49]
Wang, C., Wang, X., Zhang, Y., Morrissey, E., Liu, Y., Sun, L.F., Qu, L.R., Sang, C.P., Zhang, H., Li, G.C., Zhang, L.L., Fang, Y.T., 2023a. Integrating microbial community properties, biomass and necromass to predict cropland soil organic carbon. ISME Communications3, 86.
CrossRef Google scholar
[50]
Wang, G.W., Jin, Z.X., George, T.S., Feng, G., Zhang, L., 2023b. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover. New Phytologist238, 2578–2593.
CrossRef Google scholar
[51]
Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology73, 5261–5267.
CrossRef Google scholar
[52]
Wang, S., Huang, X.L., Zhang, Y., Yin, C.B., Richel, A., 2021. The effect of corn straw return on corn production in Northeast China: an integrated regional evaluation with meta-analysis and system dynamics. Resources, Conservation and Recycling167, 105402.
CrossRef Google scholar
[53]
Wen, D.Z., Liang, W.J., 2001. Soil fertility quality and agricultural sustainable development in the black soil region of northeast China. Environment, Development and Sustainability3, 31–43.
CrossRef Google scholar
[54]
Wen, Y.A., Li, X.C., Mu, H.W., Zhong, L.H., Chen, H., Zeng, Y.L., Miao, S.X., Su, W., Gong, P., Li, B.G., Huang, J.X., 2022. Mapping corn dynamics using limited but representative samples with adaptive strategies. ISPRS Journal of Photogrammetry and Remote Sensing190, 252–266.
CrossRef Google scholar
[55]
Wu, D., Ma, Y.Y., Yang, T., Gao, G.F., Wang, D.Z., Guo, X.S., Chu, H.Y., 2022. Phosphorus and zinc are strongly associated with belowground fungal communities in wheat field under long-term fertilization. Microbiology Spectrum10, e0011022.
CrossRef Google scholar
[56]
Xiong, C., Singh, B.K., He, J.Z., Han, Y.L., Li, P.P., Wan, L.H., Meng, G.Z., Liu, S.Y., Wang, J.T., Wu, C.F., Ge, A.H., Zhang, L.M., 2021. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome9, 171.
CrossRef Google scholar
[57]
Xue, R., Wang, C., Zhao, L., Cao, J., Liu, M.L., Zhang, D., 2023. Agricultural intensification weakens soil multifunctionality by reducing fungal diversity. Applied Soil Ecology189, 104900.
CrossRef Google scholar
[58]
Yang, T., Tedersoo, L., Liu, X., Gao, G.F., Dong, K., Adams, J.M., Chu, H.Y., 2022. Fungi stabilize multi-kingdom community in a high elevation timberline ecosystem. iMeta1, e49.
CrossRef Google scholar
[59]
Yang, T., Tedersoo, L., Soltis, P.S., Soltis, D.E., Sun, M., Ma, Y.Y., Ni, Y.Y., Liu, X., Fu, X., Shi, Y., Lin, H.Y., Zhao, Y.P., Fu, C.X., Dai, C.C., Gilbert, J.A., Chu, H.Y., 2023. Plant and fungal species interactions differ between aboveground and belowground habitats in mountain forests of eastern China. Science China Life Sciences66, 1134–1150.
CrossRef Google scholar

Acknowledgements

We are grateful to Xiyuan Xu, Di Wu, Dan Zhao for assistance in field sampling and laboratory analyses. This work was supported by the National Program on Key Basic Research Project (Grant No. 2022YFD1500202), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA28020202), and the National Natural Science Foundation of China (Grant No. 42277308).

Data availability statement

The sequencing data of FASTQ form were deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under the accession code PRJNA915815. The R script of the joint annotation was attached as File S1, and all the assignment tables including the table in Expert Decision-Making Session (EDMS) can be shared by the corresponding author upon reasonable request.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Electronic supplementary material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s42832-024-0245-3 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
审图号:GS京(2024)0975号
AI Summary AI Mindmap
PDF(1392 KB)

Accesses

Citations

Detail

Sections
Recommended

/