Revisiting soil fungal biomarkers and conversion factors: Interspecific variability in phospholipid fatty acids, ergosterol and rDNA copy numbers

Tessa Camenzind, Heike Haslwimmer, Matthias C. Rillig, Liliane Ruess, Damien R. Finn, Christoph C. Tebbe, Stefan Hempel, Sven Marhan

PDF(2880 KB)
PDF(2880 KB)
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (4) : 240243. DOI: 10.1007/s42832-024-0243-5
RESEARCH ARTICLE

Revisiting soil fungal biomarkers and conversion factors: Interspecific variability in phospholipid fatty acids, ergosterol and rDNA copy numbers

Author information +
History +

Highlights

● Refined conversion factors for soil fungal biomarkers are proposed.

● High interspecific variability is present in all fungal biomarkers.

● A modeling approach supports the validity of biomarker estimates in diverse soils.

● ITS1 copies vary strongly, but are fungal-specific with least phylogenetic bias.

● A combination of fungal biomarkers will reveal soil fungal physiology and activity.

Abstract

The abundances of fungi and bacteria in soil are used as simple predictors for carbon dynamics, and represent widely available microbial traits. Soil biomarkers serve as quantitative estimates of these microbial groups, though not quantifying microbial biomass per se. The accurate conversion to microbial carbon pools, and an understanding of its comparability among soils is therefore needed. We refined conversion factors for classical fungal biomarkers, and evaluated the application of quantitative PCR (qPCR, rDNA copies) as a biomarker for soil fungi. Based on biomarker contents in pure fungal cultures of 30 isolates tested here, combined with comparable published datasets, we propose average conversion factors of 95.3 g fungal C g−1 ergosterol, 32.0 mg fungal C µmol−1 PLFA 18:2ω6,9 and 0.264 pg fungal C ITS1 DNA copy−1. As expected, interspecific variability was most pronounced in rDNA copies, though qPCR results showed the least phylogenetic bias. A modeling approach based on exemplary agricultural soils further supported the hypothesis that high diversity in soil buffers against biomarker variability, whereas also phylogenetic biases impact the accuracy of comparisons in biomarker estimates. Our analyses suggest that qPCR results cover the fungal community in soil best, though with a variability only partly offset in highly diverse soils. PLFA 18:2ω6,9 and ergosterol represent accurate biomarkers to quantify Ascomycota and Basidiomycota. To conclude, the ecological interpretation and coverage of biomarker data prior to their application in global models is important, where the combination of different biomarkers may be most insightful.

Graphical abstract

Keywords

soil fungal biomarkers / biomarker conversion factors / saprobic fungi / ITS copy numbers / ergosterol / phospholipid fatty acids

Cite this article

Download citation ▾
Tessa Camenzind, Heike Haslwimmer, Matthias C. Rillig, Liliane Ruess, Damien R. Finn, Christoph C. Tebbe, Stefan Hempel, Sven Marhan. Revisiting soil fungal biomarkers and conversion factors: Interspecific variability in phospholipid fatty acids, ergosterol and rDNA copy numbers. Soil Ecology Letters, 2024, 6(4): 240243 https://doi.org/10.1007/s42832-024-0243-5

References

[1]
Andrade-Linares, D.R., Veresoglou, S.D., Rillig, M.C., 2016. Temperature priming and memory in soil filamentous fungi. Fungal Ecology21, 10–15.
CrossRef Google scholar
[2]
Anthony, M.A., Bender, S.F., van der Heijden, M.G.A., 2023. Enumerating soil biodiversity. Proceedings of the National Academy of Sciences of the United States of America120, e2304663120.
[3]
Antibus, R.K., Sinsabaugh, R.L., 1993. The extraction and quantification of ergosterol from ectomycorrhizal fungi and roots. Mycorrhiza3, 137–144.
CrossRef Google scholar
[4]
Baldrian, P., Větrovský, T., Cajthaml, T., Dobiášová, P., Petránková, M., Šnajdr, J., Eichlerová, I., 2013. Estimation of fungal biomass in forest litter and soil. Fungal Ecology6, 1–11.
CrossRef Google scholar
[5]
Bar-On, Y.M., Phillips, R., Milo, R., 2018. The biomass distribution on Earth. Proceedings of the National Academy of Sciences of the United States of America115, 6506–6511.
[6]
Barajas-Aceves, M., Hassan, M., Tinoco, R., Vazquez-Duhalt, R., 2002. Effect of pollutants on the ergosterol content as indicator of fungal biomass. Journal of Microbiological Methods50, 227–236.
CrossRef Google scholar
[7]
Brondz, I., Høiland, K., Ekeberg, D., 2004. Multivariate analysis of fatty acids in spores of higher basidiomycetes: a new method for chemotaxonomical classification of fungi. Journal of Chromatography B800, 303–307.
CrossRef Google scholar
[8]
Camenzind, T., Mason-Jones, K., Mansour, I., Rillig, M.C., Lehmann, J., 2023. Formation of necromass-derived soil organic carbon determined by microbial death pathways. Nature Geoscience16, 115–122.
CrossRef Google scholar
[9]
Camenzind, T., Philipp Grenz, K., Lehmann, J., Rillig, M.C., 2021. Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecology Letters24, 208–218.
CrossRef Google scholar
[10]
Camenzind, T., Weimershaus, P., Lehmann, A., Aguilar-Trigueros, C., Rillig, M.C., 2022. Soil fungi invest into asexual sporulation under resource scarcity, but trait spaces of individual isolates are unique. Environmental Microbiology24, 2962–2978.
CrossRef Google scholar
[11]
Canarini, A., Fuchslueger, L., Schnecker, J., Metze, D., Nelson, D.B., Kahmen, A., Watzka, M., Pötsch, E.M., Schaumberger, A., Bahn, M., Richter, A., 2023. Soil fungi remain active and invest in storage compounds during drought independent of future climate conditions. bioRxiv, DOI: 10.1101/2023.10.23.563577
[12]
Charcosset, J.Y., Chauvet, E., 2001. Effect of culture conditions on ergosterol as an indicator of biomass in the aquatic hyphomycetes. Applied and Environmental Microbiology67, 2051–2055.
CrossRef Google scholar
[13]
Chen, C., Chen, X.L., Chen, H.Y.H., 2023. Mapping N deposition impacts on soil microbial biomass across global terrestrial ecosystems. Geoderma433, 116429.
CrossRef Google scholar
[14]
Crowther, T.W., van den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L., Averill, C., Maynard, D.S., 2019. The global soil community and its influence on biogeochemistry. Science365, eaav0550.
CrossRef Google scholar
[15]
Delmont, T.O., Prestat, E., Keegan, K.P., Faubladier, M., Robe, P., Clark, I.M., Pelletier, E., Hirsch, P.R., Meyer, F., Gilbert, J.A., Le Paslier, D., Simonet, P., Vogel, T.M., 2012. Structure, fluctuation and magnitude of a natural grassland soil metagenome. The ISME Journal6, 1677–1687.
CrossRef Google scholar
[16]
Djajakirana, G., Joergensen, R.G., Meyer, B., 1996. Ergosterol and microbial biomass relationship in soil. Biology and Fertility of Soils22, 299–304.
CrossRef Google scholar
[17]
Domsch, K.H., Gams, W., Anderson, T.H., 2007. Compendium of Soil Fungi. 2nd ed. Eching: IHW-Verlag
[18]
Ekblad, A., Mikusinska, A., Ågren, G.I., Menichetti, L., Wallander, H., Vilgalys, R., Bahr, A., Eriksson, U., 2016. Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilization. New Phytologist211, 874–885.
CrossRef Google scholar
[19]
Federle, T.W., 1986. Microbial Distribution in Soil - New Techniques. In: Megusar, F., Gantar, M., eds. Perspectives in Microbial Ecology. Ljulbljana: Slovene Society for Microbiology, 493–498
[20]
Fierer, N., Jackson, J.A., Vilgalys, R., Jackson, R.B., 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology71, 4117–4120.
CrossRef Google scholar
[21]
Frostegård, Å., Bååth, E., 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils22, 59–65.
CrossRef Google scholar
[22]
Frostegård, Å., Tunlid, A., Bååth, E., 1991. Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods14, 151–163.
CrossRef Google scholar
[23]
Frostegård, Å., Tunlid, A., Bååth, E., 1993. Phospholipid fatty-acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy-metals. Applied and Environmental Microbiology59, 3605–3617.
CrossRef Google scholar
[24]
Frostegård, Å., Tunlid, A., Bååth, E., 2011. Use and misuse of PLFA measurements in soils. Soil Biology & Biochemistry43, 1621–1625.
[25]
Gorka, S., Darcy, S., Horak, J., Imai, B., Mohrlok, M., Salas, E., Richter, A., Schmidt, H., Wanek, W., Kaiser, C., Canarini, A., 2023. Beyond PLFA: concurrent extraction of neutral and glycolipid fatty acids provides new insights into soil microbial communities. Soil Biology and Biochemistry187, 109205.
CrossRef Google scholar
[26]
Green, C.T., Scow, K.M., 2000. Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers. Hydrogeology Journal8, 126–141.
CrossRef Google scholar
[27]
Grimmett, I.J., Shipp, K.N., Macneil, A., Bärlocher, F., 2013. Does the growth rate hypothesis apply to aquatic hyphomycetes? Fungal Ecology 6, 493–500
[28]
He, L.Y., Lipson, D.A., Mazza Rodrigues, J.L., Mayes, M., Björk, R.G., Glaser, B., Thornton, P., Xu, X.F., 2021. Dynamics of fungal and bacterial biomass carbon in natural ecosystems: site-level applications of the CLM-microbe model. Journal of Advances in Modeling Earth Systems13, e2020MS002283.
CrossRef Google scholar
[29]
Heaton, L.L.M., Jones, N.S., Fricker, M.D., 2016. Energetic constraints on fungal growth. The American Naturalist187, E27–E40.
CrossRef Google scholar
[30]
Hsieh, C.W.C., Cannella, D., Jørgensen, H., Felby, C., Thygesen, L.G., 2014. Cellulase inhibition by high concentrations of monosaccharides. Journal of Agricultural and Food Chemistry62, 3800–3805.
CrossRef Google scholar
[31]
Hungate, B.A., Mau, R.L., Schwartz, E., Caporaso, J.G., Dijkstra, P., van Gestel, N., Koch, B.J., Liu, C.M., McHugh, T.A., Marks, J.C., Morrissey, E.M., Price, L.B., 2015. Quantitative microbial ecology through stable isotope probing. Applied and Environmental Microbiology81, 7570–7581.
CrossRef Google scholar
[32]
Joergensen, R.G., 2018. Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils54, 559–568.
CrossRef Google scholar
[33]
Joergensen, R.G., 2022. Phospholipid fatty acids in soil—drawbacks and future prospects. Biology and Fertility of Soils58, 1–6.
CrossRef Google scholar
[34]
Joergensen, R.G., Emmerling, C., 2006. Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. Journal of Plant Nutrition and Soil Science169, 295–309.
CrossRef Google scholar
[35]
Joergensen, R.G., Wichern, F., 2008. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biology and Biochemistry40, 2977–2991.
CrossRef Google scholar
[36]
Junicke, H., Abbas, B., Oentoro, J., van Loosdrecht, M., Kleerebezem, R., 2014. Absolute quantification of individual biomass concentrations in a methanogenic coculture. AMB Express4, 35.
CrossRef Google scholar
[37]
Keck, F., Rimet, F., Bouchez, A., Franc, A., 2016. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecology and Evolution6, 2774–2780.
CrossRef Google scholar
[38]
Klamer, M., Bååth, E., 2004. Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18:2ω6,9. Soil Biology and Biochemistry36, 57–65.
CrossRef Google scholar
[39]
Klein, D.A., Paschke, M.W., 2004. Filamentous fungi: the indeterminate lifestyle and microbial ecology. Microbial Ecology47, 224–235.
[40]
Kramer, S., Dibbern, D., Moll, J., Huenninghaus, M., Koller, R., Krueger, D., Marhan, S., Urich, T., Wubet, T., Bonkowski, M., Buscot, F., Lueders, T., Kandeler, E., 2016. Resource partitioning between bacteria, fungi, and protists in the detritusphere of an agricultural soil. Frontiers in Microbiology7, 1524.
[41]
Lavrinienko, A., Jernfors, T., Koskimäki, J.J., Pirttilä, A.M., Watts, P.C., 2021. Does intraspecific variation in rDNA copy number affect analysis of microbial communities? Trends in Microbiology 29, 19–27
[42]
Leckie, S.E., Prescott, C.E., Grayston, S.J., Neufeld, J.D., Mohn, W.W., 2004. Comparison of chloroform fumigation-extraction, phospholipid fatty acid, and DNA methods to determine microbial biomass in forest humus. Soil Biology and Biochemistry36, 529–532.
CrossRef Google scholar
[43]
Lehmann, A., Zheng, W.S., Soutschek, K., Roy, J., Yurkov, A.M., Rillig, M.C., 2019. Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi. Scientific Reports9, 14152.
CrossRef Google scholar
[44]
Lewe, N., Hermans, S., Lear, G., Kelly, L.T., Thomson-Laing, G., Weisbrod, B., Wood, S.A., Keyzers, R.A., Deslippe, J.R., 2021. Phospholipid fatty acid (PLFA) analysis as a tool to estimate absolute abundances from compositional 16S rRNA bacterial metabarcoding data. Journal of Microbiological Methods188, 106271.
CrossRef Google scholar
[45]
Li, J., Wang, X., Wu, J.H., Sun, Y.X., Zhang, Y.Y., Zhao, Y.F., Huang, Z., Duan, W.H., 2023. Climate and geochemistry at different altitudes influence soil fungal community aggregation patterns in alpine grasslands. Science of the Total Environment881, 163375.
CrossRef Google scholar
[46]
Liang, C., Amelung, W., Lehmann, J., Kästner, M., 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology25, 3578–3590.
CrossRef Google scholar
[47]
Lofgren, L.A., Uehling, J.K., Branco, S., Bruns, T.D., Martin, F., Kennedy, P.G., 2019. Genome-based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Molecular Ecology28, 721–730.
CrossRef Google scholar
[48]
Malik, A.A., Chowdhury, S., Schlager, V., Oliver, A., Puissant, J., Vazquez, P.G.M., Jehmlich, N., von Bergen, M., Griffiths, R.I., Gleixner, G., 2016. Soil fungal: bacterial ratios are linked to altered carbon cycling. Frontiers in Microbiology7, 1247.
[49]
Manerkar, M.A., Seena, S., Bärlocher, F., 2008. Q-RT-PCR for assessing archaea, bacteria, and fungi during leaf decomposition in a stream. Microbial Ecology56, 467–473.
CrossRef Google scholar
[50]
Mason-Jones, K., Breidenbach, A., Dyckmans, J., Banfield, C.C., Dippold, M.A., 2023. Intracellular carbon storage by microorganisms is an overlooked pathway of biomass growth. Nature Communications14, 2240.
CrossRef Google scholar
[51]
Miltner, A., Bombach, P., Schmidt-Brücken, B., Kästner, M., 2012. SOM genesis: microbial biomass as a significant source. Biogeochemistry111, 41–55.
CrossRef Google scholar
[52]
Moore, D., Robson, G., Trinci, A., 2021. 21st Century Guidebook to Fungi. 2nd ed. Cambridge: Cambridge University Press
[53]
Mouginot, C., Kawamura, R., Matulich, K.L., Berlemont, R., Allison, S.D., Amend, A.S., Martiny, A.C., 2014. Elemental stoichiometry of Fungi and Bacteria strains from grassland leaf litter. Soil Biology and Biochemistry76, 278–285.
CrossRef Google scholar
[54]
Ngosong, C., Gabriel, E., Ruess, L., 2012. Use of the signature Fatty Acid 16:1ω5 as a tool to determine the distribution of arbuscular mycorrhizal fungi in soil. Journal of Lipids2012, 236807.
[55]
Niemenmaa, O., Galkin, S., Hatakka, A., 2008. Ergosterol contents of some wood-rotting basidiomycete fungi grown in liquid and solid culture conditions. International Biodeterioration & Biodegradation62, 125–134.
[56]
Nisha, A., Rastogi, N.K., Venkateswaran, G., 2011. Optimization of media components for enhanced arachidonic acid production by Mortierella alpina under submerged cultivation. Biotechnology and Bioprocess Engineering16, 229–237.
CrossRef Google scholar
[57]
Nuccio, E.E., Blazewicz, S.J., Lafler, M., Campbell, A.N., Kakouridis, A., Kimbrel, J.A., Wollard, J., Vyshenska, D., Riley, R., Tomatsu, A., Hestrin, R., Malmstrom, R.R., Firestone, M., Pett-Ridge, J., 2022. HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi. Microbiome10, 199.
CrossRef Google scholar
[58]
Nurika, I., Eastwood, D.C., Barker, G.C., 2018. A comparison of ergosterol and PLFA methods for monitoring the growth of ligninolytic fungi during wheat straw solid state cultivation. Journal of Microbiological Methods148, 49–54.
CrossRef Google scholar
[59]
Olsson, P.A., Johansen, A., 2000. Lipid and fatty acid composition of hyphae and spores of arbuscular mycorrhizal fungi at different growth stages. Mycological Research104, 429–434.
CrossRef Google scholar
[60]
Osburn, E.D., McBride, S.G., Kupper, J.V., Nelson, J.A., McNear, D.H., McCulley, R.L., Barrett, J.E., 2022. Accurate detection of soil microbial community responses to environmental change requires the use of multiple methods. Soil Biology and Biochemistry169, 108685.
CrossRef Google scholar
[61]
Parikh, S.J., James, B.R., 2012. Soil: the foundation of agriculture. Nature Education Knowledge3, 2.
[62]
Pasanen, A.L., Yli-Pietila, K., Pasanen, P., Kalliokoski, P., Tarhanen, J., 1999. Ergosterol content in various fungal species and biocontaminated building materials. Applied and Environmental Microbiology65, 138–142.
CrossRef Google scholar
[63]
Pawłowska, J., Okrasińska, A., Kisło, K., Aleksandrzak-Piekarczyk, T., Szatraj, K., Dolatabadi, S., Muszewska, A., 2019. Carbon assimilation profiles of mucoralean fungi show their metabolic versatility. Scientific Reports9, 11864.
CrossRef Google scholar
[64]
Pérez-Guzmán, L., Phillips, L.A., Acevedo, M.A., Acosta-Martínez, V., 2021. Comparing biological methods for soil health assessments: EL-FAME, enzyme activities, and qPCR. Soil Science Society of America Journal85, 636–653.
CrossRef Google scholar
[65]
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, 2021. nlme: linear and nonlinear mixed effects models. R package version 3.1–152, available at the website CRAN. R-project
[66]
Pusztahelyi, T., Molnár, Z., Emri, T., Klement, É., Miskei, M., Kerékgyártó, J., Balla, J., Pócsi, I., 2006. Comparative studies of differential expression of chitinolytic enzymes encoded by chiA, chiB, chiC and nagA genes in Aspergillus nidulans. Folia Microbiologica51, 547–554.
CrossRef Google scholar
[67]
R Core Team, 2021. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing
[68]
Ruess, L., Chamberlain, P.M., 2010. The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biology and Biochemistry42, 1898–1910.
CrossRef Google scholar
[69]
Ruess, L., Häggblom, M.M., Garcı́a Zapata, E.J., Dighton, J., 2002. Fatty acids of fungi and nematodes—possible biomarkers in the soil food chain? Soil Biology and Biochemistry 34, 745–756
[70]
Ruess, L., Schütz, K., Migge-Kleian, S., Häggblom, M.M., Kandeler, E., Scheu, S., 2007. Lipid composition of Collembola and their food resources in deciduous forest stands—Implications for feeding strategies. Soil Biology and Biochemistry39, 1990–2000.
CrossRef Google scholar
[71]
Sae-Tun, O., Maftukhah, R., Noller, C., Remlinger, V.I., Meyer-Laker, V., Sørensen, A.C.T., Sustic, D., Socianu, S.I., Bernardini, L.G., Mentler, A., Keiblinger, K.M., 2020. Comparison of commonly used extraction methods for ergosterol in soil samples. International Agrophysics34, 425–432.
CrossRef Google scholar
[72]
Schliep, K.P., 2011. phangorn: phylogenetic analysis in R. Bioinformatics27, 592–593.
CrossRef Google scholar
[73]
Song, Z.W., Vail, A., Sadowsky, M.J., Schilling, J.S., 2014. Quantitative PCR for measuring biomass of decomposer fungi in planta. Fungal Ecology7, 39–46.
CrossRef Google scholar
[74]
Stahl, P.D., Klug, M.J., 1996. Characterization and differentiation of filamentous fungi based on fatty acid composition. Applied and Environmental Microbiology62, 4136–4146.
CrossRef Google scholar
[75]
Stahl, P.D., Parkin, T.B., Eash, N.S., 1995. Sources of error in direct microscopic methods for estimation of fungal biomass in soil. Soil Biology and Biochemistry27, 1091–1097.
CrossRef Google scholar
[76]
Sterner, R.W., Elser, J.J., 2002. Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton: Princeton University Press
[77]
Stigler, S.M., 1997. Regression towards the mean, historically considered. Statistical Methods in Medical Research6, 103–114.
CrossRef Google scholar
[78]
Strickland, M.S., Rousk, J., 2010. Considering fungal: bacterial dominance in soils - Methods, controls, and ecosystem implications. Soil Biology and Biochemistry42, 1385–1395.
CrossRef Google scholar
[79]
Taube, R., Fabian, J., Van den Wyngaert, S., Agha, R., Baschien, C., Gerphagnon, M., Kagami, M., Krüger, A., Premke, K., 2019. Potentials and limitations of quantification of fungi in freshwater environments based on PLFA profiles. Fungal Ecology41, 256–268.
CrossRef Google scholar
[80]
Tedersoo, L., Anslan, S., Bahram, M., Drenkhan, R., Pritsch, K., Buegger, F., Padari, A., Hagh-Doust, N., Mikryukov, V., Gohar, D., Amiri, R., Hiiesalu, I., Lutter, R., Rosenvald, R., Rähn, E., Adamson, K., Drenkhan, T., Tullus, H., Jürimaa, K., Sibul, I., Otsing, E., Põlme, S., Metslaid, M., Loit, K., Agan, A., Puusepp, R., Varik, I., Kõljalg, U., Abarenkov, K., 2020. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in northern Europe. Frontiers in Microbiology11, 1953.
[81]
Tedersoo, L., Mikryukov, V., Zizka, A., Bahram, M., Hagh-Doust, N., Anslan, S., Prylutskyi, O., Delgado-Baquerizo, M., Maestre, F.T., Pärn, J., Öpik, M., Moora, M., Zobel, M., Espenberg, M., Mander, Ü., Khalid, A.N., Corrales, A., Agan, A., Vasco-Palacios, A.M., Saitta, A., Rinaldi, A.C., Verbeken, A., Sulistyo, B.P., Tamgnoue, B., Furneaux, B., Ritter, C.D., Nyamukondiwa, C., Sharp, C., Marín, C., Gohar, D., Klavina, D., Sharmah, D., Dai, D.Q., Nouhra, E., Biersma, E.M., Rähn, E., Cameron, E.K., De Crop, E., Otsing, E., Davydov, E.A., Albornoz, F.E., Brearley, F.Q., Buegger, F., Zahn, G., Bonito, G., Hiiesalu, I., Barrio, I.C., Heilmann-Clausen, J., Ankuda, J., Kupagme, J.Y., Maciá-Vicente, J.G., Fovo, J.D., Geml, J., Alatalo, J.M., Alvarez-Manjarrez, J., Põldmaa, K., Runnel, K., Adamson, K., Bråthen, K.A., Pritsch, K., Tchan, K.I., Armolaitis, K., Hyde, K.D., Newsham, K.K., Panksep, K., Lateef, A.A., Tiirmann, L., Hansson, L., Lamit, L.J., Saba, M., Tuomi, M., Gryzenhout, M., Bauters, M., Piepenbring, M., Wijayawardene, N., Yorou, N.S., Kurina, O., Mortimer, P.E., Meidl, P., Kohout, P., Nilsson, R.H., Puusepp, R., Drenkhan, R., Garibay-Orijel, R., Godoy, R., Alkahtani, S., Rahimlou, S., Dudov, S.V., Põlme, S., Ghosh, S., Mundra, S., Ahmed, T., Netherway, T., Henkel, T.W., Roslin, T., Nteziryayo, V., Fedosov, V.E., Onipchenko, V.G., Yasanthika, W.A.E., Lim, Y.W., Soudzilovskaia, N.A., Antonelli, A., Kõljalg, U., Abarenkov, K., 2022. Global patterns in endemicity and vulnerability of soil fungi. Global Change Biology28, 6696–6710.
CrossRef Google scholar
[82]
Thijs, S., Op De Beeck, M., Beckers, B., Truyens, S., Stevens, V., Van Hamme, J.D., Weyens, N., Vangronsveld, J., 2017. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Frontiers in Microbiology8, 494.
[83]
Thorn, R.G., Reddy, C.A., Harris, D., Paul, E.A., 1996. Isolation of saprophytic basidiomycetes from soil. Applied and Environmental Microbiology62, 4288–4292.
CrossRef Google scholar
[84]
Van der Westhuizen, J.P.J., Kock, J.L.F., Botha, A., Botes, P.J., 1994. The distribution of the ω3- and ω6-series of cellular long-chain fatty acids in fungi. Systematic and Applied Microbiology17, 327–345.
CrossRef Google scholar
[85]
Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics with S. 4th ed. New York: Springer
[86]
Vestal, J.R., White, D.C., 1989. Lipid analysis in microbial ecology: quantitative approaches to the study of microbial communities. BioScience39, 535–541.
CrossRef Google scholar
[87]
Větrovský, T., Baldrian, P., 2013. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One8, e57923.
CrossRef Google scholar
[88]
Wallander, H., Ekblad, A., Godbold, D.L., Johnson, D., Bahr, A., Baldrian, P., Björk, R.G., Kieliszewska-Rokicka, B., Kjøller, R., Kraigher, H., Plassard, C., Rudawska, M., 2013. Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils – A review. Soil Biology and Biochemistry57, 1034–1047.
CrossRef Google scholar
[89]
Wang, S.N., Cheng, J.K., Li, T., Liao, Y.C., 2020. Response of soil fungal communities to continuous cropping of flue-cured tobacco. Scientific Reports10, 19911.
CrossRef Google scholar
[90]
Weete, J.D., 1980. Lipid Biochemistry of Fungi and Other Organisms. New York: Springer
[91]
Weete, J.D., Abril, M., Blackwell, M., 2010. Phylogenetic distribution of fungal sterols. PLoS One5, e10899.
CrossRef Google scholar
[92]
White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., eds. PCR Protocols: A Guide to Methods and Applications. San Diego: Academic Press, pp. 315–322
[93]
Willers, C., van Rensburg, P.J.J., Claassens, S., 2015. Phospholipid fatty acid profiling of microbial communities–a review of interpretations and recent applications. Journal of Applied Microbiology119, 1207–1218.
CrossRef Google scholar
[94]
Wright, E.S., 2016. Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R. The R Journal 8, 352–359
[95]
Yu, K.L., van den Hoogen, J., Wang, Z.Q., Averill, C., Routh, D., Smith, G.R., Drenovsky, R.E., Scow, K.M., Mo, F., Waldrop, M.P., Yang, Y.H., Tang, W.Z., De Vries, F.T., Bardgett, R.D., Manning, P., Bastida, F., Baer, S.G., Bach, E.M., García, C., Wang, Q.K., Ma, L.N., Chen, B.D., He, X.J., Teurlincx, S., Heijboer, A., Bradley, J.A., Crowther, T.W., 2022. The biogeography of relative abundance of soil fungi versus bacteria in surface topsoil. Earth System Science Data14, 4339–4350.
CrossRef Google scholar
[96]
Zelles, L., 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere35, 275–294.
CrossRef Google scholar
[97]
Zhang, Z.J., Qu, Y.Y., Li, S.Z., Feng, K., Wang, S., Cai, W.W., Liang, Y.T., Li, H., Xu, M.Y., Yin, H.Q., Deng, Y., 2017. Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Scientific Reports7, 4837.
CrossRef Google scholar
[98]
Zheng, W.S., Lehmann, A., Ryo, M., Vályi, K.K., Rillig, M.C., 2020. Growth rate trades off with enzymatic investment in soil filamentous fungi. Scientific Reports10, 11013.
CrossRef Google scholar

Acknowledgments

TC acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, grant number 465123751, SPP2322 SoilSystems). SH was partly supported by DFG grant HE 6183/5-1 and SM by MA4436/1-5. We thank Alberto Canarini and Kyle Mason-Jones for important insights on fungal storage mechanisms. Open Access funding enabled and organized by Projekt DEAL.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s42832-024-0243-5 and is accessible for authorized users.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2024 The Author(s) 2024. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(2880 KB)

Accesses

Citations

Detail

Sections
Recommended

/